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Abstract

While central in groundwater resources and contaminant fate, Transit Time

Distributions (TTDs) are never directly accessible from field measurements

but always deduced from a combination of tracer data and more or less in-

volved models. We evaluate the predictive capabilities of approximate distri-

butions (Lumped Parameter Models abbreviated as LPMs) instead of fully

developed aquifer models. We develop a generic assessment methodology

based on synthetic aquifer models to establish references for observable quan-

tities as tracer concentrations and prediction targets as groundwater renewal

times. Candidate LPMs are calibrated on the observable tracer concentra-

tions and used to infer renewal time predictions, which are compared with
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the reference ones. This methodology is applied to the produced crystalline

aquifer of Plœmeur (Brittany, France) where flows leak through a micas-

chists aquitard to reach a sloping aquifer where they radially converge to

the producing well, issuing broad rather than multi-modal TTDs. One, two

and three parameters LPMs were calibrated to a corresponding number of

simulated reference anthropogenic tracer concentrations (CFC- 11, 85Kr and

SF6). Extensive statistical analysis over the aquifer shows that a good fit

of the anthropogenic tracer concentrations is neither a necessary nor a suffi-

cient condition to reach acceptable predictive capability. Prediction accuracy

is however strongly conditioned by the use of a priori relevant LPMs. Only

adequate LPM shapes yield unbiased estimations. In the case of Plœmeur,

relevant LPMs should have two parameters to capture the mean and the stan-

dard deviation of the residence times and cover the first few decades [0;50

years]. Inverse Gaussian and shifted exponential performed equally well for

the wide variety of the reference TTDs from strongly peaked in recharge

zones where flows are diverging to broadly distributed in more converging

zones. When using two sufficiently different atmospheric tracers like CFC-11

and 85Kr, groundwater renewal time predictions are accurate at 1 to 5 years

for estimating mean transit times of some decades (10-50 years). 1-parameter

LPMs calibrated on a single atmospheric tracer lead to substantially larger

errors of the order of 10 years, while 3-parameter LPMs calibrated with a

third atmospheric tracers (SF6) do not improve the prediction capabilities.

Based on a specific site, this study highlights the high predictive capacities
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of two atmospheric tracers on the same time range with sufficiently different

atmospheric concentration chronicles.

Keywords: Transit time distributions, Lumped parameter models,

Renewal times, Atmospheric anthropogenic tracers, Crystalline aquifer

1. Introduction

Transit times in groundwater flow systems result from local-scale advec-

tive and dispersive processes (Bellin & Tonina, 2007; Dagan et al., 1992;

Dentz, 2012; Maloszewski & Zuber, 1996; Simmons, 1982), as well as from

global-scale watershed and geological structures (Eberts et al., 2012; Goder-5

niaux et al., 2013; McGuire & McDonnell, 2006; Rinaldo et al., 2011). Hence

Transit Time Distributions (TTDs) are most generally broad, mixing times

of different flow lines (Engdahl & Maxwell, 2014; Ginn, 1999) potentially

acquired from various recharge areas (Weissmann et al., 2002), within a suc-

cession of aquifers and aquitards (Castro & Goblet, 2005; Phillips & Castro,10

2003; Zinn & Konikow, 2007), or through exchanges between high-flow zones

like fractures and large diffusive zones like the matrix (Cook et al., 2005;

Haggerty & Gorelick, 1995; Varni & Carrera, 1998). With only scarce ob-

servations, it is out of reach to identify accurately which processes intervene

where and how multiscale complexity of the flow structures generate the15

TTD. Nevertheless some characteristics of the TTD, also called "ground-

water age distribution" (Ginn, 1999) or "groundwater residence time dis-

tribution" (McCallum et al., 2014a) may be inferred from measurements of

isotopic tracer concentrations in the groundwater (McCallum et al., 2014b;

Massoudieh et al., 2012; Massoudieh & Ginn, 2011; Newman et al., 2010).20
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We refer to these data as "groundwater age data." Moreover classical renewal

and flushing time applications can directly be derived from the TTD without

going back to the transport processes (Bohlke, 2002; Katz et al., 2001; Lerner

& Papatolios, 1993; Pinay et al., 2014; Sebilo et al., 2013).

In this framework the model for the TTD takes the critical role of trans-25

lating groundwater age data to renewal or flushing predictions, that with any

principle of parsimony should be simple enough to be fully determined by the

scarce information available. It should also be representative in a broad sense

of the underlying transport processes. This has promoted the development

of simple TTD models known as Lumped Parameter Models (LPMs) that30

represent the multi-scale multi-factor dispersive processes all together in a

parsimonious "lumped" way (Cook & Herczeg, 2000; Maloszewski & Zuber,

1996). Numerous LPMs have been proposed following different primary ob-

jectives. Some have been developed to efficiently fit observed groundwater

ages like the mono- or multi-modal Dirac distributions corresponding to one35

or several piston flow models (Begemann & Libby, 1957), or flexible general-

ized Gamma distributions (Cvetkovic, 2012). Others are analytical solutions

of simplified problems. This is the case of the Inverse Gaussian distribution

solution to the 1D advection-dispersion equation (Ginn et al., 2009), of the

exponential model taken from chemistry of continuous stirred tank reactors40

(Eriksson, 1958; Haitjema, 1995; Kaufman & Libby, 1954), and of some more

complex semi-analytical distributions for gently sloping aquifers (Etcheverry

& Perrochet, 2000) or dipole flow configurations (Luo & Kitanidis, 2004). In-

creasing their complexity to three or more parameters has been proposed by

composing some of the previous distributions (Ozyurt & Bayari, 2003, 2005).45
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Globally, LPMs have been proposed following Bayes spirit either by favor-

ing the goodness of fit of the groundwater ages (likelihood in Bayes theory)

like for the multi-modal Dirac distributions, or by favoring some consistency

with the a priori flow pattern (prior in Bayes theory) such as for the Inverse

Gaussian or exponential models. LPMs are still extending to "shape-free"50

distributions precisely designed to find an optimal balance of the likelihood

and prior terms within a Bayesian framework (Massoudieh et al., 2012, 2013).

