R. Aerts and . De-caluwe, Initial Litter Respiration as Indicator for Long-Term Leaf Litter Decomposition of Carex Species, Oikos, vol.80, issue.2, pp.353-361, 1997.
DOI : 10.2307/3546603

J. Alberts and M. Takács, Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms, Organic Geochemistry, vol.35, issue.3, pp.243-256, 2004.
DOI : 10.1016/j.orggeochem.2003.11.007

R. Bardgett and D. Wardle, Aboveground-belowground linkages -Biotic interactions, 598 Ecosystem processes and global change, 2010.

B. Berg and C. Mcclaugherty, Plant litter, decomposition, humus formation, carbon 600 sequestration, 2003.

I. Bergman, P. Lundberg, and M. Nilsson, Regulation of methane production in a Swedish acid mire by pH, temperature and substrate, Soil Biology and Biochemistry, vol.30, issue.6, pp.729-603, 1999.
DOI : 10.1016/S0038-0717(97)00181-8

P. Brookes, A. Landman, G. Prudent, and D. Jenkinson, Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil Biology and Biochemistry, vol.17, issue.6, pp.837-842, 1985.
DOI : 10.1016/0038-0717(85)90144-0

Y. Chin, G. Alken, O. Loughlin, and E. , Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances, Environmental Science & Technology, vol.28, issue.11, pp.1853-1858, 1994.
DOI : 10.1021/es00060a015

P. Coble, Characterization of marine and terrestrial DOM in seawater using excitation- 612 emission matrix spectroscopy, Mar Chem, vol.52, pp.325-346, 1996.

J. Cornelissen, T. Callaghan, and J. Alatalo, Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?, Journal of Ecology, vol.89, issue.6, pp.984-994, 2001.
DOI : 10.1046/j.1365-2745.1999.00404.x

M. Cotrufo, D. Galdo, I. Piermatteo, and D. , Litter Decomposition, Soil Carbon dynamics, 2010.
DOI : 10.1007/978-3-642-57219-7_13

URL : https://hal.archives-ouvertes.fr/hal-00964495

E. Davidson and I. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.63, issue.7081, pp.165-173, 2006.
DOI : 10.1038/nature04514

A. Mariotti, Carbon-13 natural adundance as a tool to study the dynamics of lignin 625 monomers in soil: an appraisal at the Closeaux experimental field (France), Geoderma, vol.626, issue.128, pp.3-17, 2005.

A. Francez, S. Gogo, and N. Josselin, Distribution of potential CO2 and CH4 productions, denitrification and microbial biomass C and N in the profileof a restored peatland in Brittany (France), European Journal of Soil Biology, vol.36, issue.3-4, pp.161-168, 2000.
DOI : 10.1016/S1164-5563(00)01057-8

T. Gartner and Z. Cardon, Decomposition dynamics in mixed-species leaf litter, Oikos, vol.34, issue.169, pp.230-246, 2004.
DOI : 10.1111/j.0030-1299.2004.12738.x

S. Gogo, F. Laggoun-défarge, F. Delarue, and N. Lottier, Invasion of a Sphagnum, p.633, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00419696

E. Gorham, Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming, Ecological Applications, vol.1, issue.2, pp.182-195, 1991.
DOI : 10.2307/1941811

T. Hájek, S. Balance, J. Limpens, M. Zijlstra, and J. Verhoeven, Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro, Biogeochemistry, vol.56, issue.1-3, pp.45-57, 2011.
DOI : 10.1007/s10533-010-9444-3

S. Hättenschwiler, A. Tiunov, and S. Scheu, Biodiversity and Litter Decomposition in Terrestrial Ecosystems, Annual Review of Ecology, Evolution, and Systematics, vol.36, issue.1, pp.191-218, 2005.
DOI : 10.1146/annurev.ecolsys.36.112904.151932

B. Hoorens, R. Aerts, and M. Stroetenga, Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2?, Journal of Ecology, vol.79, issue.6, pp.1009-1016, 2002.
DOI : 10.1016/0038-0717(94)00183-2

B. Hoorens, R. Aerts, and M. Stroetenga, Does litter chemistry explain litter mixture effect on 648 decomposition?, Oecologia, vol.442, pp.578-586, 2003.

