S. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid et al., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys, vol.11, issue.9, pp.4039-4072, 2011.

M. O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, vol.15, issue.4, pp.955-966, 2001.

A. C. Araujo, Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res, vol.107, issue.20, p.8090, 2002.

A. Babenhauserheide, S. Basu, S. Houweling, W. Peters, and A. Butz, Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO 2 surface flux inversions, Atmos. Chem. Phys. Discuss, vol.15, pp.8883-8932, 2015.

D. F. Baker, TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO 2 fluxes, Global Biogeochem. Cycles, vol.20, p.1002, 1988.
URL : https://hal.archives-ouvertes.fr/bioemco-00175977

B. B. Booth, C. D. Jones, M. Collins, I. J. Totterdell, P. M. Cox et al., High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett, vol.7, issue.2, p.24002, 2012.

P. Ciais, Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp.465-570, 2013.

C. Clerbaux, Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys, vol.9, issue.16, pp.6041-6054, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00410666

T. J. Conway, P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis et al., Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res, vol.99, issue.D11, pp.831-853, 1994.

P. M. Cox, D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford et al., Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, Nature, vol.494, pp.341-344, 2013.

D. P. Dee, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc, vol.137, issue.656, pp.553-597, 2011.

, Emission Database for Global Atmospheric Research (EDGAR), release version 4.2, European Commission, 2011.

L. V. Gatti, J. B. Miller, M. T. D'amelio, A. Martinewski, L. S. Basso et al., Vertical profiles of CO 2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between, Tellus, Ser. B, vol.62, issue.5, pp.581-594, 2000.

L. V. Gatti, Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements, Nature, vol.506, issue.7486, pp.76-80, 2014.

L. Giglio, J. T. Randerson, and G. R. Werf, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res. Biogeosci, vol.118, pp.317-328, 2013.

M. Gloor, The carbon balance of South America: A review of the status, decadal trends and main determinants, Biogeosciences, vol.9, issue.12, pp.5407-5430, 2012.

A. B. Harper, A. S. Denning, I. T. Baker, M. D. Branson, L. Prihodko et al., Role of deep soil moisture in modulating climate in the Amazon rainforest, Geophys. Res. Lett, vol.37, p.5802, 2010.

D. Hurtmans, C. P.-f.-coheur, L. Wespes, O. Clarisse, C. Scharf et al., FORLI radiative transfer and retrieval code for IASI, J. Quant. Spectros. Radiat. Transfer, vol.113, issue.11, pp.1391-1408, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699904

A. R. Jacobson, S. E. Fletcher, N. Gruber, J. L. Sarmiento, and M. Gloor, A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes, Global Biogeochem. Cycles, vol.21, p.1019, 2007.

J. W. Kaiser, Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, vol.9, issue.1, pp.527-554, 2012.

M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, World map of the Köppen-Geiger climate classification updated, Meteorol. Z, vol.15, issue.3, pp.259-263, 2006.

M. Krol, S. Houweling, B. Bregman, M. Van-den-broek, A. Segers et al., The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications, Atmos. Chem. Phys, vol.5, issue.2, pp.417-432, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00295608

M. Krol, How much CO was emitted by the 2010 fires around Moscow?, Atmos. Chem. Phys, vol.13, issue.9, pp.4737-4747, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00748738

B. Kruijt, J. A. Elbers, C. Randow, A. C. Araujo, P. J. Oliveira et al., The robustness of eddy correlation fluxes for Amazon rain forest conditions, Ecol. Appl, vol.14, issue.4, pp.101-113, 2004.

J. E. Lee, Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence, Proc. R. Soc. B, vol.280, 1761.

S. L. Lewis, P. M. Brando, O. L. Phillips, G. M. Van-der-heijden, and D. Nepstad, The 2010 Amazon drought, vol.331, p.554, 2011.

Y. Malhi, An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR), J. Veg. Sci, vol.13, issue.3, pp.439-450, 2002.

Y. Malhi, The regional variation of aboveground live biomass in old-growth Amazonian forests, Global Change Biol, vol.12, issue.7, pp.1107-1138, 2006.

K. A. Masarie, W. Peters, A. R. Jacobson, and P. P. Tans, ObsPack: A framework for the preparation, delivery, and attribution of atmospheric greenhouse gas data, Earth Syst. Sci. Data, 2014.

J. B. Miller, L. V. Gatti, M. T. Amelio, A. M. Crotwell, E. J. Dlugokencky et al., Airborne measurements indicate large methane emissions from the eastern Amazon basin, Geophys. Res. Lett, vol.34, p.10809, 2007.

E. G. Nisbet, E. J. Dlugokencky, P. Bousquet-;-novelli, P. C. , and K. Masarie, Atmospheric carbon monoxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, version, Methane on the rise-Again, vol.343, pp.2013-2025, 2013.

