Preliminary results from in-situ measurements of CH₄, CO, CO₂ and N₂O by the SPIRIT instrument during the summer 2014 GLAM aircraft campaign
Vanessa Brocchi, Valéry Catoire, S Chevrier, C Robert, P. Ricaud, R Zbinden, J.-L Attie, L. El Amraoui

To cite this version:
Vanessa Brocchi, Valéry Catoire, S Chevrier, C Robert, P. Ricaud, et al.. Preliminary results from in-situ measurements of CH₄, CO, CO₂ and N₂O by the SPIRIT instrument during the summer 2014 GLAM aircraft campaign. 4th ChArMEx International Workshop, Oct 2014, Trieste, Italy. 2014. insu-01142655

HAL Id: insu-01142655
https://hal-insu.archives-ouvertes.fr/insu-01142655
Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Preliminary results from in-situ measurements of CH₄, CO, CO₂ and N₂O by the SPIRIT instrument during the summer 2014 GLAM aircraft campaign

V. BROCHI¹, V. CATOIRE¹, S. CHEVRIER¹, C. ROBERT¹, P. RICAUD¹, R. ZBINDEN², J.-L. ATTIE², L. EL AMRAOUI²

¹LPC2E, CNRS - Université Orléans, 45071 Orléans cedex 2, France
²Météo-France, CNRS, 31057 Toulouse cedex 1, France

SPRIT Instrumentation:

SPRIT (Spectromètre InfraRouge in situ Toute altitude) is an airborne infrared absorption spectrometer for the simultaneous measurements of several trace gases. It uses three continuous wave distributed-feedback room-temperature quantum cascade lasers (CW-DFB-RT-QCL) cooled by Peltier effect and exhibiting an excellent single-mode behaviour. In addition, CW operating mode lasers provide easy, high precision for concentration retrieval, large selectivity and sensitivity because of their reduced line width (< 3 MHz or 10⁻⁴ cm⁻¹) and enhanced line intensity. Thanks to the home-made QCL emission controller, the lasers work sequentially, triggered and synchronized by the data acquisition system, with sampling at 0.7 Hz. The optical system of SPRIT consists of a patented non-resonant multipass cell (Robert, 2007). The path length can be varied from 20 to 200 m by the rotation of one half of the broad band spherical mirrors of the optical cell, providing high versatility as regard to the type and the concentration range of species to be measured. In the present study, SPRIT has been used with 83.88 m path length and with 3 QCLs emitting at 2179.772, 1249.627, 1249.668, and 2307.513 cm⁻¹ for the detection of CO, CH₄, N₂O, and CO₂ (¹²C¹⁸O¹⁶O isotope), respectively. SPRIT has been integrated in the Falcon-20 SAFIRE aircraft. The experimental optical transmission T as a function of the wavenumber is retrieved by dividing the experimental signals by the associated baseline. The concentration retrieval is based on the Beer-Lambert law. The principle of the retrieval is to fit the natural logarithm of the transmission ln(T) with the simulated one, C.S.g(ν₂-ν₁)l, by adjusting the concentration C in molecule cm⁻³ (with g(ν₂-ν₁) the absorption profile in cm, S the molecular line intensity in cm molecule⁻², and l the path length in cm). S includes the molecular partition functions and the lower-state energy of the transition E₂, and is assumed to be a Voigt or a Gaity line profile including the air collisional broadening and the Doppler broadening half-widths and their temperature dependence coefficients, all calculated from the Hitran 2012 database (Rothman et al., 2013).

Examples of Vertical Profiles During two Descents:

Vertical profiles of CO, CH₄, N₂O and CO₂ during the descent above Lampedusa (6 August 2014).
Vertical profiles of CO, CH₄, N₂O and CO₂ during the descent above Iraklion (7 August 2014).

Acknowledgements

The authors thank SAFIRE (CNRS-INSU, Météo-France, CNES) for the successful flight operations and Labor Vélocites (UPEC-10-LABS 102-01), for the funding of the Ph. D thesis of Vanessa Brocchi. The project is part of the MISTRALS/CHARMEX funded by INSU, CNES, CEA, Météo-France and several universities. The GLAM campaign is funded by MISTRALS and participating laboratories CNRM and LPC2E.

