G. R. Shaver and W. D. Billings, Effects of daylength and temperature on root elongation in tundra graminoids, Oecologia, vol.137, issue.3, pp.57-65, 1977.
DOI : 10.1007/BF00346836

A. Grandcourt, . B. Burban, . C. Flechard, and D. Guyon, Ground-based Network of 558 NDVI measurements for tracking temporal dynamics of canopy structure and vegetation 559 phenology in different biomes, Remote Sensing of Environment, vol.123, pp.234-245, 2012.

P. F. Sullivan and J. M. Welker, Warming chambers stimulate early season growth of an arctic 561, 2005.

J. E. Titus, D. J. Wagner, and M. D. Stephens, Contrasting Water Relations of Photosynthesis for Two Sphagnum Mosses, Ecology, vol.64, issue.5, pp.1109-1115, 1983.
DOI : 10.2307/1937821

E. S. Tuittila, The resilience and functional role of moss in boreal and arctic 566 ecosystems, New Phytologist, vol.196, pp.49-67, 2012.

B. Wallen, Above and below Ground Dry Mass of the Three Main Vascular Plants on Hummocks on a Subarctic Peat Bog, Oikos, vol.46, issue.1, pp.51-56, 1986.
DOI : 10.2307/3565379

T. N. Walker, S. E. Ward, N. J. Ostle, and R. D. Bardgett, Contrasting growth responses of 570 dominant peatland plants to warming and vegetation composition. Oecologia, DOI 571 10, pp.442-457, 1007.

J. F. Weltzin, C. Harth, S. D. Bridgham, J. Pastor, and M. Vonderharr, Production and 576 microtopography of bog bryophytes: response to warming and water-table manipulations, p.577, 2001.

J. F. Weltzin, S. D. Brigham, J. Pastor, J. Chen, and C. Harth, Potential effects of warming and drying on peatland plant community composition, Global Change Biology, vol.81, issue.2, pp.141-151, 2003.
DOI : 10.1007/s004420100691

Z. C. Yu, Holocene carbon flux histories of the world's peatlands: Global carbon-cycle implications, The Holocene, vol.21, issue.5, pp.761-774, 2011.
DOI : 10.1177/0959683610386982

W. Yan, Differentiating moss from higher plants is critical in studying the carbon cycle 583 of the boreal biome, Nature Communications, vol.5, issue.4270, 2014.