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ABSTRACT

We report on multiwavelength measurements of the accreting black hole Swift J1753.5–0127 in the hard state at low
luminosity (L ∼ 2.7 × 1036 erg s−1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically
thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E B V( ) 0.45- = from
earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole
mass ofMBH = 5Me and a system inclination of i = 40°, the fits imply an inner radius for the disk of R R 212gin >
d3(MBH/5Me)

−1, where Rg is the gravitational radius of the black holeand d3 is the distance to the source in units of
3 kpc. The outer radius is R R 90,000gout = d3(MBH/5Me)

−1, which corresponds to 6.6 × 1010 d3 cm, consistent
with the expected size of the disk given previous measurements of the size of the companionʼs Roche lobe. The
0.5–240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and
Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed powerlaw with a photon
index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum
component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are
able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a
Comptonization component, and a broken powerlaw, representing the emission from the compact jet. The broken
powerlaw cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift
J1753.5–0127 is an outlier in the radio/X-ray correlation. The broken powerlaw (i.e., the jet) might dominate above
20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to
the full SED do not include significant thermal emission in the X-ray band, previous observations have consistently
seen such a component, and we find that there is evidence at the 3.1σ level for a disk-blackbody component with a
temperature of kT 150in 20

30= -
+ eV and an inner radius of 5Rg–14Rg. If this component is real, it might imply the

presence of an inner optically thick accretion disk in addition to the strongly truncated (R 212in > Rg) disk. We also
perform X-ray timing analysis, and the power spectrum is dominated by a Lorentzian component with νmax = 0.110
± 0.003 Hz and νmax = 0.16 ± 0.04Hz as measured by XIS and XRT, respectively.

Key words: accretion, accretion disks – black hole physics – stars: individual (Swift J1753.5–0127) – X-rays:
general – X-rays: stars

1. INTRODUCTION

Most accreting stellar-mass black holes in binary systems
exhibit large changes in luminosity over time, ranging from a
substantial fraction of the Eddington limit (LEdd) to ∼10−8LEdd

or ∼10−9LEdd. In addition to changes in luminosity, these
systems show other observational changes, including transi-
tions between distinct spectral states that are similar from
systemtosystem (e.g., McClintock & Remillard 2006;
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Belloni 2010). The thermal dominant (or soft) state has a
strong thermal component from an optically thick accretion
disk in the X-ray spectrum. In the hard state, on the other hand,
this component contributes a lower fraction of the flux in the
X-ray band. The drop in flux is partly due to a decrease in the
temperature of the component (Kalemci et al. 2004), moving
its peak into the ultraviolet, where it is difficult to measure
owing to interstellar absorption. While the soft thermal X-ray
emission weakens, there is a strong increase in the hard X-rays,
and the X-ray spectrum in the hard state is dominated by a
powerlaw, which often has an exponential cutoff above
50–100 keV (Grove et al. 1998; Gilfanov & Merloni 2014).

Accreting black holes also emit in the radio band when they
are in the hard state, and this is due to a powerful compact jet
(Corbel et al. 2000; Fender 2001). At radio frequencies, the
spectrum is dominated by a partially self-absorbed synchrotron
component that has a flat or rising spectrum (Fν∝ να, where
α 0). The jet spectrum changes slope above the break
frequency, νbreak, becoming steeper because the frequency is
sufficiently high that the entire jet is optically thin. In some
cases, the measurement of νbreak has been constrained to be in
the infrared (IR) to optical (Corbel & Fender 2002; Gandhi
et al. 2011; Rahoui et al. 2011; Russell et al. 2013a, 2013b,
2014), but its measurement can be complicated because of the
other emission components (e.g., from the accretion disk or the
optical companion) and also because the jet spectrum is likely
significantly more complicated than a simple broken powerlaw
(Markoff et al. 2005; Migliari et al. 2007).

In the hard state, it is clear that there is a strong connection
between the X-ray and radio emission. The fluxes in the two
bands are correlated (Corbel et al. 2000, 2003, 2008, 2013;
Gallo et al. 2003, 2014), and while early studies suggested that
all black hole sources might lie on the same correlation line,
observations of more systems have shown that this is not the
case (Jonker et al. 2010; Coriat et al. 2011). A current topic of
debate is whether all sources lie on two correlation lines, one
track for standard sources and one for outliers, or if there is a
continuum of different tracks (Coriat et al. 2011; Corbel
et al. 2013; Gallo et al. 2014). Another topic is how much, if
any, of the X-ray emission originates in the jet. While the most
typical hard-state spectrum with an exponential cutoff is well
described by thermal Comptonization, and it has been argued
that it is unlikely that this emission is due to synchrotron
emission from a jet (Zdziarski et al. 2003), some black hole
spectra appear to have multiple high-energy continuum
components (Joinet et al. 2007; Rodriguez et al. 2008; Bouchet
et al. 2009; Droulans et al. 2010; Russell et al. 2010), and a jet
origin is not ruled out. In fact, Cygnus X-1 often shows two
high-energy components in the hard state, including an MeV
component (McConnell et al. 2000; Rahoui et al. 2011;
Zdziarski et al. 2012), and the detection of strong polarization
at >400 keV favors a synchrotron origin (Laurent et al. 2011;
Jourdain et al. 2012).

The fact that a jet is present in the hard state and that there is
some connection between the disk and the jet leads to the
question of what we know about the disk properties. The main
question regarding the optically thick disk concerns the
location of the inner radius (Rin). One idea is that the black
hole states are essentially determined by the mass accretion rate
and Rin (Esin et al. 1997), with sources entering the hard state
because of an increase in Rin. However, X-ray observations of
sources in the bright hard state seem to contradict this since

relativistically smeared reflection components are seen from
some systems that imply that the disk remains close to the
innermost stable circular orbit (ISCO; Blum et al. 2009; Reis
et al. 2011; Fabian et al. 2012; Miller et al. 2012). In addition,
thermal component modeling has led to similar conclusions
(Reis et al. 2010). While photon pileup in CCD spectra has
sparked some debate about iron line results (Miller et al.
2006b, 2010; Done & Diaz Trigo 2010), more recent
observations with the Nuclear Spectroscopic Telescope Array
(NuSTAR) confirm strongly broadened and skewed iron lines in
the bright hard state for GRS 1915+105 (Miller et al. 2013),
GRS 1739–278 (Miller et al. 2015), GX 339–4 (Fürst
et al. 2015), and Cygnus X-1 (Parker et al. 2015). For the
case of GRS 1739–278, the luminosity is ∼5% LEdd, and the
inferred inner radius is <12Rg (Miller et al. 2015), where
R GM cg BH

2= and G is the gravitational constant, MBH is the
black hole mass, and c is the speed of light. Significantly
truncated disks have been reported for the hard state at
intermediate and low luminosities using reflection component
modeling (Tomsick et al. 2009; Shidatsu et al. 2011; Plant
et al. 2015) and also by modeling the thermal component from
the optically thick disk (Gierliński et al. 2008; Cabanac
et al. 2009).
To investigate questions related to the accretion geometry

and the relationship between the disk and the jet, we performed
multiwavelength observations of the accreting black hole Swift
J1753.5–0127 in the hard state. This system was first
discovered in outburst in 2005 (Palmer et al. 2005), and it is
very unusual in that it has been bright in X-rays for almost a
decade. The optical light curve shows a 3.2 hr modulation,
which has been interpreted as a superhump period (a
modulation due to tidal stresses on a precessing, elliptical
accretion disk), suggesting that the orbital period is somewhat
smaller than this (Zurita et al. 2008). From radial velocity
measurements, Neustroev et al. (2014) find a 2.85 hr signal,
which is likely the true orbital period. Thus, Swift
J1753.5–0127 has one of the shortest orbital periods of any
known black hole binary. Although the mass of the black hole
in Swift J1753.5–0127 is still debated since there has not been
an opportunity to obtain a radial velocity measurement for the
companion star with the system in quiescence, Neustroev et al.
(2014) argue that the mass is relatively low, MBH < 5Me, and
we adopt a black hole mass of 5Me for calculations in this
paper.
Swift J1753.5–0127 is also unusual in that it has a low level

of extinction, owing in part to it being somewhat out of the
plane with Galactic coordinates of l = 24 ◦. 9 and b = +12 ◦. 2.
Froning et al. (2014) obtained UV measurements showing that
E B V( ) 0.45- = , and we confirm this value in a companion
paper (Rahoui et al. 2015). It is not entirely clear whether the
system is relatively nearby or in the Galactic halo as there is a
large range of possible distances, d = 1–10 kpc (Cadolle Bel
et al. 2007; Zurita et al. 2008; Froning et al. 2014). Froning
et al. (2014) provide evidence that the UV emission from Swift
J1753.5–0127 in the hard state comes from an accretion disk,
and they calculate distance upper limits that depend on MBH,
assuming that the mass accretion rate is less than 5% LEdd. For
MBH = 5Me, the upper limit is 2.8–3.7 kpc, depending on the
inclination of the system, and we use a fiducial distance of
3 kpc for the calculations in this paper.
Swift J1753.5–0127 has been extensively observed in the

radio bandand is one of the clearest examples of a source that
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is an outlier in the radio/X-ray correlation plot (Soleri
et al. 2010; Corbel et al. 2013). The location on the plot
depends on the assumed distance, and the previous work has
assumed a source distance of 8 kpc. While we are adopting a
significantly smaller distance, Soleri et al. (2010) considered
how distance affects the the radio underluminosity, which is a
measure of how far a source is from the standard correlation.
Soleri et al. (2010) show that a smaller distance moves the
source farther from the standard correlation (see also Jonker
et al. 2004). Thus, the fact that recent work suggests that Swift
J1753.5–0127 is closer than early estimates only strengthens
the conclusion that the source is an outlier.