Lumped Parameter Models are highly attractive as they offer predictive

capacities at limited observation and modeling costs. However, they raise a

number of questions that should be carefully assessed: is the LPM approach55

appropriate for 3D complex aquifers? How should the LPM distribution

be chosen? Is there any a priori more relevant LPM among the existing

analytical solutions? When is the information content of the groundwater

age data enough for establishing the targeted predictions like the renewal or

flushing times?60

Assessment studies have been undertaken on sampling zones located pref-

erentially in the downstream convergence zones (Eberts et al., 2012; Leray

et al., 2012), using extensively geographical information with simple trans-

port solutions (Basu et al., 2012), or with two parameters widely varying

LPMs under a broad panel of observation and tracer scenarios (Green et al.,65

2014). In this article, we analyze the predictive capacities of LPMs against

evolving quantity of tracer information. We adapt the LPM complexity

through the number of its parameters to the informational content of the

tracer data, in order to determine the relation between the informational

content of the tracer data and the quality of the predictions. While our70
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analysis is centered on LPMs, LPMs just appear as the necessary step to

extract from the tracer data the information needed to establish predictions.

We first propose a methodology for a spatially extensive assessment of the

LPMs (section 2). It is illustrated on a 3D crystalline aquifer model under

steady-state convergent flow (section 3). Seven LPMs are compared at 7375

locations of the crystalline aquifers (section 4). Results are further discussed

in section 5 to determine the quantity of information required to establish

accurate renewal time predictions.

2. Methodology: assessing LPMs on in-silico aquifers

We detail the methods for determining the predictive capacities of Lumped80

Parameter Models (LPMs) based on groundwater age information derived

from tracer concentrations on in-silico aquifers. In-silico aquifers, also gener-

ally called synthetic aquifer models, are essential since the assessment proce-

dure requires the knowledge of the true Transit Time Distributions (TTDs).

As TTDs cannot be obtained in the field from any measurement at the water-85

shed scale, we access it through aquifer modeling. Both 2D and 3D theoret-

ical models have brought up key issues (Massoudieh et al., 2012; Park et al.,

2002; Varni & Carrera, 1998; Weissmann et al., 2002; Zhang, 2004; Zinn &

Konikow, 2007), as has direct modeling of age distributions in real 2D aquifer

case (Woolfenden & Ginn, 2009). The most relevant aquifer models are how-90

ever those closer to the 3D real aquifer cases calibrated using both hydraulic

and atmospheric tracer information (Eberts et al., 2012; Green et al., 2014;

Leray et al., 2013).

In this section, we assume that transport simulations have previously been
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performed and that the necessary results are available. These results can take95

the form of particle paths or concentration fields depending on the numerical

method chosen for solving the advective-dispersive equation (Bear, 1973).

When using random walk methods (Delay et al., 2005; Kinzelbach, 1988;

Tompson & Gelhar, 1990), results are particle paths derived from forward

or backward simulations (Neupauer & Wilson, 2002). For a straightforward100

derivation of concentrations from particle densities under forward tracking,

particles must be injected at densities proportional to the inflow boundary

fluxes. In recharge and pumping cases, the density of injected particles must

be weighted by flows entering the aquifer either by the recharge zones in

forward studies or by the sampling areas in backward studies (Leray et al.,105

2012). The method is general in the sense that it can be applied to any

aquifer model with adequate transport simulation and injection conditions.

In this article, it will be applied to the crystalline aquifer model of Plœmeur

described in section 3. We discuss application to other sites in section 5.

Methods are organized in 5 steps. In the two first steps, the transit time110

distributions (TTDs) are used to establish the reference atmospheric tracer

concentrations often displayed as groundwater ages and the reference pre-

dictions. The third step consists in defining the candidate LPMs. Several

LPMs are concurrently considered. In this article, we consider seven LPMs

with evolving number of parameters. This is a key point of our methodology115

for studying the evolution of the prediction capacities according to the quan-

tity of available information in the atmospheric tracer concentrations. The

number of informative parameters will be taken as a measure of the avail-

able information. We then calibrate the LPMs on the reference atmospheric
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concentrations and compare their predictions with the reference ones. This120

procedure is consistent with a field observation methodology where only at-

mospheric concentrations can be measured. There is no fitting of the TTD

obtained from the numerical simulations by the candidate LPMs.

This assessment methodology is not only practically appropriate but also

conceptually relevant. In fact, LPMs are not designed to reproduce all the125

details of the TTD and underlying transport processes but capture them glob-

ally to be both consistent with the available data and effective in terms of

predictions. They should be somehow statistically similar but not identical.

In the same spirit, LPMs are not thought to be excellent on every sampling

zone of the aquifer, but should be good on average. It thus requires an ex-130

tensive spatial assessment. We underline that, even if we eventually compare

the performances of the LPMs at different sampling zones, the procedure

to estimate the LPMs is always made point by point and never accounts

simultaneously for observations coming from different sampling zones.

2.1. In-silico modeling approach135

2.1.1. Reference TTDs and atmospheric tracer concentrations

The approach used in this article requires the use of a synthetic aquifer

taken as a reference and providing flow weighted consistent transit time dis-

tributions (TTDs), apparent ages and predictions on renewal times. We

derive the TTDs fref everywhere in the watershed, so fref is a distribution140

function of the transit time u conditioned by the position x. The TTDs

obtained are the references to which will be compared the approximations

obtained with LPMs.

From the TTDs, we derive the reference tracer concentrations Cref
Tr . For a
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given time and position (t,x) these concentrations can be readily expressed

from the TTD fref determined previously, the atmospheric concentration

chronicle of the tracer CTr and its possible decay constant λ:

CTr(t,x) =

∫ t

0

CTr(t − u) e−λu fref(u,x) du (1)

where t−u is the date when the tracer enters the aquifer. Cref
Tr corresponds to

the concentration CTr(t,x) at a given sampling date t and at the position x.145

These concentrations computed for different environmental tracers such as

CFC-11, SF6 and 85Kr (see Figure 1) are taken as observables. They closely

match sampled concentrations in field studies.

The concentrations can readily be converted to apparent ages ÂTr:

CTr(t,x) = CTr

(

ÂTr(t,x)
)

e−λ ÂTr(t,x) (2)

Tracers are considered ideal , i.e. they do not have any interaction with the

aquifer matrix (Maloszewski & Zuber, 1996). We also assume that tracers150

are at their atmospheric concentration at the aquifer recharge CTr (equations

1 and 2).

2.1.2. Reference predictions

From the reference TTDs fref we also derive renewal times in the aquifer.

For a given sampling zone, the renewal period ty of a fraction y of the water

to be renewed in aquifer is defined as

y = Fref(ty) =

∫ ty

0

fref(u) du (3)
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where Fref is the cumulative density function. The quartiles Qref
1 (resp. Qref

2

and Qref
3 ) of the reference TTD represent the renewal period of time for a155

given sampling zone in the aquifer so that 25, 50 or 75% of the water is re-

newed. They are determined by: F−1
ref (25%) (resp. F−1

ref (50%) and F−1
ref (75%)).

