M. J. Kurylo and S. Solomon, Network for the detection of stratospheric change, NASA Report, Code EEU, 1990.

M. Schneider, Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmospheric Measurement Techniques, vol.3, issue.2, pp.323-338, 2010.
DOI : 10.5194/amt-3-323-2010

K. Tørseth, Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmospheric Chemistry and Physics, vol.12, issue.12, pp.5447-5481, 1972.
DOI : 10.5194/acp-12-5447-2012

J. Bösenberg, A European aerosol research lidar network to establish an aerosol climatology, 2003.

D. J. Gaffen, Temporal inhomogeneities in radiosonde temperature records, Journal of Geophysical Research, vol.12, issue.3912, pp.3667-3676, 1994.
DOI : 10.1029/93JD03179

C. G. Wade, An Evaluation of Problems Affecting the Measurement of Low Relative Humidity on the United States Radiosonde, Journal of Atmospheric and Oceanic Technology, vol.11, issue.3, pp.687-700, 1994.
DOI : 10.1175/1520-0426(1994)011<0687:AEOPAT>2.0.CO;2

J. R. Lanzante, RESISTANT, ROBUST AND NON-PARAMETRIC TECHNIQUES FOR THE ANALYSIS OF CLIMATE DATA: THEORY AND EXAMPLES, INCLUDING APPLICATIONS TO HISTORICAL RADIOSONDE STATION DATA, International Journal of Climatology, vol.16, issue.11, pp.1197-1226, 1996.
DOI : 10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L

L. Haimberger, C. Tavolato, and S. Sperka, Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records???Some New Results from a Comprehensive Intercomparison of Upper-Air Data, Journal of Climate, vol.21, issue.18, pp.4587-4606, 2008.
DOI : 10.1175/2008JCLI1929.1

W. J. Randel and F. Wu, Biases in Stratospheric and Tropospheric Temperature Trends Derived from Historical Radiosonde Data, Journal of Climate, vol.19, issue.10, pp.2094-2104, 2006.
DOI : 10.1175/JCLI3717.1

K. E. Trenberth, T. R. Karl, and T. W. Spence, The Need for a Systems Approach to Climate Observations, Bulletin of the American Meteorological Society, vol.83, issue.11, pp.1558-1559, 2002.
DOI : 10.1175/BAMS-83-11-1593

D. W. Thompson, The mystery of recent stratospheric temperature trends, Nature, vol.90, issue.7426, pp.692-697, 2012.
DOI : 10.1038/nature11579

P. M. Forster and K. P. Shine, Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling, Geophysical Research Letters, vol.392, issue.21, pp.3309-3312, 1999.
DOI : 10.1029/1999GL010487

N. Montoux, Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign, Atmospheric Chemistry and Physics, vol.9, issue.14, pp.5299-5319, 2009.
DOI : 10.5194/acp-9-5299-2009

URL : https://hal.archives-ouvertes.fr/hal-00408264

K. N. Liou, Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective, Monthly Weather Review, vol.114, issue.6, pp.1167-1199, 1986.
DOI : 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2

B. N. Holben, AERONET???A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, vol.66, issue.1, pp.1-16, 1998.
DOI : 10.1016/S0034-4257(98)00031-5

D. N. Kafle and R. L. Coulter, Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide, Journal of Geophysical Research: Atmospheres, vol.30, issue.D19, pp.7293-7308, 2013.
DOI : 10.1029/2000JD000038

A. Behrendt, Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes, Journal of Atmospheric and Oceanic Technology, vol.24, issue.1, pp.3-21, 2007.
DOI : 10.1175/JTECH1924.1

URL : https://hal.archives-ouvertes.fr/hal-00136878

T. Leblanc, Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results, Atmospheric Measurement Techniques, vol.4, issue.12, pp.2579-2605, 2011.
DOI : 10.5194/amt-4-2579-2011

URL : https://hal.archives-ouvertes.fr/hal-00597275

R. Bhawar, The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems, Quarterly Journal of the Royal Meteorological Society, vol.89, issue.S1, pp.325-348, 2011.
DOI : 10.1002/qj.697

URL : https://hal.archives-ouvertes.fr/hal-00572576

G. E. Nedoluha, Validation of long-term measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites, Journal of Geophysical Research: Atmospheres, vol.115, issue.21, pp.934-942, 2013.
DOI : 10.1029/2009JD012135

O. Bock, Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP, Atmospheric Measurement Techniques, vol.6, issue.10, pp.2777-2802, 2013.
DOI : 10.5194/amt-6-2777-2013

URL : https://hal.archives-ouvertes.fr/hal-00811876

J. L. Baray, An instrumented station for the survey of ozone and climate change in the southern tropics, J. Environ. Monit., vol.3, issue.13, pp.1020-1028, 2006.
DOI : 10.1039/B607762E

URL : https://hal.archives-ouvertes.fr/hal-00145015

P. S. Keckhut, Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change, Journal of Environmental Monitoring, vol.6, issue.9, pp.721-733, 2004.
DOI : 10.1039/b404256e

A. Haefele, Validation of ground-based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor, Journal of Geophysical Research, vol.44, issue.2, 2009.
DOI : 10.1029/2009JD011997

G. J. Herman, Assessment of the performance of ECC-ozonesondes under quasiflight conditions in the environmental simulation chamber: insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE), J. Geophys. Res, vol.112, issue.D19, 2007.