For this work, we have carried out a large campaign to
observe Swift J1753.5–0127 in the hard state with radio, near-
IR, optical, UV, and X-ray observations as described in
Section 2. In the X-ray, data were obtained with NuSTAR,
Suzaku, and Swift/X-ray Telescope (XRT). The observations
occurred when the flux level was close to the minimum
brightness this source has had in the ∼10 yrsince its discovery
(see Figure 1). The low flux level (and presumably mass
accretion rate) may cause changes in the properties of the
accretion disk or jet compared to previous observations at
higher flux levels. In Section 3, we perform spectral analysis
for the different energy ranges (radio, near-IR to UV, and
X-ray) separately and then also as a combined radio to X-ray
spectral energy distribution (SED). We also produce an X-ray

power spectrum for timing analysis. We discuss the results in
Section 4and then provide conclusions in Section 5.

2. OBSERVATIONS AND DATA REDUCTION

The observations that we obtained in 2014 April are listed in
Table 1, and more details about the observation times are
shown in Figure 2. The X-ray flux was rising very slowly
during the observation, and this is seen especially clearly in the
Suzaku/XIS light curve (Figure 2). We provide more details
about the observatories used and how the data were processed
in the following.

2.1. Radio

We observed Swift J1753.5–0127 with the Karl G. Jansky
Very Large Array (VLA) on 2014 April 5 (MJD 56,752) from
11:00 to 13:00 UT with the array in its mostextended
Aconfiguration. We split the observing time between the
4–8 GHz and 18–26 GHz observing bands. In the lower
4–8 GHz band, we split the available bandwidth into two
1024MHz basebands, centered at 5.25 and 7.45 GHz. Each
baseband was split into eight 128MHz spectral windows, each
of which comprised 64 2MHz channels. The higher-frequency
18–26 GHz band was fully covered by four 2048MHz
basebands, each comprising 16 128MHz sub-bands made up
of 64 2MHz channels. After accounting for calibration
overheads, the total on-source integration times for Swift

Figure 1. (a) MAXI and (b)Swift/BAT light curves in the 2–20 and 15–50 keV bands for Swift J1753.5–0127 between mid-2009 and mid-2014. The vertical lines
mark the start and stop times of the observations used in this work (2014 April 2–8).
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J1753.5–0127 were 25.3 minutes in the 4–8 GHz band and
29.1 minutes in the 18–26 GHz band.

The data were reduced using version 4.2.0 of the Common
Astronomy Software Application (CASA; McMullin
et al. 2007). We applied a priori calibration to account for
updated antenna positions and gain variations with changing
elevation or correlator configurationand corrected the
18–26 GHz data for opacity effects. We edited out any data
affected by antenna shadowing before Hanning smoothing the
data and removing any radio frequency interference. At all
frequencies we used 3C 286 to calibrate the instrumental
frequency responseand to set the amplitude scale according to
the default Perley-Butler 2010 (Perley & Butler 2013)
coefficients implemented in the CASA task SETJY. We used
J1743–0350 as a secondary calibrator to determine the time-
varying complex gains arising from both atmospheric and
instrumental effects.

The calibrated data on Swift J1753.5–0127 were averaged by
a factor of 4 in frequency to reduce the raw data volumeand
then imaged using Briggs weighting with a robust parameter of
1 to achieve the best compromise between sensitivity and
sidelobe suppression. When imaging, we used the multi-
frequency synthesis algorithm as implemented in CASAʼs
CLEAN task, choosing two Taylor terms to account for the
frequency dependence of source brightness. The source was
clearly detected in all frequency bands, with an inverted
spectrum (α > 0, where the flux density Sν varies as a function
of frequency ν as Sν∝ να). To better constrain the radio
spectrum, we split each frequency band into four frequency
bins (of width 1024MHz at 4–8 GHz, and 2048MHz at
18–26 GHz, where the intrinsic sensitivity per unit frequency is
lower). We measured the source brightness in each frequency
bin by fitting an elliptical Gaussian to the brightness

distribution in the image plane. Swift J1753.5–0127 appeared
unresolved at all frequencies.
Swift J1753.5–0127 was also observed with the Mullard

Radio Astronomy Observatoryʼs Arcminute Microkelvin
Imager (AMI) Large Array (Zwart et al. 2008) on two
occasions during the coordinated multiwavelength campaign
between 2014 April 4 and 5. These ∼4 hr observations were
taken at the times given in Table 1 with a central frequency of
15.4 GHz. The AMI Large Array consists of eight 13 m dishes,
with the full frequency band of 12–17.9 GHz being divided
into eight 0.75 GHz bandwidth channels. Channels 1–2 and 8
were ignored owing to lower response in those frequency
ranges and the expected high level of interference from
satellites due to the low elevation of the source. The primary
beam FWHM is ≈6′ at 16 GHz.
The AMI data were reduced using the semiautomated

pipeline procedure described in Staley et al. (2013), which
uses the AMI software tool REDUCE to automatically flag for
interference, shadowing, and hardware errors;calibrate the
gain;and synthesize the frequency channels to produce
visibility data in uv-FITS format (see Staley et al. 2013, for
more details). However, the low elevation and the radio-quiet
nature of the source resulted in high noise levels in the reduced
images, and thus the two observations were concatenated to
maximize the signal-to-noise ratio. The concatenated data set
was then imaged in CASA, where the CLEAN task was used to
produce the combined frequency image, and the flux density
was measured by fitting a Gaussian model to the source in the
radio map using the MIRIAD task IMFIT. The error on the
concatenated flux density was calculated as

S(0.05 )2
fit
2

rms
2s s s= + +n following Ainsworth et al.

(2012), with a 5% absolute calibration error added to the
fitting error σfit calculated in IMFIT. The source concatenated
flux density was measured at 290 ± 50 μJy.

Table 1
Observing Log and Exposure Times

Start Time (UT) End Time (UT) Exposure
Mission Instrument Energy/Filter ObsID (in 2014) (in 2014) (s)

Radio
VLA L 4–8 GHz L Apr 5, 11.00 hr Apr 5, 13.00 hr 1518
VLA L 18–26 GHz L ” ” 1746
AMI L 12–17.9 GHz L Apr 4, 3.07 hr Apr 4, 7.56 hr 16,164
AMI L 12–17.9 GHz L Apr 5, 2.67 hr Apr 5, 7.64 hr 17,892

Near-IR to UV
Kanata HONIR B/V/J/Ks L Apr 2, 17.3 hr Apr 7, 19.2 hr See text and Table 2
SLT U42 g′/r′/i′/z′ L Apr 3, 9.1 hr Apr 5, 11.0 hr 180a

Swift UVOT v 00080730001 Apr 5, 0.4 hr Apr 5, 5.4 hr 182
Swift UVOT b 00080730001 ” ” 182
Swift UVOT u 00080730001 ” ” 182
Swift UVOT uvw1 00080730001 ” ” 364
Swift UVOT uvm2 00080730001 ” ” 591
Swift UVOT uvw2 00080730001 ” ” 731

X-Ray
Swift XRT 0.5–10 keV 00080730001 Apr 5, 0.4 hr Apr 5, 5.4 hr 2372
Suzaku XIS0/1/3 1.2–12 keV 409051010 Apr 3, 17.65 hr Apr 5, 10.69 hr 59,711
NuSTAR FPMA/B 3–79 keV 80002021003 Apr 4, 21.35 hr Apr 5, 12.69 hr 61,038
Suzaku HXD/PIN 13–65 keV 409051010 Apr 3, 17.65 hr Apr 5, 10.69 hr 50,434
Suzaku HXD/GSO 50–240 keV 409051010 Apr 3, 17.65 hr Apr 5, 10.69 hr 50,434

Note.
a Each exposure listed in Table 3 was 180 s.
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2.2. Ground-based Optical and Near-IR

Kanata is a 1.5 m telescope at the Higashi-Hiroshima
Observatory. Photometric observations were performed for
this study on three nights (MJD 56,749, 56,751, and 56,754)
with the B, V, J, and Ks bands using the HONIR instrument
(Sakimoto et al. 2012; Akitaya et al. 2014) attached to Kanata.
The individual frame exposure times were 75, 136, 120, and
60 s in B, V, J, andKsbands, respectively. The data reduction
was performed in the standard manner: the bias and dark
images were subtracted from all images, and then the images
were flat-fielded. The magnitudes of the object and comparison
stars were measured using point-spread function (PSF)
photometry. For the B-, V-, and J-band photometry, we used
the comparison star located at R.A.= 17h53m25s.275,
decl.= −01°27′30″. 05 (J2000.0), which has magnitudes of
B = 17.62, V = 16.66, and J = 14.468 (Skrutskie et al. 2006;
Zurita et al. 2008). For the Ks-band photometry, we used the
comparison star at R.A.= 17h53m25s.853, decl.= −01°26′
17″. 00 (J2000.0), for which K 11.132s = (Skrutskie
et al. 2006).

We also conducted optical g′-, r′-, i′-, and z′-band monitoring
observations with the Lulin 41 cm Super-light Telescope
(SLT), which is located in Taiwan, on three nights in 2014
April (see Table 1). Photometric images with 180 s exposures
were obtained using the U42 CCD camera. We performed the

dark-subtraction and flat-fielding correction using the appro-
priate calibration data with the IRAF package. Photometric
calibrations were made with the Pan-STARRS1 3π catalogs
(Schlafly et al. 2012; Tonry et al. 2012; Magnier et al. 2013).
The DAOPHOT package was used to perform the aperture
photometry of the multiband images.