In the following, they will be expressed in years. The renewal times at 25, 50

and 75 % will be determined everywhere in the aquifer and reference maps

will be drawn for the in-silico model.160

2.2. Inferring LPMs from environmental tracer concentrations

In the next step, we define candidate LPMs and calibrate them on the

reference tracer concentrations determined in the in-silico modeling phase.

We underline that, at this stage, the tracer concentrations are the only data

made available. LPMs are estimated without any knowledge of the TTDs.165

2.2.1. Defining candidate LPMs

As we aim at determining the influence of the data amount on the pre-

diction accuracy, we choose LPMs with evolving number of parameters to

be calibrated on an increasing quantity of tracer concentrations. Basically,

the number of parameters will be made equal to the number of tracers. As170

opposed to the approach of Corcho Alvarado et al. (2007), the number of

degrees of freedom is always equal to 0 as the number of free parameters is

made equal to the number of observations.

We choose seven LPMs that either correspond to prior information on the

flow pattern or that are often used in hydrogeological studies. We sort them175

according to the number of parameters required to define them (see table 1)

and detail in the following their physical basis. They are all defined only for
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t > 0.

We have chosen the Dirac and exponential distributions as 1-parameter

models. Physically, the Dirac distribution corresponds to the piston flow180

model (PFM), where tracers are advected along a single flowpath without

any mixing within the flow line nor with the other flow lines. At the other

extreme, the exponential model (EM) characterizes a well-mixed flow and is

relevant to TTDs at convergent and outflow zones (pumping site, discharge).

Both distributions are defined by a single parameter T equal in both cases185

to their mean.

A straightforward extension to 2-parameter models is the Shifted Ex-

ponential distribution corresponding to the exponential piston flow model

(EPM) and representing a combination of exponential and piston flow mod-

els. Such a distribution can represent a system where recharge occurs in an190

unconfined zone (EM) and tracers are then advected in a confined part of the

aquifer (PFM). It is defined by the same exponential constant T and by the

time lag t0. The other classical 2-parameter model is the Inverse Gaussian

distribution. It is a solution to the classical advection dispersion equation

(ADE) and is characterized by the distribution mean T and by the Peclet195

number Pe (Maloszewski & Zuber, 1996). Pe is related to macrodispersive

watershed processes with potentially much smaller values than classical mi-

croscale hydrodynamic dispersion. The lower Pe is, the broader and the

more asymmetrical the TTD will be. The last 2-parameter model considered

is the uniform distribution corresponding to the linear piston flow model,200

which can represent the TTD in a partly confined aquifer (Cook & Bohlke,

1999). It is characterized by the two extreme times t0 and t1.
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As 3-parameter models, we have taken the weighted sum of two Diracs

typically used in karstic systems (Long & Putnam, 2006) or when consider-

ing two independent poles or reservoirs characterized again by the two times205

t0 and t1 and by the relative weight of the poles ω. Alternatively, we also

consider the Shifted Inverse Gaussian distribution corresponding to an In-

verse Gaussian model with a shifted origin t0. Figure 2 shows the diversity

of shapes of the 7 LPMs. All these LPMs have the same mean. LPMs with

two and more parameters have the same variance. LPMs with three param-210

eters have additionally the same skewness. Given to illustrate the diversity

of shapes, these LPMs have not been calibrated with any tracer data.

2.2.2. Calibrating LPMs on reference tracer concentrations

The 7 LPMs are calibrated to fit the reference concentrations Cref
Tr derived

from the in-silico model. As previously underlined, the number of tracer con-215

centrations in a sampling zone is made equal to the number of parameters of

the model and is considered as a measure of the quantity of available infor-

mation. For this analysis, we have taken the three most different atmospheric

tracers available on the last 50 years period introducing them in this order

(CFC-11, 85Kr, SF6) to get the best possible amount of potential informa-220

tion. In fact the more different the atmospheric concentration chronicles, the

more complementary information can be extracted.

1-parameter LPMs are calibrated on the reference CFC-11 tracer concen-

tration (Cref
CFC). 2-parameter LPMs are calibrated on the reference CFC-11

and 85Kr tracer concentrations (Cref
CFC and Cref

Kr). 3-parameter LPMs are cal-225

ibrated on the reference CFC-11, 85Kr and SF6 tracer concentrations (Cref
CFC,

Cref
Kr and Cref

SF6
).
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For each N-parameter LPM (where N equals either 1, 2 or 3) we seek for

the parameters (π1, · · · , πN) that solve the system of N equations:

For n = 1 · · ·N, Cref
Trn

=

∫ t

0

CTrn
(t − u) f(π1,··· ,πN)(u) du (4)

where N is the number of parameters and Trn is the nth tracer (if n = 1, Tr1

is CFC-11, if n = 2, Tr2 is 85Kr and if n = 3, Tr3 is SF6).

We use the Levenberg-Marquadt method of Matlab to find the set of

parameters (π1, · · · , πn) that minimize the objective function χ:

χ =
N

∑

n=1

∣

∣

∣

∣

νn(π1, · · · , πN)

Cref
Trn

∣

∣

∣

∣

2

(5)

where:

νn = Cref
Trn

(t) −

∫ t

0

CTrn
(t − u) f(π1,··· ,πN)(u) du. (6)

We also choose the starting parameters for the Levenberg-Marquardt al-230

gorithm not far from the global minimum of the objective function χ by

pre-calibrating the first moments of the LPM. This ensures faster and more

systematic convergence to the global minimum of χ.

To evaluate the goodness of fit, we use the maximum of the relative

residuals over the N reference tracer concentrations ρ:

ρ = max
n∈J1;NK

|νn|

Cref
Trn

. (7)

ρ, expressed in %, gives the relative error made on the tracer concen-

trations Cref
Trn

. If it is lower than 10%, we consider the fit acceptable as235
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experimental uncertainties on field measurements are of the same order of

magnitude (Cook & Solomon, 1997). We choose to express the residual with

the maximum of the residuals obtained to calibrate one tracer so that the

values taken by ρ do not depend on the number of parameters of the LPM.

The maximum defining ρ highlights more the possible deviations of the model240

than the quadratic norm of the errors.