B. Hoorens, M. Stroetenga, and R. Aerts, Litter Mixture Interactions at the Level of Plant Functional Types are Additive, Ecosystems, vol.35, issue.1, pp.90-98, 2010.
DOI : 10.1007/s10021-009-9301-1

A. Huguet, L. Vacher, S. Relaxans, S. Saubusse, J. Froidefond et al., Properties of fluorescent dissolved organic matter in the Gironde Estuary, Organic Geochemistry, vol.40, issue.6, pp.706-719, 2009.
DOI : 10.1016/j.orggeochem.2009.03.002

URL : https://hal.archives-ouvertes.fr/bioemco-00605318

D. Jenkinson and J. Rayner, THE TURNOVER OF SOIL ORGANIC MATTER IN SOME OF THE ROTHAMSTED CLASSICAL EXPERIMENTS, Soil Science, vol.123, issue.5, pp.298-305, 1977.
DOI : 10.1097/00010694-197705000-00005

E. Krab, M. Berg, R. Aerts, R. Van-logtestjin, and J. Cornelissen, Vascular plant litter 659 input in subarctic peat bogs changes Collembola diets and decomposition patterns, Soil Biol Biochem, vol.660, issue.63, pp.106-115, 2013.

P. Legendre and L. Legendre, Numerical Ecology, Elsevier Science B.V, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00530195

G. Schaepman-strub, Peatlands and the carbon cycle: from local processes to global 664 implications -a synthesis, Biogeosciences, vol.5, pp.325-329, 2008.

E. Parlanti, K. Wörz, L. Geoffroy, and M. Lamotte, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Organic Geochemistry, vol.31, issue.12, pp.1765-1781, 2000.
DOI : 10.1016/S0146-6380(00)00124-8

C. Prescott, Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?, Biogeochemistry, vol.311, issue.1-3, pp.133-149, 2010.
DOI : 10.1007/s10533-010-9439-0

P. Rovira and R. Rovira, Fitting litter decomposition datasets to mathematical curves: Towards a generalised exponential approach, Geoderma, vol.155, issue.3-4, pp.329-343, 2010.
DOI : 10.1016/j.geoderma.2009.11.033

H. Rydin and J. Jeglum, The biology of peatlands, 2013.

J. Schimel and M. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biology and Biochemistry, vol.35, issue.4, pp.549-563, 2003.
DOI : 10.1016/S0038-0717(03)00015-4

M. Sierra, M. Giovanela, E. Parlanti, and E. Soriano-sierra, Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques, Chemosphere, vol.58, issue.6, pp.715-733, 2005.
DOI : 10.1016/j.chemosphere.2004.09.038

S. Inc, STATISTICA for Windows Version 8.0, 2008.

K. Taylor, A. Rowland, and H. Jones, Molinia caerulea (L.) Moench, Journal of Ecology, vol.68, issue.1, pp.126-144, 2001.
DOI : 10.1046/j.1365-2745.2000.00455.x

M. Van-vuuren and F. Berendse, Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea, Biology and Fertility of Soils, vol.140, issue.4, pp.268-274, 1993.
DOI : 10.1007/BF00337211

J. Weishaar, G. Aiken, B. Bergamaschi, M. Fram, R. Fujii et al., Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon, Environmental Science & Technology, vol.37, issue.20, pp.4702-4708, 2003.
DOI : 10.1021/es030360x

J. Weltzin, S. Bridgham, J. Pastor, J. Chen, and C. Harth, Potential effects of warming and drying on peatland plant community composition, Global Change Biology, vol.81, issue.2, pp.141-151, 2003.
DOI : 10.1007/s004420100691

C. Zaccone, D. Orazio, V. Shotyk, W. Miano, and T. , Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland), Journal of Soils and Sediments, vol.113, issue.5, pp.443-456, 2009.
DOI : 10.1007/s11368-009-0093-x