2.3. Swift

The Swift satellite (Gehrels et al. 2004) includes two
pointed instruments, the XRT (Burrows et al. 2005) and the
Ultra-Violet/Optical Telescope (UVOT; Roming et al.
2005), and we used data from both instruments from
ObsID 00080730001 in this work. We performed the XRT
data reduction using HEASOFT v6.15.1 and the 2013
March version of the XRT calibration database (CALD-
B)and made event lists using xrtpipeline. The XRT
instrument was in Windowed Timing mode to avoid photon
pileup. For spectral analysis, we extracted photons from
within 47″ of the Swift J1753.5–0127 positionand made a
background spectrum from a region away from the source.
We measured an XRT source count rate of 7.7 countss–1 in
the 0.5–10 keV band during the 2.4 ks observation. We
used the appropriate response file from the CALDB
(swxwt0to2s6_20010101v015.rmf) and produced a new
ancillary response file using xrtmkarf and the exposure

Figure 2. (a) Filled circles show the MAXI light curve over the time of the observations (2014 April 2–8). The times of the AMI, VLA, Swift/XRT, Suzaku, and
NuSTAR observations are indicated. Also, the 1–12 keV light curve for Suzaku/XIS0 is shown (the actual count rate divided by 70). (b)Swift/BAT light curve over
the time of the observations. (c) Optical and near-IR magnitudes measured at the Kanata and SLT telescopes.
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map generated by xrtpipeline. We binned the
0.5–10 keV spectra so that each bin has a signal-to-noise
ratio of 10.

For UVOT, we obtained photometry in six filters (v, b, u,
uvw1, uvm2, and uvw2) during the observation. For each filter,
we produced an image using uvotimsum and made a source
region with a radius of 5″ and a background region from a
source-free region. Then, we used uvotsource to perform
the photometry and calculate the magnitude and flux of Swift
J1753.5–0127 for each filter.

Swift also includes the wide fieldof view (FOV) Burst Alert
Telescope (BAT), and we use data from BAT to study the
long-term 15–50 keV flux (see Figures 1 and 2).

2.4. NuSTAR

NuSTAR (Harrison et al. 2013) consists of two co-aligned
X-ray telescopes, FPMA and FPMB, sensitive between 3 and
79 keV. To reduce the data, we used nupipeline v.1.3.1 as
distributed with HEASOFT 6.15.1. During our analysis, an
updated version became available, but we carefully checked
that it does not influence our results. We extracted the source
spectrum from a circular region with 90″ radius centered on
the J2000 coordinates. Owing to the triggered readout of the
detectors, pileup is not a concern for NuSTAR. The back-
ground was extracted from a circular region with a 170″
radius at the other end of the FOV. Small systematic changes
of the background over the FOV can be neglected, as Swift
J1753.5–0127 is a factor of 6 brighter than the background,
even at 70 keV. The spectrum includes data from two
NuSTAR ObsIDs. We reduced both ObsIDs separately and
added the resulting spectra and response files using addas-
caspec. The resulting total exposure time is given in
Table 1.

2.5. Suzaku

For Suzaku, we used data from the X-ray Imaging Spectro-
meters (XISs; Koyama et al. 2007) and from the Hard X-ray
Detector (HXD; Takahashi et al. 2007) PIN diode detectorand
the HXD gadolinium silicate crystal detector (GSO). The XIS
has three CCD detectors (XIS0, XIS1, and XIS3) that operate
in the 0.4–12 keV bandpass. We produced event lists for each
detector using aepipeline and merged the event lists taken
in the 3 × 3 and 5 × 5 CCD editing modes. We ran
aeattcor2 and xiscoord on each of the merged event
files to update the attitude correction because this is important
for the pileup estimate, which we calculated using pileest.
We extracted source spectra using a 4′radius circle with the
inner 22″ removed owing to pileup at a level of >4% in the core
of the PSF. We extracted the background from a rectangular
region near the edge of the active area of the detector. The XIS
detectors were in 1/4 window mode for the observation, and
part of the source region falls off of the active region of the
detector. We accounted for this when determining the back-
ground scaling. We used xisrmfgen and xissimarfgen
to produce response matrices, and we combined the XIS0 and
XIS3 spectra (the two front-illuminated CCD detectors) into a
single file.

For HXD, we analyzed both PIN and GSO data using the
Perl scripts hxdpinxbpi and hxdgsoxbpi, respectively,
after screening with the standard selection criteria. These
scripts produce deadtime-corrected source and background

spectra automatically. The non-X-ray background model was
taken from the FTP sites,24and cosmic X-ray background
(CXB) was also subtracted based on previous HEAO
observations (Gruber et al. 1999) for PIN. As an energy
response, we used ae_hxd_pinxinome11_20110601.rsp for
PIN and ae_hxd_gsoxinom_20100524.rsp with an additional
correction file (ae_hxd_gsoxinom_crab_20100526.arf) for
GSO. The background count rate is significantly higher than
the source rate for GSO, but we still clearly detect Swift
J1753.5–0127 at a rate of 0.740 ± 0.026 countss–1.

3. RESULTS

3.1. Energy Spectrum

We performed all of the spectral fits using the XSPEC
v12.8.2 software. For the X-ray spectra, we used instrument
response files produced using the HEASOFT software. For the
radio, ground-based optical and near-IR, and UVOT, we
determined the flux for each data point and then used flx2xsp
to produce spectral files and unitary response matrices that can
be read into XSPEC. All spectral fits are performed by
minimizing the χ2 statistic.

3.1.1. Radio Spectrum

We fitted the radio points with a power-law model (see
Figure 3), and this provides an acceptable fit with a reducedχ2

( 2cn ) of 0.41 for 7 degrees of freedom (dof). The power-law
photon index is Γ = 0.71 ± 0.05 (90% confidence errors are
given here and throughout the paper unless otherwise
indicated), and this corresponds to a spectral index of α = 1
− Γ = 0.29 ± 0.05 (as mentioned above, α is defined according
to Sν∝ να, where Sν is the flux density). We used the XSPEC
model pegpwrlw, allowing for the power-law normalization
to be defined as the flux density at 10 GHz, and we obtain a
measurement of 256 ± 8 μJy at this frequency.

3.1.2. Near-IR to UV Spectrum

The times of the data taken for the near-IR to UV part of the
spectrum from Kanata, SLT, and Swift/UVOT are shown in
Figure 2. The ground-based (Kanata and SLT) observations
were taken in five epochs over six nights (see Tables 2 and 3
for the exact times of the exposures). As the source is variable
from nighttonight and also on shorter timescales, we used
measurements as close to each other in time as possible, while
keeping the maximum wavelength coverage. The Swift
observation occurred between epochs 3 and 4, and we used
the points from epoch 3 because the Kanata V- and J-band
measurements occurred on the same night. We also used the
Ks-band measurement from epoch 1 because the statistical
error bar is large enough to account for source variability. We
did not include the B-band measurement because UVOT
covered the same frequency, and the UVOT measurement was
closer in time to the other observations. For each SLT band,
several epoch 3 measurements were made, and for the SED,
we used the average value. We estimated the uncertainty on
these points by calculating the standard deviation of the
measurements.
We fitted the near-IR to UV spectrum with a power-law

model with extinction. The XSPEC extinction model,

24 ftp://legacy.gsfc.nasa.gov/suzaku/data/background/pinnxb_ver2.2_tuned/
and ftp://legacy.gsfc.nasa.gov/suzaku/data/background/gsonxb_ver2.6/
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redden, is based on the Cardelli et al. (1989) relationship.
The fit is poor ( 10.82c =n for 10 dof), strongly overpredicting
the Ks-band point. The photon index for the powerlaw is
Γ = 0.2 ± 0.2, but we suspect that this is not physically
meaningful. A somewhat better fit (although still far from
being formally acceptable) is obtained by replacing the
powerlaw with a blackbody (specifically bbodyrad), and
this model is a much better match to the spectral slope in the
near-IR. If E(B − V) is left as a free parameter, then 8.02c =n
for 10 dof, and we find E B V( ) 0.54 0.06- =  , kT = 1.9 ±
0.3 eV, and a normalization of R d (1.0 0.1) 10km 10

12=  ´ ,
where Rkm is the size of the blackbody in units of
kilometersand d10 is the distance to the source in units of
10 kpc. Fixing E(B − V) to 0.45 gives 7.82c =n for 11 dof
(essentially the same quality as the fit with the extinction
parameter free), kT = 1.51 ± 0.05 eV, and R dkm 10 =
(1.2 0.1) 1012 ´ .

The fit is worse with a multitemperature disk-blackbody
diskbb model ( 13.42c =n for 11 dof); however, a
significant improvement is obtained if the outer edge of the
disk is left as a free parameter. We implemented this by using
the diskir model (Gierliński et al. 2008, 2009). We turned
off the thermalization in the outer disk (fout = 0), and we set
the Compton fraction (L Lc d) to zero. This model gives

3.62c =n for 10 dof, and the near-IR to UV spectrum is
shown fitted with this model in Figure 4. For the parameters,
we obtain kT 5in 1

2= -
+ eV for the temperature of the inner disk

and a value of 1.29 0.23
0.26

-
+ for rlog out, where r R Rout out in= , and

Rin and Rout are, respectively, the inner and outer radii of the
optically thick accretion disk. The diskir normalization,
which has the same meaning as the diskbb normalization
(N R d i( ) cosdiskbb in,km 10

2= , where Rin,km is the inner radius
in units of kilometers, d10 is the distance to the source in units
of 10 kpc, and i is the inclination of the disk), is
N (9 ) 10diskbb 5

11 9= ´-
+ . Herewe simply note that this implies

a very large inner disk radius. We consider the implications
below in detail after using the same model as a component in
fitting the full SED.
None of the fits described above are formally acceptable, and

there are a few possible reasons for this. Of course, the first
possibility is that the spectrum requires a more complex model
than those we have tried. Second, it is known that there is
significant variability in this part of the spectrum (Zurita
et al. 2008; Neustroev et al. 2014), and this is also seen in
Figure 2. Finally, the largest residuals (see Figure 4) are in the
UV, where the extinction changes rapidly. Uncertainties in the
extinction law and the calibration of the broad UVOT
photometric bins could also lead to the large residuals in this
part of the spectrum.