2.3. Predictive performances of LPMs

We derive the quartiles of the calibrated LPMs. As for the reference TTD,

the quartiles of the LPMs Q
(π1,··· ,πN)
1 , Q

(π1,··· ,πN)
2 and Q

(π1,··· ,πN)
3 correspond to

the prediction of the renewal time at which 25% (resp. 50% and 75%) of the

water in the aquifer is renewed. To evaluate the predictive performance of

the LPMs we compare the reference renewal times given by TTDs to the

prediction given by LPMs. We introduce the comparison criterion θ (given

in years) :

θ =
1

3

3
∑

i=1

|Qref
i − Q

(π1,··· ,πN)
i | (8)

θ assesses the quality of the predictions given by a LPM on the quartiles.

Small θ values indicate a good agreement. The analysis of the performance

criterion θ will be made over all the aquifer with the different LPMs model.245

This methodology is generic and can be applied to any aquifer model on

which transport simulations can be performed. The most important limita-

tion comes from the characteristic time ranges of the available atmospheric

tracers. In the following, the analysis is relevant for recent circulations (less

than 60 years in practice). Extension to longer times with different sets of250

tracers is discussed in section 5.

14



  

3. The 3D numerical model of Plœmeur pumping site

The site of Plœmeur has several advantages for this study. It is a 3D crys-

talline aquifer with circulations of the order of some tens of years. Although

developing in complex fractured geological structures, the flow pattern is fully255

3D but remains mostly convergent to the actual pumping site. Moreover, it

has been studied for almost 20 years and calibrated flow models have been

developed (Carn, 1990; Le Borgne et al., 2006; Touchard, 1999).

3.1. Description of the 3D crystalline aquifer model

This study is based on one of the models of the Plœmeur aquifer developed260

by Leray et al. (2012). The Plœmeur aquifer is located in the south of

Brittany (France) within a crystalline basement. It is produced from a single

well since 1991 at 110 m3/h for the drinking water supply of the nearby city.

The site is composed of four major structures (Figure 3). Two granitic

plutons outcrop North and South of the site acting as no-flow boundaries.265

The recharge of 200 mm/year in average leaks into semi impervious overlying

micaschists. A gently dipping fractured zone further drains recharge to the

pumping well. This transmissive structure at the contact between the south-

ern granite and the micaschists, named the contact zone, constitutes the

aquifer. Another transmissive structure, a subvertical fault oriented North270

20˚, while clearly marked on the geological map, only slightly impacts the

flow pattern (Leray et al., 2012). The pumping well is located at the in-

tersection between the subhorizontal contact zone and the subvertical North

20˚fault. Table 2 sums up the properties of the hydrogeological model used.

The flow and transport model used in this study refers to the “deep” model275
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of Leray et al. (2012). It has been calibrated with data at the pumping well

of the mean piezometric level (-5.5 m above sea level) and of the CFC-12

atmospheric concentration measured in 2009 (30 years) (Leray et al., 2012).

Transport simulations are performed by forward-tracking particles along the

steady-state velocity field (advective transport only), mixing occurring by280

convergence of the flow lines within the sampling zones. Numerical meth-

ods were performed using the h2olab platform (Erhel et al., 2009) and are

thoroughly described in (Leray et al., 2012).

3.2. In-silico reference results for the Plœmeur aquifer

3.2.1. Derivation reference TTDs per the in-silico model285

Following the methodology of section 2.1, reference TTDs are obtained

using the previously described hydrogeological model. Sampling zones have

been designed in such a way as to stay close to field measurements conditions

(Figure 4). They are parallelepiped that cross the contact zone over all its

thickness to sample the aquifer. 73 sampling zones of characteristic width of290

250 meters map the full extent of the aquifer contributing to the pumping

zone. TTDs are built on all the flow lines crossing the sampling zones and are

located at the center of the box. The issued TTDs fundamentally represent

the residence time of the solutes flowing through the sampling zones around

their center analogously with field sampling where abstracted water comes295

from a limited zone around the piezometer or well. Their size and number

have been set in order to meet computational capacities with enough flow

lines crossing the sampling zones and not too many sampling zones for fitting

the seven LPMs.

TTDs display a wide variety of shapes (Figure 5) closer to the exponential300
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distribution at the well (dW=0) and more Inverse Gaussian like at interme-

diary distance (dW=600 m) or shifted exponential further away (dW=1700

m). Whatever the sampling zone, we have checked that TTDs converged to

a steady shape with the number of particles used. In practice, at least 400

particles should intersect the sampling zone to reach convergence. This tar-305

get is attained with an overall injection of 106 flow-weighted particles on the

free surface. Most of the time, the number of particles crossing the sampling

zones is well above the 400 particle threshold, and of the order of 104 to 105.

3.2.2. Derivation of the apparent ages per the in-silico model

Reference tracer concentrations are computed for CFC-11, SF6 and 85Kr

in all the sampling zones at year 2010. Maps of the different apparent

ages are built by interpolating these 73 reference tracer concentration values

(Figure 6). Following the differences in the slopes of CTr, we recover that

ÂKr < ÂSF6
< ÂCFC as already indicated by (Waugh et al., 2003). For the

85Kr however, we had to consider the slope of the input tracer concentration

corrected from its radioactive decay: CTr e−λ·. In this case, the slope of the

corrected atmospheric tracer concentrations

d

dt
CCFC <

d

dt
CSF6

<
d

dt
CKr e−λ· (9)

match the inverse of the order of the different ages.310

3.2.3. Derivation of actual renewal times per the in-silico model

Finally, maps of the different renewal times (so that 25, 50 and 75% of the

water is renewed) across the whole watershed are derived from the in-silico

modeling (Figure 7). Q1, Q2 and Q3 all display the same overall South-North
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gradient of times corresponding to the deepening of the aquifer. Secondary315

tendencies come from the topography of the site. These are the riddles in Q1

around 20 years where the relatively smaller renewal times around 20 years

(cyan color) can be correlated with the topographic heights, which have also

been shown to be correlated with higher gradients and faster circulations

(Leray et al., 2012). It is also the systematic deviation towards the west of320

the smaller renewal times following the delineation of the watershed identified

by the purple line on Figure 4. The eastern limit of the watershed is well

marked on Q1 by the sharp east-west time gradient 500m and 1000m north

of the well. It is also marked on Q3 by the renewal time increase to over 60

years beyond the watershed limit.325

4. Results

We present the results according to the number of atmospheric tracers

used for specifying the TTD. As said in the methodological section 2, our

primary objective is to determine how prediction capacities taken as aquifer

renewal times depend on the quantity of available information in the atmo-330

spheric tracer data. The analysis is performed independently on the 73 TTDs

obtained in the contact zone of the Plœmeur aquifer described in section 3

with the 7 LPMs models of section 2.2. Depending on the LPM shape, on

the number of parameters, we determine the goodness of fit ρ in percentage

(equation 7) and the prediction accuracy θ in years (equation 8). We present335

systematically the mean and standard deviations of ρ and θ over the 73 sam-

pling zones denoted as ρ̄, θ̄, σ(ρ), σ(θ), as well as the percentage of the zones

for which the discrepancy of the observed versus modeled groundwater ages
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exceeds 10% (P (ρ > 10%)) (table 3).