References


East-West Variations of Mixing Ratios at Constant Altitudes:

The SPIRIT instrument was deployed during the GLAM (Gradient in Longitude of Atmospheric constituents above the Mediterranean basin) campaign, as part of the CHARMEX project, in August 2014 from Toulouse to Larnaca onboard the Falcon-20 SAFIRE aircraft. The study presents in-situ measurements of CO, CO₂, CH₄ and N₂O during the west-east transect at 5000-5500m altitude on 6-7 August (Fig. A) and during the east-west transect at 9000-9800m altitude for the flight back on 10 August (Fig. B).

Preliminary results from in-situ measurements of CH₄, CO, CO₂ and N₂O by the SPIRIT instrument during the summer 2014 GLAM aircraft campaign

V. BROCHI¹, V. CATOIRE¹, S. CHEVRIER¹, C. ROBERT¹, P. RICAUD¹, R. ZBINDEN², J.-L. ATTIE², L. EL AMRAOUI²

¹LPC2E, CNRS - Université Orléans, 45071 Orléans cedex 2, France
²Météo-France, CNRS, 31057 Toulouse cedex 1, France

SPRIT Instrumentation:

SPRIT (Spectromètre InfraRouge in situ Toute altitude) is an airborne infrared absorption spectrometer for the simultaneous measurements of several trace gases. It uses three continuous wave distributed-feedback room-temperature quantum cascade lasers (CW-DFB-RT-QCL) cooled by Peltier effect and exhibiting an excellent single-mode behaviour. In addition, CW operating mode lasers provide easy, high precision for concentration retrieval, large selectivity and sensitivity because of their reduced line width (< 3 MHz or 10⁻⁴ cm⁻¹) and enhanced line intensity. Thanks to the home-made QCL emission controller, the lasers work sequentially, triggered and synchronized by the data acquisition system, with sampling at 0.7 Hz. The optical system of SPRIT consists of a patented non-resonant multipass cell (Robert, 2007). The path length can be varied from 20 to 200 m by the rotation of one half of the broad band spherical mirrors of the optical cell, providing high versatility as regard to the type and the concentration range of species to be measured. In the present study, SPRIT has been used with 83.88 m path length and with 3 QCLs emitting at 2179.772, 1249.627, 1249.668, and 2307.513 cm⁻¹ for the detection of CO, CH₄, N₂O, and CO₂ (¹²C¹⁸O¹⁶O isotope), respectively. SPRIT has been integrated in the Falcon-20 SAFIRE aircraft. The experimental optical transmission T as a function of the wavenumber is retrieved by dividing the experimental signals by the associated baseline. The concentration retrieval is based on the Beer-Lambert law. The principle of the retrieval is to fit the natural logarithm of the transmission ln(T) with the simulated one, C.S.g(ν₂-ν₁)l, by adjusting the concentration C in molecule cm⁻³ (with g(ν₂-ν₁) the absorption profile in cm, S the molecular line intensity in cm molecule⁻², and l the path length in cm). S includes the molecular partition functions and the lower-state energy of the transition E₂, and is assumed to be a Voigt or a Gaity line profile including the air collisional broadening and the Doppler broadening half-widths and their temperature dependence coefficients, all calculated from the Hitran 2012 database (Rothman et al., 2013).

Examples of Vertical Profiles During two Descents:

Vertical profiles of CO, CH₄, N₂O and CO₂ during the descent above Lampedusa (6 August 2014).
Vertical profiles of CO, CH₄, N₂O and CO₂ during the descent above Iraklion (7 August 2014).

Acknowledgements

The authors thank SAFIRE (CNRS-INSU, Météo-France, CNES) for the successful flight operations and Labor Vélocites (UPEC-10-LABS 102-01), for the funding of the Ph. D thesis of Vanessa Brocchi. The project is part of the MISTRALS/CHARMEX funded by INSU, CNES, CEA, Météo-France and several universities. The GLAM campaign is funded by MISTRALS and participating laboratories CNRM and LPC2E.

References


East-West Variations of Mixing Ratios at Constant Altitudes:

The SPIRIT instrument was deployed during the GLAM (Gradient in Longitude of Atmospheric constituents above the Mediterranean basin) campaign, as part of the CHARMEX project, in August 2014 from Toulouse to Larnaca onboard the Falcon-20 SAFIRE aircraft. The study presents in-situ measurements of CO, CO₂, CH₄ and N₂O during the west-east transect at 5000-5500m altitude on 6-7 August (Fig. A) and during the east-west transect at 9000-9800m altitude for the flight back on 10 August (Fig. B).