Figure 3. (a) Power-law fit to the radio spectrum with Γ = 0.71 ± 0.05 (α = 0.29 ± 0.05). The measurements are from VLA (8 points) and AMI (1 point at
15.4 GHz). (b) Data-to-model ratio.

Table 2
Log of Kanata/HONIR Observations

Epoch Filter MJD Exposure (s)

1 V 56,749.7221 136
1 J 56,749.7232 120
1 Ks 56,749.7302 60
1 B 56,749.7405 75

3 J 56,751.7170 120
3 V 56,751.7173 136

5 J 56,754.8052 120
5 V 56,754.8059 136
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3.1.3. X-Ray Spectrum

We performed a simultaneous fit to the spectra from all the
X-ray instruments with an absorbed power-law model,
allowing for different overall normalizations between instru-
ments. To account for absorption, we used the tbabs model
with Wilms et al. (2000) abundances and Verner et al. (1996)
crosssections. As shown in Table 4, the column density is
NH = (2.01 ± 0.05) × 1021 cm−2, the power-law photon index
is Γ = 1.722 ± 0.003, and this simple model provides a
surprisingly good fit with 1.402c =n for 2143 dof. The
residuals (see the data-to-model ratio in Figure 5(b)) do not
show any evidence for an iron emission line, as might be
expected if there wasa strong reflection component. For a
narrow line in the 6.4–7.1 keV range, the 90% confidence
upper limit on the equivalent width is <5 eV, and for a line with
a width of 0.5 keV, the upper limit on the equivalent width is
<6 eV. The Suzaku/GSO shows a different slope above
≈80 keV, and we added an exponential cutoff using the
highecut model. A cutoff with E 66cut 10

15= -
+ keV and

E 218fold 70
151= -

+ keV provides a large improvement in the fit
to the GSO data, but the overall 2cn only improves to 1.39 for
2141 dof.
Previous work fitting X-ray spectra of Swift J1753.5–0127

has often shown evidence for a thermal disk-blackbody
component with an inner disk temperature of
kTin = 0.1–0.4 keV when the source is in the hard state (Miller
et al. 2006a; Hiemstra et al. 2009; Chiang et al. 2010; Reynolds
et al. 2010; Cassatella et al. 2012; Kolehmainen et al. 2014).
Thus, we added a diskbb model to the powerlaw with an
exponential cutoff, and the 2cn improves to 1.29 for 2139 dof
(see Table 4). While this represents a significant improvement
(an F-test indicates that the significance of the additional
component is in excess of 12σ), the temperature is much higher
and the normalization is much lower than previously seen. Our
value is N 3.8diskbb 1.1

1.5= -
+ , compared to values of 1000

reported by Reynolds et al. (2010) and Cassatella et al.
(2012). A value of Ndiskbb = 3.8 would imply an unphysically
small inner radius. The equation for the inner radius in terms of
the gravitational radius is

( ) ( )( )R R d f N M M i0.676 cos , (1)gin 10
2

diskbb BH= 

where f is the spectral hardening factor (Shimura &
Takahara 1995). For a distance of 3 kpc, M M 5BH = ,
f = 1.7, which is a typical value (Shimura & Takahara 1995),
and i = 40° based on the estimate of Neustroev et al. (2014),
we find R R 0.26gin = , which puts the inner radius inside the
event horizon.
Figure 5 shows that there is a small deviation from the

powerlaw in the hard X-ray band with the residuals increasing
above 10 keV and peaking near 25 keV. Although there is no
iron line, this could still be evidence for a weak reflection
component or an additional continuum parameter. Adding a
reflection component to the powerlaw using the reflionx
model (Ross & Fabian 2005) provides a significant improve-
ment in the fit to 1.272c =n for 2138 dof. A reflection covering
fraction (determined by calculating the ratio of the
0.001–1000 keV unabsorbed flux in the reflection component
to the 0.1–1000 keV unabsorbed flux in the direct component)
of Ω/2π = 0.2 and an ionization (parameterized by L nR2x = ,
where L is the luminosity of ionizing radiation, n is the electron
number density, and R is the distance between the source of
radiation and the reflecting material) of ξ < 5.3 erg cm s−1 (see
Table 4) would both be reasonable for a cool and truncated disk
(although we note that low covering fractions can also be
explained by beaming emission away from the disk; Belobor-
odov 1999). The iron abundance of 0.28 ± 0.08 times solar is
low but perhaps not unreasonably so. Adding a diskbb in
addition to reflionx only provides a small improvement to
the fit (to 1.262c =n for 2136 dof), and Ndiskbb is even smaller
than the previous value. However, it is notable that adding the
diskbb component causes the iron abundance to change to
0.47 0.15

0.21
-
+ times solar.

3.1.4. XRT Spectrum and the Possibility of a Thermal Component

To investigate further on the question of why we do not see a
physically reasonable diskbb component while many pre-
vious studies of Swift J1753.5–0127 in the hard state did, we fit
the X-ray spectra individually. Despite the short exposure time,
the Swift/XRT spectrum provides the best information on this

Table 3
Log of SLT/U42 Observations

Times of g′ Times of r′ Times of i′ Times of z′
Exposures Exposures Exposures Exposures

Epoch
(MJD–
56,750)

(MJD–
56,750)

(MJD–
56,750)

(MJD–
56,750)

2 0.3789 0.3806 0.3822 0.3839
2 0.3856 0.3872 0.3889 0.3905
2 0.3922 0.3938 0.3955 0.3971
2 0.3987 0.4004 0.4020 0.4037
2 0.4054 0.4070 0.4087 0.4103
2 0.4120 0.4136 0.4153 0.4169
2 0.4186 0.4202 0.4219 0.4235
2 0.4252 0.4268 0.4285 0.4301
2 0.4318 0.4334 0.4351 0.4367
2 0.4384 0.4400 0.4417 0.4433
2 0.4450 0.4466 0.4483 0.4499
2 0.4516 0.4532 0.4549 0.4566

3 1.7601 1.7578 1.7624 1.7647
3 1.7695 1.7672 1.7718 1.7741
3 1.7789 1.7766 1.7812 1.7835
3 1.7883 1.7860 1.7906 1.7929
3 1.7977 1.7954 1.8000 1.8023
3 1.8071 1.8048 1.8094 1.8117
3 1.8165 1.8142 1.8188 1.8211
3 1.8259 1.8236 1.8282 1.8305
3 1.8354 1.8330 1.8377 1.8400
3 1.8450 1.8428 1.8474 1.8498
3 1.8545 1.8523 1.8569 1.8592
3 1.8641 1.8617 1.8664 L

4 2.3799 2.3816 2.3833 2.3849
4 2.3866 2.3882 2.3899 2.3915
4 2.3932 2.3948 2.3965 2.3981
4 2.3998 2.4014 2.4031 2.4047
4 2.4064 2.4081 2.4097 2.4114
4 2.4130 2.4147 2.4163 2.4180
4 2.4196 2.4213 2.4229 2.4245
4 2.4262 2.4279 2.4295 2.4311
4 2.4328 2.4345 2.4361 2.4378
4 2.4394 2.4411 2.4427 2.4444
4 2.4460 2.4477 2.4493 2.4510
4 2.4526 2.4543 2.4560 2.4576

8

The Astrophysical Journal, 808:85 (19pp), 2015 July 20 Tomsick et al.



because it extends down to 0.5 keV without strong instrumental
features (we note that Suzaku/XIS also has sensitivity down at
this energy, but the residuals indicate the presence of
instrumental features). A fit to the XRT spectrum with an
absorbed power-law model gives NH = (2.2 ±
0.2) × 1021 cm−2, Γ = 1.65 ± 0.03, and 1.272c =n for 131
dof. Adding a diskbb provides a significant improvement (to

1.172c =n for 129 dof), and an F-test indicates a significance
of 99.8% (3.1σ) for the diskbb component. The parameters
for this fit are NH = (5 ± 1) × 1021 cm−2, Γ = 1.76 ± 0.06,
kT 130in 10

20= -
+ eV, and N (1.6 ) 10diskbb 1.2

3.0 5= ´-
+ .

Although the column density is not known precisely, it is
clear that it is lower than ≈6 × 1021 cm−2. The extinction
value that we use in this paper (E B V( ) 0.45- = )
corresponds to NH = 3.1 × 1021 cm−2 based on the
relationship derived in Güver & Özel (2009). Fixing the
column density to this value and fitting the XRT spectrum
with a model consisting of a diskbb and a powerlaw gives
thermal parameter values of kT 150in 20

30= -
+ eV and

N (1.1 ) 10diskbb 0.5
1.7 4= ´-

+ . Thus, if we only had the Swift/
XRT data, we would likely conclude that there is a physically
reasonable thermal component. The kTin = 150 eV diskbb
component that may be present in the Swift/XRT spectrum
falls rapidly going to energies below soft X-rays and cannot
explain the near-IR to UV emission that we see. Thus, even if
it is real (and it may not be because it does not appear to be
present when fitting all the available data), it is not one of the
dominant components in the overall SED, and we do not
include it in the following as we build a model for fitting the
full SED.

3.1.5. Near-IR, Optical, UV, and X-Ray Spectrum

Before fitting the full SED, we fit the near-IR to X-ray
spectrum in order to determine whether it can be fit in a
physically self-consistent manner. As we found that the near-IR
to UV spectrum requires a thermal model with the outer disk
radius as a parameter, we start by fitting the spectrum with a
diskir model. While the fits above used a Compton fraction
of zero (no Comptonization component), here we allow L Lc d
to be a free parameter, so that the model includes Comptoniza-
tion by a thermal distribution of electrons with a temperature of
kTe, causing the model to extend into the X-ray. Within
diskir, Comptonization is implemented with the nthcomp
model (Zdziarski et al. 1996; Życki et al. 1999). The physical
scenario being considered is a near-IR to UV thermal
component from a truncated optically thick accretion disk,
providing seed photons to a Comptonization region with hot
electrons.
The diskir model alone provides a reasonably good

description of the spectrum, but it is not formally acceptable
with 1.382c =n for 2152 dof (see Table 5). The fact that the
thermal component acts as the seed photon distribution for the
Comptonization emission leads to a somewhat higher value of
kTin (12 5

8
-
+ eV compared to 5 1

2
-
+ eV found in Section 3.1.2) and

a lower normalization, corresponding to a somewhat smaller
disk inner radius. The temperature of the Comptonizing
electrons is constrained to be >60 keV, and the Comptonizing
fraction is L L 4.2c d 2.1

2.4= -
+ .