4.1. 1-parameter LPMs calibrated on CFC-11340

Statistics on ρ and θ are summarized in the upper part of table 3. The

residual for the Dirac distribution ρ is always equal to 0. This is expected

because by centering the Dirac on the apparent age given by the CFC-11,

the residual is equal to 0 i. e. the Dirac distribution perfectly fits the CFC-11

tracer observable. At the opposite, for the exponential distribution, the mean345

and standard deviation of the residual (ρ̄ and σ(ρ)) are very high. They are

above the 10% acceptable limit for 45% of the sampling zones. The spatial

distribution of ρ (Figure 8) shows that ρ is high away from the discharge zone

but always under 10% close to the convergence zone of the aquifer where a

broad range of transit times are collected. The limits of the exponential dis-350

tribution come from the large weight given to the more recent atmospheric

tracer concentrations, which represent the largest values (Figure 1). Con-

sidering that the CFC-11 atmospheric concentration is essentially increasing

over the last 75 years, the minimum concentration that can be obtained with

any exponential model is the one obtained when the exponential model tends355

to a uniform distribution over the last 75 years. This minimum concentra-

tion is thus equal to the mean atmospheric concentration of CFC-11 over the

same period corresponding to an age given by equation 2 of about 40 years.

Away from the discharge zone, apparent ages in the watershed larger than

40 years cannot be fitted by the exponential distribution. The same type of360

inadequacy occurs for all other atmospheric tracers like 85Kr or SF6.

Predictions of the renewal time of 25% of the groundwater to the sam-

pling zones (Q1) show that neither the exponential nor the Dirac distribution
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model (Figure 9) can give everywhere accurate predictions of the reference re-

newal times displayed by Figure 7a. For the Dirac distribution, the quartiles365

Q1, Q2 and Q3 are taken as the characteristic time of the Dirac distribution.

The Dirac is predictive only very close to the diverging recharge areas while

the exponential model is accurate only in the discharge converging areas.

Conversely the Dirac LPM overestimates the renewal times while the expo-

nential LPM underestimates them in most of the aquifer. None of the model370

can give even close predictions away from the pumping and recharge zones.

Results for the Q2 and Q3 are very similar and are thus not displayed.

While highly attractive because characterized by only one parameter, the

Dirac and exponential models are relevant only in very limited zones of the

aquifer. For the Dirac distribution, these zones are very far away from the375

pumping zone. For the exponential model, the relevant zones are only those

very close to the pumping well. In between these two cases, other LPMs

should be applied with more than one parameter.

4.2. 2-parameter LPMs calibrated on CFC-11 and 85Kr

Fitting the 2-parameter models to CFC-11 and 85Kr concentrations gives380

both much better fits and predictions (middle part of Table 3). For both

models, the fit of the concentrations is excellent with only 3 to 4 zones out

of the 73 sampling zones for which ρ is larger than 10%. It means that both

models are good for fitting concentrations almost everywhere in the aquifer.

Statistics on the prediction accuracy θ gives surprisingly very similar re-385

sults for the Inverse Gaussian, Shifted Exponential and Uniform models de-

spite the broadly differing shapes of the distributions (Figure 2). Average

prediction accuracy θ̄ is of 3.5 years for groundwater ages of the order of
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decades (Table 3). Standard deviations of the accuracy σ(θ) are small and

less than 2 years. Models do not perform well in only some restricted areas390

in the north of the aquifer far away from the pumping well where veloci-

ties are substantially smaller and travel times larger (Figure 10). Outside of

these areas, predictions are two to three times more accurate than for the

1-parameter Exponential and Dirac models and lead to only small errors in

absolute values. A few years of differences can be deemed acceptable com-395

pared to the broad time ranges of the TTD, which can be evaluated at 37

years by the span of the uniform distribution [t0; t1]. So the accuracy in terms

of predictions is of the order of a few years on some decades.

The agreement with the reference tracer concentrations measured by ρ

displays relatively more differences between the Inverse Gaussian, Shifted400

Exponential and Uniform models. The inverse Gaussian gives on average

much better agreements than the two other distributions. The uniform model

leads to larger deviations than the 2 other models. 12% of the zones have

more than 10% deviations to the reference concentrations (P (ρ > 10%) in

Table 3). Maximum deviation is about 38%, more than twice larger than for405

the 2 other models. This is consistent with the characteristic shape of the

TTDs that looks more inverse Gaussian than uniform, and in a less extent

than the shifted exponential (Figure 5). While the inverse Gaussian model is

more representative of the TTD, it does not yield higher predictive capability,

as if predictions depend more on some basic characteristics of the distribution410

like its two first moments than on its precise shape. It is confirmed by the

spatial distribution of the 25% renewal times (Figure 10). All three LPMs

lead to very similar patterns. There are only somewhat steeper gradients for
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the exponential shape likely coming from the initial irregularity of its shape.

4.3. 3-parameter LPMs calibrated on CFC-11, 85Kr and SF6415

The 3-parameter Shifted Inverse Gaussian leads to slightly less accurate

calibration than the 2-parameter Inverse Gaussian (Table 3). It is relatively

more difficult to find a 3-parameter distribution calibrated on the CFC-11,

85Kr and SF6 than a 2-parameter distribution calibrated on just the CFC-11

and 85Kr. This confirms that there is an additional information contained in420

the SF6 concentration compared to the sole CFC-11 and 85Kr concentrations

despite the apparent similarities of the SF6 and 85Kr atmospheric concen-

tration chronicles. The additional information obtained using SF6 improves

the mean accuracy of the renewal time predictions θ̄ by only 0.8 years while

keeping its standard deviation σ(θ) unchanged (Table 3). The gain in terms425

of predictions is marginal. It does not necessarily mean that the additional

information is itself marginal, as the accuracy with the 2-parameter models

is already very good and any improvement can only be marginal.

