Skip to Main content Skip to Navigation
Journal articles

Land-ice elevation changes from photon-counting swath altimetry: first applications over the Antarctic ice sheet

Abstract : Satellite altimetric time series allow high-precision monitoring of ice-sheet mass balance. Understanding elevation changes in these regions is important because outlet glaciers along ice-sheet margins are critical in controlling flow of inland ice. Here we discuss a new airborne altimetry dataset collected as part of the ICECAP (International Collaborative Exploration of the Cryosphere by Airborne Profiling) project over East Antarctica. Using the ALAMO (Airborne Laser Altimeter with Mapping Optics) system of a scanning photon-counting lidar combined with a laser altimeter, we extend the 2003–09 surface elevation record of NASA's ICESat satellite, by determining cross-track slope and thus independently correcting for ICESat's cross-track pointing errors. In areas of high slope, cross-track errors result in measured elevation change that combines surface slope and the actual Δz/Δt signal. Slope corrections are particularly important in coastal ice streams, which often exhibit both rapidly changing elevations and high surface slopes. As a test case (assuming that surface slopes do not change significantly) we observe a lack of ice dynamic change at Cook Ice Shelf, while significant thinning occurred at Totten and Denman Glaciers during 2003–09.
Document type :
Journal articles
Complete list of metadatas

https://hal-insu.archives-ouvertes.fr/insu-01164726
Contributor : Bérénice Boeuf <>
Submitted on : Wednesday, June 17, 2015 - 4:03:03 PM
Last modification on : Friday, September 25, 2020 - 9:16:03 AM

Links full text

Identifiers

Collections

Citation

Duncan Young, J. S. Greenbaum, D.D. Blankenship, Laura Lindzey, Alvaro Garcia de Gorordo, et al.. Land-ice elevation changes from photon-counting swath altimetry: first applications over the Antarctic ice sheet. Journal of Glaciology, International Glaciological Society, 2015, 61 (225), pp.17-28. ⟨10.3189/2015JoG14J048⟩. ⟨insu-01164726⟩

Share

Metrics

Record views

246