Adding a second continuum component provides a much
improved fit, and approximately the same improvement is seen
whether we add a powerlaw with an exponential cutoff or a
reflection component (see Table 5). Also, both two-component

Figure 4. (a) Fit to the Kanata, SLT, and UVOT spectra with a multitemperature disk model with outer radius as a free parameter. The points are not dereddened, and
the model assumes E B V( ) 0.45- = . (b) Data-to-model ratio.
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models lead to very similar values for the thermal component,
with kTin increasing to 29 7

17
-
+ eV in one case and 29 ± 5 eV in

the other. The values of Ndiskbb decrease further, but they still
imply a large disk truncation radius.

Table 4
Parameters for X-Ray Spectral Fits

Parameter Units pegpwrlw highecut* highecut* highecut* highecut*
pegpwrlw pegpwrlw+ pegpwrlw+ pegpwrlw+

diskbb reflionx diskbb+
reflionx

NH 1021 cm−2 2.01 ± 0.05 2.01 ± 0.06 2.35 ± 0.11 2.60 ± 0.09 2.51 ± 0.13
Γ Photon index 1.722 ± 0.003 1.721 ± 0.003 1.699 ± 0.005 1.774 ± 0.006 1.738 ± 0.015
Fluxa 10−12 erg cm−2 s−1 253 ± 3 253 ± 3 253 ± 4 254 ± 3 253 ± 4
Ecut keV L 66 9

16
-
+ 60 17

12
-
+ 68 15

34
-
+ 67 12

20
-
+

Efold keV L 217 72
89

-
+ 209 65

568
-
+ >411 261 95

218
-
+

kTin keV L L 0.67 0.05
0.03

-
+ L 0.67 ± 0.06

Ndiskbb L L L 3.8 1.1
1.5

-
+ L 2.1 1.1

1.7
-
+

ξ erg cm s−1 L L L <5.3 <11
Fe/solar L L L L 0.28 ± 0.08 0.47 0.15

0.21
-
+

Nrefl 10−4 L L L 4.1 3.3
0.5

-
+ 2.2 2.0

1.0
-
+

Ω/2π L L L L 0.20 0.12

CXRT L 1.0 1.0 1.0 1.0 1.0
CXIS03 L 1.06 ± 0.01 1.06 ± 0.01 1.04 ± 0.01 1.04 ± 0.01 1.04 ± 0.01
CXIS1 L 0.97 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
CFPMA L 1.08 ± 0.01 1.08 ± 0.01 1.07 ± 0.01 1.06 ± 0.01 1.06 ± 0.01
CFPMB L 1.10 ± 0.01 1.10 ± 0.01 1.08 ± 0.01 1.08 ± 0.01 1.08 ± 0.01
CPIN L 1.31 ± 0.02 1.31 ± 0.02 1.26 ± 0.02 1.25 ± 0.01 1.25 ± 0.02
CGSO L 1.05 ± 0.06 1.19 ± 0.08 1.14 ± 0.09 1.16 ± 0.07 1.17 ± 0.08

χ2/dof L 2990/2143 2970/2141 2751/2139 2715/2138 2699/2136

Note.
a Unabsorbed 2–10 keV, power law only.

Figure 5. (a) Absorbed power-law fit to the Swift J1753.5–0127 X-ray spectrum, including Swift/XRT (black), Suzaku/XIS03 (cyan), Suzaku/XIS1 (purple),
NuSTAR/FPMA (blue), NuSTAR/FPMB (red), Suzaku/PIN (yellow), and Suzaku/GSO (orange). (b) Data-to-model ratio.
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The two-component models have very different implica-
tions for the properties of the Comptonization region. The
physical scenario we are considering in adding an extra
powerlaw is that either this emission comes from the jet or
there is an inhomogeneous or multiphase Comptonization
region (Makishima et al. 2008; Takahashi et al. 2008;
Yamada et al. 2013). When this component is added, as
shown in Figure 6, its best-fit parameters imply a very hard
spectrum 1.33 0.25

0.08G = -
+ , and it dominates at high energies, so

that the diskir Comptonization component can have much
lower values of kTe (the constraint is >35 keV) and L Lc d =
0.77 0.17 . A value of L Lc d below 1.0 is unusual for the
hard state, but this is due to the fact that much of the hard
X-ray flux is in the power-law component.
On the other hand, when reflection is added, as shown in

Figure 7, the physical scenario is that the diskir Comp-
tonization component is being reflected from the truncated
disk. As the diskir component must produce the high-energy
emission in this case, a very high Comptonization temperature
is required (kT 429e > keV) and the Comptonizing fraction
increases to L L 2.4 0.6c d =  . The reflionx parameters are
similar to those described above for the X-ray-only fits. The
ionization state is low, with a value of 5.0 2.2

4.4x = -
+ erg cm s−1.

Also, the Fe abundance is 0.33 ± 0.09, and the covering
fraction is Ω/2π = 0.20. The ionization parameter and the
covering fraction do not seem unreasonable for a cool and
truncated disk, but we cannot say with any certainty which two-
component model is more likely to be correct.

3.1.6. Full SED

When the full radio to hard X-ray SED is put together, it is
immediately clear that the extrapolation of the powerlaw seen
in the radio band is well above the flux measured in the near-IR
(even after dereddening). This implies that the radio compo-
nent, which is attributed to the compact jet, must have a
spectral break between the IR and radio bands. Thus, we fit the
SED with a model consisting of a broken power-law
(bknpower) and a diskir component. The bknpower
component provides all of the emission in the radio band, and
we fix the power-law index below the break energy (Ebreak) to
Γ1 = 0.7. The index above the break (Γ2) is left as a free
parameter, and we find that the best-fit model has a strong
contribution from the bknpowercomponent above ≈20 keV.
As described above, the GSO data require a cutoff, and we
multiplied the broken power-law component with a high-
energy cutoff.
The continuum components are multiplied by redden and

tbabs as described above. We fixed E(B − V) to 0.45, and NH

was left as a free parameter. The fit parameters are given in
Table 6, and the quality of the fit is 1.282c =n for 2156 dof.
We left the normalizations between the X-ray instruments as
free parameters, but we fixed all of the non-X-ray instrument
normalizations to the Swift/XRT normalization.
We used the XSPEC routine steppar to determine the

range of possible values for Ebreak. The χ2 values are nearly
constant over a large range, increasing sharply at
1.0 × 10−7 keV (2.4 × 1010 Hz), which corresponds to the
highest radio frequency measured, and at 1.5 × 10−5 keV
(3.6 × 1012 Hz). At the upper limit, Γ2 becomes steeper to
avoid overproducing in the near-IR, but χ2 becomes worse
because the component no longer extends to the X-ray band.
For Figure 8, showing the fitted SED, we set Ebreak to
1.0 × 10−6 keV as an example. The main result is that it is
possible for the broken powerlaw to account for the hard X-ray
excess. The diskir parameters for the full SED fit (see
Table 6) are almost the same as the parameters for the diskir
+highecut*pegpwrlw fits to the near-IR to X-ray fits (see
Table 5).
If the hard X-ray excess is explained by a reflection

component instead of the broken powerlaw (i.e., the jet),
then Γ2 could be steeper, allowing for even higher values of

Table 5
Parameters for Near-IR, Optical, UV, and X-Ray Spectral Fits

Parameter Units diskir diskir+ diskir+
highecut* reflionx
pegpwrlw

E(B − V) L 0.45a 0.45a 0.45a

NH 1021 cm−2 2.08
± 0.05

2.83 ± 0.10 2.60
± 0.08

diskir
kTin eV 12 5

8
-
+ 29 7

17
-
+ 29 ± 5

Ndiskbb 107 87 36
607

-
+ 8.2 6.1

72
-
+ 5.5 3.1

18
-
+

Γ Photon index 1.734
± 0.003

1.90 ± 0.07 1.777
± 0.006

kTe keV >60 >35 >429
L Lc d L 4.2 2.1

2.4
-
+ 0.77 ± 0.17 2.4 ± 0.6

fin L 0.1a 0.1a 0.1a

rirr L 1.1a 1.1a 1.1a

fout L 0.0a 0.0a 0.0a

rlog out R Rlog( )out in 1.83 0.40
0.06

-
+ 2.33 0.11

0.29
-
+ 2.59 0.14

0.34
-
+

highecut*pegpwrlw
Γ 2nd Photon index L 1.33 0.25

0.08
-
+ L

Fluxb 10−12 erg cm−2 s−1 L 68 42
35

-
+ L

Ecut keV L 21 3
2

-
+ L

Efold keV L 151 26
63

-
+ L

reflionx
ξ erg cm s−1 L L 5.0 2.2

4.4
-
+

Fe/solar L L L 0.33
± 0.09

Efold keV L L >507
Nrefl 10−4 L L 0.78 0.32

0.22
-
+

Ω/2π L L L 0.20

CXRT L 1.0 1.0 1.0
CXIS03 L 1.06

± 0.02
1.04 ± 0.01 1.04

± 0.01
CXIS1 L 0.97

± 0.01
0.94 ± 0.01 0.95

± 0.01
CFPMA L 1.08

± 0.01
1.06 ± 0.01 1.07

± 0.01
CFPMB L 1.09

± 0.01
1.07 ± 0.01 1.08

± 0.01
CPIN L 1.30

± 0.02
1.25 ± 0.02 1.26

± 0.02
CGSO L 1.17 0.03

0.06
-
+ 1.16 ± 0.07 1.23

± 0.07

χ2/dof L 2963/
2152

2765/2148 2769/2148

Notes.
a Fixed.
b Unabsorbed 2–10 keV, power law only.
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Ebreak. We explored this possibility by fitting just the radio to
UV spectrum with a modified version of the model shown in
Table 6. The modifications include removing highecut and
fixing the diskir components related to Comptonization to

the values found for the full SED. In addition, while we
allowed Γ2 to be a free parameter, we did not allow this part of
the broken powerlaw to be steeper than Γ2 = 2. While the
lower limit on Ebreak is unchanged, the upper limit moves

Figure 6. (a) Fit to the Swift J1753.5–0127 spectrum, including the data from the near-IR to the X-ray. The model is diskir plus a powerlaw with a high-energy
cutoff. The powerlaw is the harder of the two components. (b) Data-to-model ratio.

