Ozone loss In the Arctic winter 2014/2015
Florence Goutail, Franck Lefèvre, Jean-Pierre Pommereau, Andrea Pazmino, Martyn Chipperfield, Wuhu Feng, Michel Van Roozendael, Paul Eriksen, Kerstin Stebel, Rigel Kivi, et al.

 ► To cite this version:

HAL Id: insu-01144053
https://hal-insu.archives-ouvertes.fr/insu-01144053
Submitted on 23 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Ozone loss in the Arctic winter 2014/2015

Objectives and Method

Quantification of chemical total ozone loss inside vortex by comparison between modelled passive ozone and measurements.

MEASUREMENTS

- 10 CTM initialized on December 1, 2014 from ECWMF ozone fields
- REPROBUS (ECWMF 1000 - 0.01 hPa)
- SLIMCAT (ECWMF 1000 - 0.03 hPa)
- 2 runs:
 - Passive Ozone
 - Full chemistry

MEASUREMENTS SAOZ

Total ozone:
- SAOZ/NDACC UV Visible network
- Two day of height

1- METEOREOLOGY

- T_{nat} from Dec 10 to Dec 31 at 475K and 550K
- Large sunlit V_{esc} from Dec 10 to Dec 31
- Sparse cooling below T_{nat} and V_{esc} in Jan-Mar until March 20

Comparison to previous winters

- Sunlit warming on Jan 1 followed by progressive cooling
- Cold period in March compared to other winters
- Final warming after March 20

2- SAOZ OBSERVATIONS

Ozone loss and denitrification

- Small ozone depletion rate of 0.3% / day between Jan 10 and Feb 10
- Stopped between Feb 10 and Feb 28
- Restarted to 0.5% / day between Mar 1-March 20
- Stopped on March 20
- NO2 diurnal increase and chlorine activation after March 10
- Total cumulated loss of 19 ± 2% close to Arctic Spring average

3- MIMOSA PV FIELDS AND REPROBUS 3D CTM SIMULATION (475 K)

- Small size vortex centered at the North Pole until late March
- Few PSC only in early and late Feb at the Pole
- Chlorine activated until mid-Feb, deactivated progressively
- Ozone loss start in early Feb only, propagating until end of March

SIMULATION (435 K)

- Much more PSC, chlorine activation and ozone loss up to 50% at lower altitude at 435 K in late illuminated vortex in March

4- MODEL LOSS ABOVE SAOZ STATIONS

REPROBUS: 17% ~ 89 DU

- REPROBUS mixing:
 - 0.15% day from Jan 1 up to March 1
 - 0.15% day from March 1 up to March 15
 - Stopped on March 20

Acknowledgements

- The authors thank the SAOZ stations operators and ECWMF for the meteorological analysis.
- The work was supported by the French CNES and CNRS/UVSQ within the NDACC framework.
- The SAOZ network is part of NDACC (Network for Detection of Atmospheric Composition Change).
- The authors thank gratefully C. Boes at the Centre for Atmospheric Chemistry Products and Services "ETHM" for providing MIMOSA and REPROBUS maps and data above SAOZ.
- The authors thank Vera Slinkina and the Russian CASO data/Brazilian ozone network for providing Zhigansk and Salekhard Min-SA0Z data.

CONCLUSION WINTER 2014/2015:

- Long lasting vortex
- Total ozone loss of 19% close to average depletion in the Arctic
- 19% loss due to vortex duration until March 20
- Less de-activation at lower altitude (435 K)
- Maximum destruction at lower altitude (435 K) than usual (475-550 K)