The other 3-parameter Dirac combination can closely fit the atmospheric

tracer concentrations. The fitting criterion ρ around 0,01 % is lower than the430

temporal resolution of the atmospheric tracer concentration and can thus be

considered negligible. Predictions are however not as good as with the 2-

parameter inverse Gaussian or 3-parameter shifted inverse Gaussian. Spatial

renewal time predictions especially show irregular variations of the predic-

tions likely related to the inability of the Dirac distributions to match the435

smoother variations of the TTD (Figure 11). This shows that the Lumped

Parameter Model should have a shape related to the real shape of the TTD.

As shown with the comparison of the 2-parameter models, the LPM does not
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have to follow all the variations of the TTD. It should not be however com-

pletely off as shown here. The shape of the distribution taken as the prior440

in the Bayesian framework remains a key factor of the prediction accuracy

and should be carefully chosen depending on the hypothesized flow pattern

likely to happen.

5. Discussion

The previous results show that the quality of the calibration does not445

grant the accuracy of the predictions. The lowest ρ values are obtained for the

Dirac distribution (residual always equal to 0) and for the sum of two Dirac

distributions. However, they give the worst predictions of renewal times. It

is not a matter of the number of parameters as the sum of two Dirac has

three parameters. It is rather the lack of relevance of the Dirac distribution450

away from the recharge zones, where it is in fact expected to be relevant. In

the discharge zone, it still perfectly fits the observed CFC-11 concentration

but it is no longer relevant. More generally, the concentration residual ρ

obtained with the seven candidate LPMs cannot be linked to the accuracy

of the predictions. While ρ is interesting because it is the sole quantitative455

criterion that can be obtained in the field, it is neither a necessary nor a

sufficient condition for the accuracy of the predictions.

We use the quartiles of the renewal time distribution to assess the quality

of the predictions rather than the full distribution. The quartiles correspond

to the renewal time of (25, 50 or 75 %) of the water within the sampling zones.460

This choice is motivated by the two following reasons. First, quartiles give

numerical indicators of practical interest while comparing shapes of LPMs
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as in Eberts et al. (2012) is more qualitative and remote. Quartiles can be

straightforwardly used to build statistics on prediction errors as in table 3.

Quantitative indicators could still be derived from the comparison of the465

LPMs and TTDs shapes like the Root Mean Square Error (RMSE). However

they can be artificially large because of the irregularities of the TTDs (see

figure 2) that cannot be accurately reproduced by any reduced model (Green

et al., 2014). Besides, these irregularities are of little influence to integrated

predictions like renewal times. The second motivation for using quartiles470

is indeed their integrative nature. Management decisions depend on global

indicators like renewal times, flushing and dilution capacities rather than on

detailed but approximate distribution shapes. Quartiles correspond to the

time after which 25, 50 or 75% of the water reaching a piezometer or well

have been flushed. On top of the median (second quartile Q2) Green et al.475

(2014), we also use the first and third quartiles to enhance sensitivity of the

predictions to the variance and skewness of the TTDs.

It is not the concentration fit nor the number of parameters of the model

but rather the likelihood of the distribution shape that conditions the accu-

racy of the predictions (table 3) as also concluded by Green et al. (2014).480

Thus “likely” distributions imply considering analytic distributions with at

least two parameters. Indeed, LPMs with only one parameter (Dirac, expo-

nential) give accurate predictions only in very narrow sections of the aquifer.

2-parameter LPMs on the contrary give already very accurate predictions

that cannot be made much better using an additional third parameter. The485

2-parameter LPMs capture in various ways the mean and standard deviation

of the distribution, predictions becoming almost insensitive to higher order
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moments. Because they are flexible and can evolve continuously from Dirac

to broad distributions, the 2-parameter LPMs are appropriate almost every-

where in the aquifer as shown by the similarity of Figures 7c and 12b. There490

are only some spurious variations of Q3 that are corrected by the 3-parameter

shifted inverse Gaussian model. In fact the residence time distributions dis-

play some initial shift outside of the pumping area linked to the transit time

of the water through the micaschist aquitard zone to get to the aquifer sam-

pling zones (Figure 5). But even this striking distribution feature is not495

essential for establishing good predictions.

The distribution of Q1 prediction errors represented on Figure 13 for the

tested distributions confirm these conclusions. 1-parameter LPM errors are

much larger than those of the 2 and 3-parameter LPMs. Errors are consid-

erably reduced from 1-parameter LPMs to 2-parameter LPMs. 3-parameter500

LPMs do not significantly improve the predictions. When the shape of the

LPM deviates more from the reference TTD, errors become somewhat larger

like for the Dirac composition and uniform distributions. The error distri-

bution of Figure 13 additionally reveals that 1-parameter LPMs prediction

errors are not symmetric (centered on 0). The Dirac LPM tends to under-505

estimate renewal times while the exponential LPM tends to overestimate

them. This comes from the specific shape of these LPMs. The exponential

distribution overestimates the large transfer times to fit the right mean. On

the opposite, the Dirac distribution underestimates the variability, underes-

timates Q1 predictions and overestimates Q3 predictions. In comparison to510

that, prediction errors of 2-parameter LPMs and of the 3-parameter shifted

inverse Gaussian appear to have error in predictions centered on 0, which
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means that in average, predictions are not biased by a tendency to over- or

under-estimate renewal times.

Appropriate distributions should be continuous and relatively broad cov-515

ering a wide range of transit times. Beyond these general characteristics, the

details of the distributions have little importance. The Inverse Gaussian and

the Shifted Exponential distributions give the same prediction quality. We

can show that it is a general result. We consider an Inverse Gaussian distri-

bution with parameters T and Pe respectively equal to 20 and 3/2. From520

equation 1 we compute the tracer concentrations and ages obtained with such

a TTD and find ÂIG
CFC = 1986 and ÂIG

Kr = 1997. With the method developed

in section 2.2.2, we determine the parameters T and t0 of the shifted ex-

ponential distribution that fits best these concentrations (equation 5). The

residual ρ is equal to 3%. The two distributions (Figure 14) are very close525

and their cumulative density function lead to extremely close predictions.

Similar conclusions have been drawn by Waugh et al. (2003) with an inverse

Gaussian and a combination of two inverse Gaussian distributions.

As the number of parameters has been taken equal to the number of

available concentrations, the practical consequence of the previous results is530

to seek for two tracers in the same age range to reach satisfying predictions.