Figure 7. (a) Fit to the Swift J1753.5–0127 spectrum, including the data from the near-IR to the X-ray. The model is diskir plus a reflection component. (b) Data-
to-model ratio.
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higher, and values as high as Ebreak = 6.5 × 10−5 keV
(1.6 × 1013 Hz) are possible.

3.2. X-Ray Timing

We made power spectra using the Suzaku/XIS and Swift/
XRT data. XIS has a larger effective area, and the exposure
time is much longer than XRT, so the statistical quality is much
better. However, the XRT data are useful because of the higher
time resolution. There is good agreement between the two
power spectra in the frequency region where they overlap (see
Figure 9), but precise agreement is not expected owing to the
different times being covered and the slightly different energy
bandpasses. Thus, we fitted the power spectra separately. For
XIS, we used a zero-centered Lorentzian and a powerlaw at
low frequencies. For XRT, the zero-centered Lorentzian is
sufficient. The parameters are shown in Table 7, and the
fractional rms of the Lorentzians are 27.3%± 0.2% for XIS
and 22%± 2% for XRT, which is consistent with the relatively
high levels of variability expected for the hard state. The
FWHM of the Lorentzians are 0.220 ± 0.005 Hz for XIS and
0.33 ± 0.07 Hz for XRT. In previous work on timing analysis
of Swift J1753.5–0127 (Soleri et al. 2013; Kalamkar
et al. 2015), the Lorentzian fits were characterized by the
frequency where the power spectrum is maximal when plotted

as frequency times rms power (νmax) as shown in Figure 9. For
XIS and XRT, the values of νmax are 0.110 ± 0.003 Hz and
0.16 ± 0.04 Hz, respectively.

4. DISCUSSION

In this work, we have performed detailed spectral fits to the
most complete SED that has been obtained for Swift
J1753.5–0127 to date. While previous multiwavelength studies
of this source that included radio measurements have covered
the radio, near-IR, optical, and X-ray (Cadolle Bel et al. 2007;
Durant et al. 2009; Reynolds et al. 2010; Soleri et al. 2010;
Zhang et al. 2010), we have obtained radio detections at nine
frequencies, included UV coverage, and used a combination of
seven X-ray spectra, covering 0.5–240 keV. Herewe discuss
three main topics: (1)the implications of the constraint on
νbreak for the compact jet properties,(2)what we can infer
about the properties of the optically thick accretion disk,and
(3)the possible origins of the high-energy emission
components.
For all these topics, it is useful to estimate the luminosity of

Swift J1753.5–0127 during these observations. For the model
shown in Figure 8, the absorbed flux over the full energy band
covered (2 × 10−8 to 240 keV) is 1.25 × 10−9 erg cm−2 s−1.
Although there is uncertainty about the break frequency of the
broken powerlaw, this leads to very little uncertainty in the
flux since essentially all of the flux is above 1 eV. The
unabsorbed flux is 2.71 × 10−9 erg cm−2 s−1 in the 1 eV–
240 keV band, and this represents the bolometric flux. This is
for the model in Table 6, but the unabsorbed flux for the
diskir+reflionx model shown in Table 5 gives an
unabsorbed flux of 2.38 × 10−9 erg cm−2 s−1 as a result ofthe
lower column density. Using the average of these two
unabsorbed fluxes, the bolometric luminosity is 2.7 × 1036d3

2

erg s−1, where d3 is the distance to the source in units of 3 kpc.
For a black hole mass of 5Me, this corresponds to an
Eddington-scaled luminosity of 0.41% d3

2M5
1- , where M5 is the

black hole mass in units of 5Me.

4.1. The Compact Jet and the Break Frequency

We are able to obtain a constraint on νbreak because of the
rising and well-constrained radio spectrum (α = 0.29 ± 0.05),
along with the fact that the spectrum rises from Ksband to
higher frequencies. Without considering the X-rays, we find
that νbreak < 1.6 × 1013 Hz (log 13.2break,Hzn < ). If the jet does
contribute to the X-rays, then νbreak < 3.6 × 1012 Hz
(log 12.6break,Hzn < ). A study of 16 νbreak measurements or
limits for nine black hole systems in the hard state found
mostly higher values than the Swift J1753.5–0127 upper limits
(Russell et al. 2013a). For the measurements, the median value
of log break,Hzn is 13.68, and the values range from 12.65 (for
XTE J1118+480) to 14.26 (for GX 339–4 and V404 Cyg).
When limits are also considered, there are still only two
measurements that are as low as the value found for Swift
J1753.5–0127: log 12.65 0.08break,Hzn =  for XTE
J1118+480 and <13.13 for GX 339–4.
While relatively low, the single νbreak measurement for Swift

J1753.5–0127 does not necessarily indicate anything unusual
about the system itself. Multiple measurements of individual
systems show significant changes for GX 339–4, XTE J1118
+480, MAXI J1836–194, and MAXI J1659–152 (Gandhi
et al. 2011; Russell et al. 2013a, 2013b; van der Horst

Table 6
Parameters for SED Fits

Parameter Units Value

E(B − V) L 0.45a

NH 1021 cm−2 2.84 ± 0.11

diskir
kTin eV 28 11

21
-
+

Ndiskbb 107 9.0 1.2
89

-
+

Γ Photon Index 1.90 ± 0.02
kTe keV >33
L Lc d L 0.82 0.19

0.04
-
+

fin L 0.1a

rirr L 1.1a

fout L 0.0a

rlog out R Rlog( )out in 2.31 0.04
0.06

-
+

highecut*bknpower
Γ1 Below Ebreak 0.7a

Γ2 Above Ebreak 1.33 0.13
0.10

-
+

Ebreak 10−6 keV 0.1–15

breakn Hz 2.4 × 1010–3.6 × 1012

Normalization ph cm−2 s−1 keV−1at 1 keV 64 ± 2
Ecut keV 20 ± 3
Efold keV 142 25

110
-
+

CXRT L 1.0
CXIS03 L 1.04 ± 0.01
CXIS1 L 0.94 ± 0.01
CFPMA L 1.06 ± 0.01
CFPMB L 1.07 ± 0.01
CPIN L 1.25 ± 0.02
CGSO L 1.16 ± 0.07

χ2/dof L 2768/2156

Note.
a Fixed.
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et al. 2013). For GX 339–4, Gandhi et al. (2011) found that
νbreak changed by a factor of >10 in less than a day. For MAXI
J1836–194, six measurements over a period of less than 2
months showed changes in log break,Hzn from close to 11 to
close to 14 while the source changed X-ray luminosity and
hardness (Russell et al. 2013b, 2014), and the highest value of
νbreak occurred when the source was at its lowest X-ray
luminosity with its hardest X-ray spectrum. The Swift
J1753.5–0127 measurements occurred when the spectrum
was hard and the X-ray luminosity was low; thus, it may not
follow the same trend as MAXI J1836–194. However, this is
not surprising since the larger source sample studied in Russell
et al. (2013a) did not show any evidence for a correlation
between X-ray luminosity and νbreak.

In the canonical model for compact jets (Blandford &
Königl 1979), the jet spectrum is composed of a superposition
of synchrotron components with a continuum of peak
frequencies due to changing optical depth. The synchrotron
spectrum from each region depends primarily on the magnetic
field strength and also on the radial size of the jet. The value of
νbreak depends on both the magnetic field and the radial size of
the jet in its acceleration zone, which is close to the base of the
jet. To place constraints on these quantities (B and R), we use
Equations (1) and (2) from Gandhi et al. (2011), which are
based on a single-zone cylindrical approximation (Chaty
et al. 2011). We estimate the upper limit on B using the

parameters from the full SED fit (see Table 6). The input
parameters to the equations are νbreak < 3.6 × 1012 Hz, the flux
at 3.6 × 1012 Hz, which is 1.42 mJy, and the slope of the
powerlaw above νbreak. To determine the slope, we fixed νbreak
to 3.6 × 1012 Hz, refit the SED, and found a value of 1.4, which
corresponds to α= −0.4. The upper limit on the magnetic field
strength in the acceleration zone is B < 2.4 × 103d3

0.24- G and
R > 1.8 × 109d3

0.936 cm. If we do not consider the X-rays,
νbreak < 1.6 × 1013 Hz, the flux at 1.6 × 1013 Hz is 2.18 mJy,
and the slope of the powerlaw above νbreak is assumed to be 2
(α= −1), giving B < 9.6 × 103d3

0.21- G and R > 4.6 × 108d3
0.954

cm. Also, from the radio alone, we know that
νbreak > 2.5 × 1010 Hz, and the flux at this frequency is
0.34 mJy. Assuming α= −1, we derive B > 18d3

0.21- G and
R < 1.2 × 1011d3

0.954 cm.
Two examples of hard-state black hole systems for which B

and R have been previously calculated using this same
technique are GX 339–4 (Gandhi et al. 2011) and MAXI
J1836–194 (Russell et al. 2014). For GX 339–4, these
quantities were estimated to be B≈ 1.5 × 104 G and
R≈ 2.5 × 109 cm. For MAXI J1836–194, estimates for B and
R were obtained for three hard-state observations: one during
the rise of an outburst and two during outburst decay. Figure 6
of Russell et al. (2014) shows B ∼ 102 G and R ∼ 1012 cm
during the rise and B ∼ 3 × 103 − 4 G and R ∼ 109 − 10 cm

Figure 8. (a) Radio to hard X-ray spectral energy distribution for Swift J1753.5–0127. The model is a broken powerlaw with a high-energy cutoff (dot-dashed line)
and a diskir component, which we have divided into its thermal component (dashed line) and its Comptonization component (dotted line). The points are not
dereddened, and we use E B V( ) 0.45- = and NH = 2.84 × 1021 cm−2 for the model. The solid line is the sum of the components. (b) Same data and model after
dereddening. (c) Same data and model multiplied by energy.
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during the decay. Thus, the ranges of B = (1.8 × 101–
9.6 × 103)d3

0.21- G and R = (4.6 × 108–1.2 × 1011)d3
0.954 cm

that we derive for Swift J1753.5–0127 are largely consistent
with the range of values previously determined for these two
sources. The best agreement in the jet properties between Swift
J1753.5–0127 and GX 339–4 and MAXI J1836–194 (during
decay) occurs if the actual value of νbreak for Swift
J1753.5–0127 is close to the upper end of the range of possible
values.