J. Baray, Ma??do observatory: a new high-altitude station facility at Reunion Island (21?? S, 55?? E) for long-term atmospheric remote sensing and in situ measurements, Atmospheric Measurement Techniques, vol.6, issue.10, pp.2865-2877, 2013.
DOI : 10.5194/amt-6-2865-2013

D. Lesouëf, Numerical simulations of local circulations and pollution transport over Reunion Island, Annales Geophysicae, vol.29, issue.1, pp.53-69, 2011.
DOI : 10.5194/angeo-29-53-2011

A. Hauchecorne, LIDAR monitoring of the temperature in the middle and lower atmosphere, Applied Physics B Photophysics and Laser Chemistry, vol.7, issue.D4, pp.29-34, 1992.
DOI : 10.1007/BF00348609

P. Keckhut, A. Hauchecorne, and M. L. Chanin, A Critical Review of the Database Acquired for the Long-Term Surveillance of the Middle Atmosphere by the French Rayleigh Lidars, Journal of Atmospheric and Oceanic Technology, vol.10, issue.6, pp.850-867, 1993.
DOI : 10.1175/1520-0426(1993)010<0850:ACROTD>2.0.CO;2

P. Keckhut, An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based lidar network in support of space observations, Journal of Atmospheric and Solar-Terrestrial Physics, vol.73, issue.5-6, pp.5-6, 2011.
DOI : 10.1016/j.jastp.2011.01.003

URL : https://hal.archives-ouvertes.fr/hal-00560268

P. Keckhut, Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change, Journal of Environmental Monitoring, vol.6, issue.9, pp.721-733, 2004.
DOI : 10.1039/b404256e

F. J. Immler, Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmospheric Measurement Techniques, vol.3, issue.5, pp.1217-1231, 2010.
DOI : 10.5194/amt-3-1217-2010

C. Hoareau, Methodology for Water Monitoring in the Upper Troposphere with Raman Lidar at the Haute-Provence Observatory, Journal of Atmospheric and Oceanic Technology, vol.26, issue.10, pp.2149-2160, 2009.
DOI : 10.1175/2009JTECHA1287.1

URL : https://hal.archives-ouvertes.fr/hal-00965515

V. Duflot, Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements, Journal of Geophysical Research, vol.107, issue.D19, p.18208, 2011.
DOI : 10.1029/2011JD015839

URL : https://hal.archives-ouvertes.fr/hal-00961626

G. Vaughan, Water vapour and ozone profiles in the midlatitude upper troposphere, Atmospheric Chemistry and Physics, vol.5, issue.4, pp.963-971, 2005.
DOI : 10.5194/acp-5-963-2005

URL : https://hal.archives-ouvertes.fr/hal-00295647

M. Bevis, GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, Journal of Geophysical Research, vol.91, issue.6, pp.15787-15801, 1992.
DOI : 10.1029/92JD01517

M. Schneider, Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON), Atmospheric Measurement Techniques, vol.3, issue.6, pp.1785-1795, 2010.
DOI : 10.5194/amt-3-1785-2010

C. F. Champollion, GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment, Atmospheric Research, vol.74, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.atmosres.2004.04.003

URL : https://hal.archives-ouvertes.fr/hal-00017446

A. Smirnov, Maritime aerosol network as a component of AERONET ??? first results and comparison with global aerosol models and satellite retrievals, Atmospheric Measurement Techniques, vol.4, issue.3, pp.583-597, 2011.
DOI : 10.5194/amt-4-583-2011

A. Smirnov, Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network, Atmospheric Measurement Techniques, vol.5, issue.2, pp.377-388, 2012.
DOI : 10.5194/amt-5-377-2012

A. Smirnov, Maritime Aerosol Network as a component of Aerosol Robotic Network, Journal of Geophysical Research, vol.110, issue.D24, p.6204, 2009.
DOI : 10.1029/2008JD011257

N. Kämpfer and E. , Monitoring Atmospheric Water Vapour?Ground-based Remote Sensing and in situ Methods, ISSI Scientific Report Series, vol.10, 2013.

N. Kämpfer, Microwave radiometry, Chapter 5 in Monitoring Atmospheric Water Vapour, ISSI Scientific Report Series, vol.10, 2013.

E. Motte, A 22-GHz Mobile Microwave Radiometer (MobRa) for the Study of Middle Atmospheric Water Vapor, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.10, pp.3104-3114, 2008.
DOI : 10.1109/TGRS.2008.2000626

J. Urban, A versatile forward-and inversion model for the millimetre and submillimeter wavelength range, J. Quant. Spectrosc. Radiat. Transfer, vol.83, pp.3-4, 2004.