Indeed, one tracer concentration is not enough to determine two parame-

ters. Two tracer concentrations are necessary to give the complementary

information needed to inform the mean and standard deviation of the TTD

in this given age range, consistent with the theoretical result of Massoudieh535

& Ginn (2011). Redundant tracers remain of key interest for checking po-

tential contamination, excess air and geogenic production, and for reducing
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the uncertainties inherently linked to measurement errors (Green et al., 2014;

Massoudieh et al., 2012). To ensure complementarity, the atmospheric tracer

chronicles should cover comparable date range and be as different as possible540

as shown by the convolution product (see equation 1) of C in
T exp−λ· by the

TTD f . Leray et al. (2013) show that knowing apparent ages of two CFCs

did not bring much to calibrate an hydrological model since their atmo-

spheric chronicles were too similar. Tracer couples with more different atmo-

spheric chronicles should be preferred. For recent waters ([0;60] years) pref-545

erential couples are: [CFC,85Kr], [CFC,SF6], [CFC,3H/3He], [SF6,
3H/3He] or

[85Kr,3H/3He].

For an aquifer with longer characteristic transit times, other couples of

tracers should be considered despite the technological challenges. [39Ar,14C]

could be used in a range of time of [500 ; 2000] years. In oceanography,550

Broecker & Peng (2000) first calibrated LPMs with both of these tracers.

(Waugh et al., 2003) studied the dependence of the [ÂAr, ÂC] to the mean

and standard deviation of an Inverse Gaussian TTD. For much older water,

[81Kr,36Cl] (for transit times bigger than 10 000 years) should be tested.

Illustrated here on the site of Plœmeur, the methodology developed in this555

article can be applied to a broad variety of aquifer models. We may expect

different outcomes when mixing different characteristic transit times on a

broader range (e.g. [0;1000] years) either from different aquifers or from an

aquitard and an aquifer. In such cases the combination of Dirac distributions

might be more appropriate. Two tracers on different age ranges (for example560

CFC-11 and 39Ar) might be tested to characterize different parts of the TTD.

This is a valuable method to identify potential mixing of younger and older
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waters in the aquifer but cannot be apply directly to determine the shape of

the TTD. Indeed, the younger tracer characterizes the local flow (with transit

times under 100 years) whereas the older tracer characterizes more regional565

flow with longer transit times. Other multitracer approaches could also be

tested by considering the ratio of the same date ranging tracer concentrations.

Indeed, such ratios have the advantage to be independent of the mixing

affecting the groundwater. With two ratios, in the same way as what have

been done previously, one can characterize the piecewise TTD on the support570

of the date ranging of these tracers. Building two ratios however requires

to provide at least three independent tracer concentrations and not two.

Moreover, the choice of predictive indicators gains in importance as soon as

the TTD gets broader (i. e. with an increasing coefficient of variation, ratio of

standard deviation upon average). In this case, more precise metrics (deciles575

or even centiles) instead of quartiles might be considered to get indicators

with useful predictive power.

6. Conclusion

We develop a methodology to assess Lumped Parameter Model prediction

capacities in realistic 3D aquifer cases. Lumped Parameter Models (LPMs)580

are simple analytical distributions designed to approximate natural transit

time distributions (TTDs). LPMs are appealing for establishing predictions

directly from groundwater age data. Predictions are generally framed in some

kind of aquifer renewal times and do not require involved hydrogeological

models. Our methodology assesses the prediction capacities of LPMs on585

realistic 3D aquifer synthetic models. Aquifer modeling cannot be avoided
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as reference TTDs as well as reference renewal time predictions cannot be

directly measured on the field. Beyond LPMs assessment, we aim at finding

the right balance between the information available in groundwater age data

and the knowledge required to establish accurate predictions. We simply rate590

the amount of available information as the number of parameters that can be

calibrated on a set of groundwater age data. When considering gas molecules

like CFCs, SF6 and 85Kr with sufficiently different atmospheric concentration

chronicles, the amount of available information is the number of parameter

of the LPM chosen equal to the number of tracers.595

We apply this methodology on the kilometric-scale crystalline aquifer of

Plœmeur (France). The aquifer is located in a sloping contact zone between

granites and micaschists overlain by a semi-pervious aquitard. Flow pattern

is globally convergent to a well steadily produced for the nearby city. A pre-

vious model calibrated on head and age data shows that local topographical600

as well as geological features yield to complex 3D flow structures. It results

in a variety of Transit Time Distributions ranging from Dirac-like close to

recharge zones to exponential-like at the well. Outside of these zones, distri-

butions cannot be evidently modeled as one of the classically used LPM like

the composition of Diracs, the shifted exponential or the inverse Gaussian dis-605

tributions. Extensive analysis on 73 sampling zones located everywhere in the

aquifer however shows that LPMs can be highly effective for establishing ac-

curate predictions. The 2-parameter inverse Gaussian or shifted exponential

LPMs calibrated on CFC-11 and 85Kr concentrations both yield almost ev-

erywhere accurate renewal times at less than 10% precision. By comparison,610

the 1-parameter exponential and Dirac LPMs calibrated on CFC-11 could
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not give any relevant predictions in most of the aquifer. The 3-parameter

models calibrated with the additional knowledge of SF6 do not lead to any

better prediction.

For the type of studied crystalline aquifer system, we conclude that two615

tracers with sufficiently different atmospheric concentration chronicles give

highly accurate renewal time predictions, provided that hydrogeologically

relevant LPMs be used. Relevant LPM shapes are also necessary to yield

to unbiased estimations. In this case, the relevant LPMs should be broad

and relatively smooth like the shifted exponential or inverse Gaussian dis-620

tributions. More details on the distribution provided by additional tracers

are not necessary for the type of renewal time predictions targeted. On the

contrary, distributions made up of some Dirac combinations do not give any

close predictions despite good agreements with the reference tracer concen-

trations. More extensive analysis should be undertaken in a wider variety of625

realistic aquifer cases to assess the representativeness and relevance of these

conclusions.
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Figure 1: Atmospheric concentrations of CFC-11, SF6 and 85Kr from 1940 to 2010. Being a
radioactive tracer, 85Kr concentration is corrected by its radioactive decay. Concentrations
are normalized by their maximum to compare their relative evolution.
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Figure 2: Comparison of the seven candidate LPM models as functions of the time t
normalized by the mean time T (t/T). All distributions have the same mean and all
distributions with more than one parameter have the same variance, but display quite
different shapes.