4.2. The Optically Thick Accretion Disk

Herewe discuss the spectral components that can be
modeled as thermal emission and the implications for the
optically thick accretion disk. First, we discuss the near-IR to
UV component that is consistent with a multitemperature disk
model with kT 28in 11

21= -
+ eV. Then, we consider the possibility

of a second thermal component in the soft X-ray band with
kTin≈ 150 eV.

Our spectral model assumes that the near-IR to UV emission
is strongly dominated by a disk component, and it is
worthwhile to consider how secure this assumption is. We
know that at least a large fraction of the emission comes from
the disk because of the double-peaked emission lines that are
seen in this bandpass (Froning et al. 2014; Neustroev
et al. 2014; Rahoui et al. 2015). However, Neustroev et al.
(2014) also find a weak emission line and two weak absorption
lines (all three unidentified) in the optical, which they interpret
as coming from the companion star. If this interpretation is
correct (and we note that the fiducial black hole mass and
source distance that we use in this paper depend on it), then it
requires some contribution from the companion in the optical.
Without X-ray irradiation, the emission from the companion
would be negligible: a blackbody with a temperature of 3000 K
(Neustroev et al. 2014), a radius equal to the companionʼs
Roche lobe size of 1.68 × 1010 cm, and a distance of 3 kpc has a
flux that is two orders of magnitude lower than the measured
flux in the near-IR and three orders of magnitude lower in the
optical. Thus, the temperature of the irradiated side of the
companion must be significantly hotter for there to be a
contribution to the optical flux. However, the crucial point is
that even if the three lines are from the companion, they are
extremely weak in comparison to the very strong double-
peaked lines from the disk, indicating that the disk emission is
much stronger than any potential contribution from the
companion.
One possibility that we cannot completely rule out is that

there are additional components from the compact jet. The
broken power-law emission represents the postshock synchro-
tron component. While this is the only component that has been
seen in SEDs of accreting black holes that is widely accepted as
emission from the compact jet, theoretical jet models indicate
that preshock synchrotron can be relatively bright in the optical

Figure 9. Soft X-ray power spectrum from Suzaku/XIS (black) and Swift/XRT (blue) fitted with a zero-centered Lorentzian and a low-frequency powerlaw.

Table 7
Parameters for Power Spectrum Fits

Parameter Units Value

Suzaku (Lorentzian plus Power Law)
νmax Hz 0.110 ± 0.003
rmsLor L 27.3% ± 0.2%
Power-law index L 2.12 ± 0.05
rmspl 0.0001–1 Hz 4.4% ± 1.4%
χ2/dof L 284/191

Swift (Lorentzian)
νmax Hz 0.16 ± 0.04
rmsLor L 22% ± 2%
χ2/dof L 51/42
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and UV (Homan et al. 2005; Markoff et al. 2005; Migliari
et al. 2007; Maitra et al. 2009). Another possibility that has
been suggested as a contributor to the optical emission is
synchrotron emission from nonthermal electrons in the hot
accretion flow (i.e., the corona). A complex optical/X-ray
cross-correlation function was reported for Swift J1753.5–0127
(Durant et al. 2008, 2011), and it was shown that it could be
explained if the optical emission had components from the disk
and the corona (Veledina et al. 2011). The coronal contribution
to the cross-correlation function has been observed to vary
inversely with the strength of the disk (Hynes et al. 2009).
Rahoui et al. (2015) show that Swift J1753.5–0127 had a
strong and likely dominant thermal disk component in
observations taken a few months after ours,25which would
suggest a relatively weak coronal contribution to the optical
during our observations.

With the caveats about the possibility of a fractional
contribution from preshock synchrotron emission or the
corona, we can compare the parameters of the thermal near-
IR to UV component with previous studies of Swift
J1753.5–0127 SEDs where this component has also been
modeled as thermal emission (Zhang et al. 2010; Froning
et al. 2014). From Tables 5 (last two columns) and 6, the
values of Ndiskbb are (5.5 ) 103.1

18 7´-
+ , (8.2 ) 106.1

72 7´-
+ , and

(9.0 ) 101.2
89 7´-

+ . Using Equation (1), these values imply
strongly truncated disks. As before, we assume MBH = 5Me,
d = 3 kpc, and i = 40°. To determine the lower limits on the
inner disk radii, we assume f = 1, and the values are
Rin > 227Rg, > 212Rg, and > 409Rg. While previous studies
have mostly assumed a larger distance to Swift J1753.5–0127,
this would make the values of Rin larger. Froning et al. (2014)
modeled a near-IR to UV SED and determined that Rin needed
to be >100Rg to avoid overpredicting the simultaneously
measured X-ray spectrum. Zhang et al. (2010) used a self-
consistent model with optically thick disk emission, jet
emission, and a Comptonization component, and they were
able to fit a radio to hard X-ray SED with Rin = 500Rg. Zhang
et al. (2010) assumed different values for d, MBH, and i, and if
we recalculate their Rin using the values we adopt, the result is
Rin = 350Rg. While the precise value of Rin is likely to vary in
time, all of these measurements suggest that the near-IR to UV
component comes from a strongly truncated disk.

The spectral fits also constrain the outer disk radius based on
the parameter R Rlog( ) 2.31out in 0.04

0.06= -
+ (see Table 6). For

Ndiskbb = 9 × 107 (the best-fit value), we calculate
Rout = 6.6 × 1010 cm. We compare this value to the system
parameters reported by Neustroev et al. (2014), where they
determine that the binary separation is a 1.1 × 1011 cm, and
the size of the black holeʼs Roche lobe is 7.1 × 1010 cm. A
filling fraction of 90% is typically assumed for an accretion
disk, which would result in a predicted disk size of
6.4 × 1010 cm, which is in excellent agreement with our
measurement. Although it will be important to confirm the
system parameters with radial velocity measurements of the
companion star when the source is in quiescence (if it is bright
enough), we see this Rout comparison as another piece of
evidence that the near-IR to UV component is strongly
dominated by emission from the accretion disk.

The 150 eV component is marginally significant in the XRT
spectrum, and it is not detected when the XIS data are included.
However, for previous observations of Swift J1753.5–0127, the
presence of a 0.1–0.4 keV thermal component was well-
established from spectral (see references in Section 3.1.3) and
timing (Uttley et al. 2011) measurements. Even though our
2014 April observation is at a moderately lower X-ray flux
level (only a factor of 2–3 lower than the majority of the
previous observations), seeing a weak thermal component in
the X-ray band is not surprising. If we use Ndiskbb = 1.1 × 104

and carry out the same inner radius calculation as performed for
the near-IR to UV component, we obtain Rin = 5Rg for f = 1
and Rin = 14Rg for f = 1.7, suggesting that this component
could come from a disk that extends close to the ISCO. The
presence of two thermal components in the SED of Swift
J1753.5–0127 has been previously reported (Chiang
et al. 2010), and potential physical interpretations are discussed
in that work. It has been shown that a small inner optically
thick accretion disk can form owing to condensation of material
from the corona (Liu et al. 2007; Meyer et al. 2007; Taam
et al. 2008), and Chiang et al. (2010) consider this possibility,
as well as a scenario where strong irradiation at the inner edge
of a truncated disk distorts the temperature profile. For the inner
disk possibility, it has been predicted that the inner disk can
exist down to L L 0.1Edd ~ % and then completely evaporate
below this level (Taam et al. 2008). Thus, given the luminosity
of Swift J1753.5–0127 during our observation (L L 0.4Edd ~
%), the presence of an inner disk is predicted.
As previously mentioned, the luminosity at the time of our

observation of Swift J1753.5–0127 was close to the lowest
level since the source was discovered, but it was only a factor
of a few times lower than the highest levels seen over the past
several years (see Figure 1). The X-ray power spectrum also
suggests that the properties during our observation were at one
end of a continuum as opposed to requiring some major overall
change in the system. Soleri et al. (2013) report on timing
analysis of 67 RXTE observations of Swift J1753.5–0127
during 2009 and 2010. While the comparison with our
observations is somewhat complicated by the fact that most
of the RXTE observations required two Lorentzian components,
15 of the power spectra were fitted with a single Lorentzian,
allowing for a direct comparison. For those cases, the values of
νmax range from 0.18 to 3.18 Hz. Thus, our Suzaku and Swift
measurements of 0.110 ± 0.003 Hz and 0.16 ± 0.04 Hz,
respectively, are only slightly lower than the Soleri et al.
(2013) measurements.