C. Straub, MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns, Atmospheric Measurement Techniques, vol.3, issue.5, pp.1271-1285, 2010.
DOI : 10.5194/amt-3-1271-2010

B. Tschanz, Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C, Atmospheric Measurement Techniques, vol.6, issue.7, pp.1725-1745, 2013.
DOI : 10.5194/amt-6-1725-2013

M. L. Chanin, A Doppler lidar for measuring winds in the middle atmosphere, Geophysical Research Letters, vol.19, issue.11, p.1273, 1989.
DOI : 10.1029/GL016i011p01273

S. C. Garnier, Rayleigh-Mie Doppler wind lidar for atmospheric measurement. I. Instrumental set-up, validation and first climatological results, Appl. Opt, vol.38, pp.2410-2421, 1999.

A. Hertzog, C. Souprayen, and A. Hauchecorne, Measurements of gravity wave activity in the lower stratosphere by Doppler lidar, Journal of Geophysical Research: Atmospheres, vol.96, issue.D8, pp.7879-7890, 2001.
DOI : 10.1029/2000JD900646

R. Rüfenacht, Middle-atmospheric zonal and meridional wind profiles from polar, tropical and mid latitudes with the ground-based microwave Doppler wind radiometer WIRA, Atmospheric Measurement Techniques Discussions, vol.7, issue.7, pp.4491-4505, 2014.
DOI : 10.5194/amtd-7-7717-2014

L. M. Miloshevich, Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, Journal of Geophysical Research, vol.80, issue.D13, pp.9-10, 2006.
DOI : 10.1029/2005JD006083

D. Dionisi, Water vapor observations up to the lower stratosphere through the Raman lidar during the Ma??do Lidar Calibration Campaign, Atmospheric Measurement Techniques, vol.8, issue.3, pp.1425-1445, 2015.
DOI : 10.5194/amt-8-1425-2015

A. Gettelman, Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments, Geophysical Research Letters, vol.65, issue.D2, p.22107, 2004.
DOI : 10.1029/2004GL020730

D. E. Hagan, Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements, Geophysical Research Letters, vol.65, issue.21, p.21103, 2004.
DOI : 10.1029/2004GL020302

D. N. Whiteman, Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation, Journal of Geophysical Research, vol.23, issue.15, pp.9-09, 2006.
DOI : 10.1029/2005JD006429

J. E. Barnes, NASA/Aura/Microwave Limb Sounder water vapor validation at Mauna Loa Observatory by Raman lidar, Journal of Geophysical Research, vol.27, issue.2A, pp.15-18, 2008.
DOI : 10.1029/2007JD008842

C. Hoareau, A Raman lidar at La Reunion (20.8?? S, 55.5?? E) for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system, Atmospheric Measurement Techniques, vol.5, issue.6, pp.1333-1348, 2012.
DOI : 10.5194/amt-5-1333-2012

URL : https://hal.archives-ouvertes.fr/hal-00635877

J. L. Baray, Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere, Journal of Atmospheric and Solar-Terrestrial Physics, vol.60, issue.1, pp.27-36, 1998.
DOI : 10.1016/S1364-6826(97)00116-8

M. Krämer, Ice supersaturations and cirrus cloud crystal numbers, Atmospheric Chemistry and Physics, vol.9, issue.11, pp.3505-3522, 2009.
DOI : 10.5194/acp-9-3505-2009

P. Keckhut, Modes of variability of the vertical temperature profile of the middle atmosphere at mid-latitude: Similarities with solar forcing, Journal of Atmospheric and Solar-Terrestrial Physics, vol.75, issue.76, pp.75-7692, 2012.
DOI : 10.1016/j.jastp.2011.05.012

URL : https://hal.archives-ouvertes.fr/hal-00606403

A. Hauchecorne and A. Maillard, A 2-d dynamical model of mesospheric temperature inversions in winter, Geophysical Research Letters, vol.92, issue.12, pp.2197-2200, 1990.
DOI : 10.1029/GL017i012p02197

F. Sassi, On temperature inversions and the mesospheric surf zone, Journal of Geophysical Research, vol.3, issue.D19, p.4380, 2002.
DOI : 10.1029/2001JD001525

J. W. Meriwether, Observed coupling of the mesosphere inversion layer to the thermal tidal structure, Geophysical Research Letters, vol.22, issue.9, pp.1479-1482, 1998.
DOI : 10.1029/98GL00756

R. J. Sica, Model-measurement comparison of mesospheric temperature inversions, and a simple theory for their occurrence, Geophysical Research Letters, vol.22, issue.D19, p.23806, 2007.
DOI : 10.1029/2007GL030627

D. Faduilhe, Stratospheric temperature monitoring using a vibrational Raman lidar : Part 1: aerosols and ozone interferences, Journal of Environmental Monitoring, vol.103, issue.D22, pp.357-364, 2005.
DOI : 10.1039/b415299a

URL : https://hal.archives-ouvertes.fr/hal-00068741

. Jean-luc, Baray defended his PhD in 1999 at Paris 6 University He is now working at University Blaise Pascal?Clermont Ferrand, but he was at Reunion University in charge of Lidar instruments at OPAR when the MALICCA campaign was conducted. His field of research is tropospheric dynamic, water vapor and ozone concentrations in the atmosphere, stratospheretroposphere exchanges, and remote sensing measurements