. Obspack, Cooperative Global Atmospheric Data Integration Project, Multi-laboratory compilation of atmospheric carbon dioxide data for the period, NOAA Global Monitoring Division, 2000.

J. S. Olson, J. A. Watts, L. J. Allison-;-tenn, and Y. Pan, Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO 2 and chlorophyll fluorescence from GOSAT, Geophys. Res. Lett, vol.40, issue.6045, pp.2829-2833, 1985.

D. J. Patil, B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, Local low dimensionality of atmospheric dynamics, Phys. Rev. Lett, vol.86, issue.26, p.5878, 2001.

W. Peters, M. C. Krol, E. J. Dlugokencky, F. J. Dentener, P. Bergamaschi et al., Toward regional-scale modeling using the two-way nested global model TM5: Characterization of transport using SF 6, J. Geophys. Res, vol.109, p.19314, 2004.

W. Peters, J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch et al., An ensemble data assimilation system to estimate CO 2 surface fluxes from atmospheric trace gas observations, J. Geophys. Res, vol.110, p.24304, 2005.

W. Peters, An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.925-943, 2007.

P. Peylin, P. Bousquet, C. L. Quéré, S. Sitch, P. Friedlingstein et al., Multiple constraints on regional CO 2 flux variations over land and oceans, Global Biogeochem. Cycles, vol.19, p.1011, 2005.
URL : https://hal.archives-ouvertes.fr/bioemco-00175981

O. L. Phillips, S. L. Lewis-;-phillips, and O. L. , Drought sensitivity of the amazon rainforest, Global Change Biol, vol.20, issue.7, pp.1344-1347, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01032111

O. L. Phillips, Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO 2 trends, Global Change Biol, vol.187, issue.3, pp.2117-2132, 2010.

C. Potter, S. Klooster, C. Hiatt, V. Genovese, and J. C. Castilla-rubio, Changes in the carbon cycle of Amazon ecosystems during the 2010 drought, Environ. Res. Lett, vol.6, issue.3, p.34024, 2011.

C. S. Potter, J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek et al., Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, vol.7, issue.4, pp.811-841, 1993.

, Global Biogeochemical Cycles

L. Van-der, . Al, . Carbon, and . During, , 2010.

E. H. Pyle, Dynamics of carbon, biomass, and structure in two Amazonian forests, J. Geophys. Res, vol.113, pp.0-08, 2008.

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO 2, Nature, issue.6881, pp.617-620, 2002.

S. Saatchi, W. Buermann, H. Ter-steege, S. Mori, and T. B. Smith, Modeling distribution of Amazonian tree species and diversity using remote sensing measurements, Remote Sens. Environ, vol.112, issue.5, pp.2000-2017, 2008.

S. Saatchi, S. Asefi-najafabady, Y. Malhi, L. E. Aragão, L. O. Anderson et al., Persistent effects of a severe drought on Amazonian forest canopy, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.565-570, 2013.

S. R. Saleska, Carbon in Amazon Forests: Unexpected seasonal fluxes and disturbance-induced losses, Science, vol.302, issue.5650, pp.1554-1557, 2003.

K. Schaefer, G. J. Collatz, P. Tans, A. S. Denning, I. Baker et al., Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model, J. Geophys. Res, vol.113, p.3034, 2008.

P. J. Sellers, D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field et al., A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Clim, vol.9, issue.4, pp.676-705, 1996.

B. B. Stephens, Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO 2, Science, issue.5832, pp.1732-1735, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02888548

M. Tiedtke, I. R. Van-der-velde, J. B. Miller, K. Schaefer, G. R. Van-der-werf et al., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires, A comprehensive mass flux scheme for cumulus parameterization in large-scale models, vol.117, pp.707-718, 1989.

T. T. Van-leeuwen, W. Peters, M. C. Krol, and G. R. Van-der-werf, Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios, J. Geophys. Res. Atmos, vol.118, pp.6797-6815, 2013.

J. Vilà-guerau-de-arellano, B. Gioli, F. Miglietta, H. J. Jonker, H. K. Baltink et al., Entrainment process of carbon dioxide in the atmospheric boundary layer, J. Geophys. Res, vol.109, p.18110, 2004.

W. Wang, P. Ciais, R. R. Nemani, J. G. Canadell, S. Piao et al., Variations in atmospheric CO 2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. U.S.A, vol.110, p.15163, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02889434

J. S. Whitaker and T. M. Hamill, Ensemble data assimilation without perturbed observations, Mon. Weather Rev, vol.130, issue.7, pp.1913-1924, 2002.

C. Wiedinmyer, S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-saadi et al., The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning, Geosci. Model Dev, vol.4, p.625, 2011.

L. Xu, A. Samanta, M. H. Costa, S. Ganguly, R. R. Nemani et al., Widespread decline in greenness of Amazonian vegetation due to the 2010 drought, Geophys. Res. Lett, vol.38, p.7402, 2011.

, Global Biogeochemical Cycles