Figure 3: Conceptual hydrogeological scheme of the Plœmeur aquifer with the different
geological units. Granites in the North and in the South are shown in brown. The
micaschists (green) overly the contact zone (red) and all units are crosscut by the N20
fault (block dashed line). The pumping site is identified by the red triangle. Blue arrows
sketch the characteristic flow direction.
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Figure 4: Map of numeric sampling strategy used to get observables and TTDs values
overall the aquifer. Boxes are 250 x 250 m. Their heights are determined to span the
contact zone.

Figure 5: Transit time distributions obtained with the in-silico model of the Plœmeur site.
dW is the distance between the sampling zone and the pumping well. NP is the number
of particles intersecting the sampling zone used to build the transit times distributions.
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Figure 6: Map of the “apparent” recharge dates obtained with the in-silico model in
the contact zone of the Plœmeur site. Contour of the map is determined by taking the
supplying limit of the pumping well. From left to right: CFC-11, SF6 and 85Kr apparent
ages. The pumping well is identified by the black square.

Figure 7: Map of the different renewal times (from left to right, times at which 25, 50
and 75% of the water is renewed) obtained with the in-silico model. The pumping well is
identified by the black square.

Figure 8: Map of the residual ρ expressed in % obtained by fitting CFC-11 concentrations
Cref

CFC
with concentrations obtained from an exponential TTD. The black line identifies

the limit for which the residual ρ is equal to 10%. The Exponential model gives acceptable
residual only on the lower southern part of the aquifer close to the pumping site identifiable
by the black square.
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Figure 9: Characteristic renewal time of 25% of the water to the sampling zone (Q1) for
the 1-parameter (a)Dirac LPM and (b) exponential LPM. The insert in the topright corner
of the figure shows a sketch of the corresponding LPM.

Figure 10: Characteristic renewal time of 25% of the water to the sampling zone (Q1) for
the 2-parameter LPMs. From left to right, times derived by the shifted exponential model,
by the inverse gaussian model and by the uniform model. The insert of each of the figure
show on sketch of the LPM.

Figure 11: Characteristic renewal time of 25% of the water to the sampling zone (Q1) for
the 3-parameter LPMs. From left to right, times derived by the sums of Dirac model and
by the shifted inverse gaussian model. The insert of each of the figure show on sketch of
the LPM.
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Figure 12: Characteristic renewal time of 75% of the water to the sampling zone (Q3).
From left to right, times derived by a 1-parameter LPM (exponential model), by a 2-
parameter LPM (inverse gaussian) and by a 3-parameter LPM (shifted inverse gaussian).
The insert of each of the figure show on sketch of the LPM.

Figure 13: Histogram of the differences in predictions between reference Q1 (25% renewal
time) and Q1 predictions given by the LPMs.
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Figure 14: Distribution and cumulative density function associated of an Inverse Gaussian
distribution with (µ, λ)=(20,30) years and of the Shifted Exponential distribution that fits
the observables CIG

CFC
and CIG

Kr
obtained with the Inverse Gaussian distribution.

N LPM’s name Expression

1

Dirac (Piston Flow) fT (t) = δ(t − T )

Exponential (Exponential) fT (t) = 1
T

exp
(

− t
T

)

2

Inverse Gaussian (Dispersion) f(T,Pe)(t) =
(

TPe
2πt3

)0.5
exp

(

−Pe(t−T )2

2Tt

)

Shifted Exponential (Exponential Piston Flow) f(T,t0)(t) =

{

1
t0

exp
(

− t−(T−t0)
t0

)

for t > T − t0,

0 otherwise.

Uniform (Linear Piston Flow) f(T,ε)(t) =

{

1
ε

for T − ε
2 ≤ t < T + ε

2 ,

0 otherwise.

3
Weighted sum of Diracs f(t0,t1,ω)(t) = ω δ(t − t0) + (1 − ω) δ(t − t1)

Shifted Inverse Gaussian f(T,Pe,t0)(t) =







(

Pe(T−t0)
2π(t−t0)3

)0.5

exp
(

− Pe(t−T )2

2(T−t0)(t−t0)

)

for t > t0,

0 otherwise.

Table 1: LPMs used in this study with their number of parameters N, their expression
and a sketch of the associated circulation. The name referring to this LPM according to
Maloszewski & Zuber (1996) is recalled in brackets.
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Parameters Values References

Potential recharge rate R [mm/year] 200 (Carn, 1990; Touchard, 1999)
Granites conductivity [m/s] 10−11

Mean thickness HTOT [m] 280 (Ruelleu et al., 2010)
Micaschists permeability KMS [m/s] 5 × 10−6 (Leray et al., 2012)

Contact zone transmissivity TCZ [m2/s] 2.2 × 10−3 (Le Borgne et al., 2004, 2006)
North 20˚fault transmissivity [m2/s] 1.1 × 10−3 (Le Borgne et al., 2004, 2006)

Porosity φ [%] 2.7 (Leray et al., 2012)

Table 2: Parameters of the model of Plœmeur used in this study with the associated
references. HTOT represents the mean thickness of the aquifer system composed of the
micaschists and of the contact zone (see Figure 3).

Statistics on ρ [%] Statistics on θ [years]
N LPM considered ρ̄ σ(ρ) P (ρ > 10%) max(ρ) θ̄ σ(θ) min(θ) max(θ)

1
Dirac 0.0 0.0 0.0 0.0 8.9 4.9 0.6 21.5

Exponential 99 198 45 1140 8.6 4.5 1.0 19.6

2
Inverse Gaussian 1.1 3.3 4.1 18 3.2 1.8 0.2 10.7

Shifted Exponential 3.8 3.6 5.5 16 3.3 1.7 0.6 8.4
Uniform 3.7 6.4 12 38 3.7 1.8 0.0 8.9

3
Shifted Inverse Gaussian 2.0 3.6 5.5 20 2.4 1.6 0.1 6.6

Sum of Diracs 0.01 0.03 0.0 0.04 4.9 3.1 0.0 16.4

Table 3: Statistics on the residual ρ (equation 7) and on the predictive accuracy θ (equation
8) obtained with the calibrations carried on 73 sampling zones for the LPMs. N is the
number of the parameters of the LPM considered, P (ρ > 10%) represents the percentage
of sampling zones where ρ is superior to 10%.
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Highlights
- Analysis of Transit Time Distributions (TTDs) on a crystalline aquifer model. 

- Prediction of renewal times of the aquifer from environmental tracers. 

- High predictive capacities of lumped models with two parameters requiring two 

tracers. 

- Shape of the TTDs is not critical beyond the first 2 moments of the distribution.!