4.3. The Origin of the X-Ray Emission

A major question in recent years concerns how much of the
X-ray emission can be attributed to the compact jet. In the
model of Markoff et al. (2005), the jet can produce X-rays via
postshock synchrotron emission, which can be modeled as the
broken powerlaw that we use in our fits, or synchrotron self-
Compton (SSC) from the base of the jet, which can contribute
in the hard X-ray band. The SEDs of GX 339–4, GRO
J1655–40, and XTE J1118+480 allow for the possibility that all
the soft X-ray emission comes from the postshock synchrotron
component (Markoff et al. 2005; Migliari et al. 2007; Maitra
et al. 2009). For Swift J1753.5–0127, Figure 8 shows that such
a scenario is ruled out, and a Comptonization component is
strongly required by the data.

25 The Rahoui et al. (2015) observations were made on 2014 August 16 (MJD
56,885), and the X-ray light curves shown in Figure 1 do not show any major
change between April and August.
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The question of what makes Swift J1753.5–0127 different is
directly relevant to the question of what is different about the
outliers in the X-ray/radio correlation. Although one possibility
is that Swift J1753.5–0127 has a stronger Comptonization
component in the X-rays, another possibility is that it has a
weaker radio jet. In Section 4.1, we showed that the highest
possible peak flux for the Swift J1753.5–0127 broken power-
law component is 2.18 mJy. This corresponds to a specific
(peak) luminosity of 2.3 × 1019d3

2 erg s−1 Hz−1 at
νbreak = 1.6 × 1013 Hz. Russell et al. (2013a) give 15 peak
luminosities for nine hard-state black hole systems, and the
values range from 7.1 × 1019 to 1.9 × 1022 erg s−1 Hz−1 with a
median value of 1.2 × 1021 erg s−1 Hz−1. Thus, assuming a
distance of 3 kpc, the peak jet luminosity for Swift
J1753.5–0127 is 50 times lower than the median and 3 times
lower than the least luminous system. The distance to Swift
J1753.5–0127 would need to be 5–6 kpc to move the Swift
J1753.5–0127 peak jet luminosity close to the least luminous
system, which is conceivable, but it would need to be ≈21 kpc
to make the Swift J1753.5–0127 comparable with the median
peak jet luminosity, which can be ruled out.

We made a second radio luminosity comparison by
integrating the radio power-law measurements for Swift
J1753.5–0127 and the black hole sources from Russell et al.
(2013a) up to νbreak. For Swift J1753.5–0127, the luminosity
up to 1.6 × 1013 Hz is 3.1 × 1032 d3

2 erg s−1. For the sources
from Russell et al. (2013a), not all 15 of the SEDs are high
enough quality to make a reliable luminosity determination.
There was sufficient information to calculate 10 luminosities
for eight sources. These ranged from 1.8 × 1033 erg s−1 for XTE
J1118+480 and 2.0 × 1033 erg s−1 for Cyg X-1 to
1.1 × 1036 erg s−1 for GS 1354–64 and 3.1 × 1036 erg s−1 for
V404 Cyg. The median value is 1.1 × 1035 erg s−1, and the
distance to Swift J1753.5–0127 is certainly not large enough
for the luminosity to approach that value. Thus, the-low
luminosity radio jet may be at least part of the reason why
Swift J1753.5–0127 is an outlier.

While the Swift J1753.5–0127 SED is consistent with
Comptonization being dominant at soft X-rays, our results
show that multiple components are required to explain the
entire 0.5–240 keV X-ray spectrum. In our spectral fits, we
considered a reflection component or the postshock synchro-
tron component. Figure 7 illustrates the reflection possibility,
and such a scenario is consistent with our overall picture for the
system. The outer optically thick disk could produce a weak
(Ω/2π = 0.20) reflection component, and it would be expected
to have a low ionization, which is consistent with 5.0 2.2

4.4x = -
+

erg cm s−1. While an iron line detection would be strong
evidence in favor of the reflection interpretation, there is no
iron line in the Swift J1753.5–0127 spectrum, but we find that
it is possible to explain the lack of an iron line with an iron
abundance of 0.33 ± 0.09 of the solar value. This iron
abundance may be problematic for the reflection interpretation,
but we do not think that it is low enough to rule it out. We have
also considered the fact that this is the only model that requires
a very high Comptonization temperature (kTe > 429 keV). This
occurs because the reflection component falls at high energies,
allowing the overall model to fit the steeper Suzaku/GSO
spectrum without an exponential cutoff in the direct model.
This electron temperature is higher than has been inferred from
measurements of other accreting black holes in the higher-
luminosity parts of their hard states, which are typically in the

50–120 keV range (Poutanen & Veledina 2014, and references
therein). However, it is predicted that kTe should increase to
hundreds of keV in the lower-luminosity parts of the hard state
(Gardner & Done 2013). Thus, the lack of an iron line is the
strongest reason to disfavor the reflection possibility, but this
scenario is not ruled out.
The model where the hard X-rays are due to postshock

synchrotron emission (see Figure 6) has the advantage of a
much more typical electron temperature (kTe > 33 keV). On the
other hand, the slope of the powerlaw, 1.33 0.25

0.08G = -
+ (α = –

0.33 0.08
0.25

-
+ ), while not unreasonable for optically thin synchro-

tron emission, is harder than is seen for other black hole
systems, which have values of α between –0.68 and –1.38
(Russell et al. 2013a). Such a hard spectrum also requires that
the spectrum is sharply cut off to explain the steeper Suzaku/
GSO spectrum, and the exponential cutoff with Ecut = 20 ±
3 keV and E 142fold 25

110= -
+ keV is probably inconsistent with

the more gradual cutoff predicted for a synchrotron spectrum
(Zdziarski et al. 2003). A third possibility that was mentioned
above but not specifically considered in our spectral modeling
is that the extra hard X-ray component is due to SSC emission
from the base of the jet. Fits with the Markoff et al. (2005)
compact jet model are beyond the scope of this paper, but it
would be interesting to use our SED to test this model in
future work.
Finally, we have considered whether any of our conclusions

might be affected by day-to-day source variability given that
the observations we use for the full SED cover ∼2.8 days from
the Ks-band observation to the VLA observation (although
most of the measurements for the SED come from a smaller
span of time). Figure 2 shows that there is little day-to-day
variability in the optical and near-IR during the campaign, and
this is consistent with previous long-term studies of Swift
J1753.5–0127 (e.g., Shaw et al. 2013). Also, the Suzaku/XIS
observations show day-to-day stability in the soft X-ray flux. It
is a little less clear whether there are changes in the radio and
IR compact jet spectrum as other black hole systems have
shown significant changes in the break frequency on timescales
of a day, as discussed in Section 4.1. We already consider a
large range of break frequencies; thus, the conclusions that
there is a separate thermal component in the near-IR to UV and
that a Comptonization component is required in the soft X-ray
should not be affected. However, the question of whether the
extra hard X-ray component comes from the compact jet
depends very sensitively on the break frequency and spectral
slope. To reach a definitive conclusion on the origin of the hard
X-ray emission may require simultaneous radio and hard X-ray
monitoring.

5. SUMMARY AND CONCLUSIONS

We have obtained radio, near-IR, optical, UV, and X-ray
coverage for the long-term black hole transient Swift
J1753.5–0127 in 2014 April when the source was in the hard
state at one of its lowest X-ray luminosities (2.7 × 1036 d3

2

erg s−1) since the discovery of the source. We performed fitting
of the broadband energy spectrum and the X-ray power
spectrum. We obtain results concerning the compact jet, the
optically thick accretion disk, and the origin of the X-ray
emission, which is also relevant for the question of why Swift
J1753.5–0127 is a radio/X-ray correlation outlier.
With the combination of the rising radio spectrumand the

rise in the near-IR, νbreak is constrained for the postshock
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synchrotron component of the compact jet, and this provides
constraints on B and R for the jet acceleration zone. While the
postshock synchrotron component may contribute in hard
X-rays, the soft X-ray flux is far too high to be part of this
component, which we model with a Comptonization compo-
nent. Based on this result, Swift J1753.5–0127 appears to be an
outlier because of the combination of a strong Comptonization
component and a jet with peak and broadband luminosities
significantly lower than is seen for other black hole systems.

The low jet luminosity and the low extinction for Swift
J1753.5–0127 appear to provide an opportunity to clearly
see emission components that may be too weak or too
absorbed to see in other systems. The double-peaked
emission lines (Froning et al. 2014; Neustroev et al. 2014;
Rahoui et al. 2015) clearly show that the near-IR to UV
spectrum has at least a strong (likely dominant) thermal disk
component. Further evidence that the near-IR is dominated
by thermal disk emission is that the component can be
modeled by a disk with an outer radius of R R 90,000gout =
d3M5

1- (Rout = 6.6 × 1010d3 cm), consistent with the
expected size of the disk given previous measurements of
the size of the companionʼs Roche lobe. The fact that this
component does not contribute in the X-ray band constrains
the inner radius to be R R 212gin > d3M5

1- . While this
implies that the near-IR to UV emission comes from a
strongly truncated disk, there is also some evidence for a
weak 150 eV thermal component in the soft X-rays, and its
inner radius could be as small as 5Rg–14Rg. The presence of
two thermal components could provide support for predic-
tions that low-luminosity systems may have inner and outer
optically thick disks with a gap in the middle.

Finally, we have considered the possibility that there is a
reflection component in the spectrum. In the presence of strong
hard X-rays, one expects to see a reflection component from the
optically thick material. The hard X-ray spectrum is consistent
with the presence of a reflection component, but no iron line is
detected. The low ionization ( 5.0 2.2

4.4x = -
+ erg cm−2 s−1) and

low covering fraction (Ω/2π = 0.2) would favor the possibility
that this component comes from the outer optically thick disk.
If reflection is the cause of the second hard X-ray component,
then invoking the jet to explain the extra hard X-ray emission
(see Figure 8) may not be required.
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