C. M. Alexander, J. N. Grossman, D. S. Ebel, C. , and F. J. , The Formation Conditions of Chondrules and Chondrites, Science, vol.320, issue.5883, pp.1617-1619, 2008.
DOI : 10.1126/science.1156561

C. M. Alexander, J. N. Grossman, J. Wang, B. Zanda, M. Bourot-denise et al., The lack of potassium-isotopic fractionation in Bishunpur chondrules, Meteoritics & Planetary Science, vol.29, issue.Suppl., pp.859-868, 2000.
DOI : 10.1111/j.1945-5100.2000.tb01469.x

C. M. Alexander and D. S. Ebel, Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved?, Meteoritics & Planetary Science, vol.59, issue.7, pp.1157-1175, 2012.
DOI : 10.1111/j.1945-5100.2011.01308.x

C. M. Alexander and J. Wang, Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation, Meteoritics & Planetary Science, vol.42, issue.Suppl., pp.419-428, 2001.
DOI : 10.1111/j.1945-5100.2001.tb01883.x

A. Prieto, C. Lambert, D. L. , A. , and M. , A reappraisal of the solar photospheric C/O ratio, Astrophysical Journal, vol.573, issue.137, 2002.

Y. Amelin, A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions, Science, vol.297, issue.5587, pp.1678-1683, 2002.
DOI : 10.1126/science.1073950

A. A. Ariskin and G. S. Nikolaev, An empirical model for the calculation of spinelmelt equilibria in mafic igneous systems at atmospheric pressure: 1. Chromian spinels. Contribution to Mineralogy and Petrology, pp.282-292, 1996.

E. Asphaug, M. Jutzi, and N. Movshovitz, Chondrule formation during planetesimal accretion, Earth and Planetary Science Letters, vol.308, issue.3-4, pp.369-379, 2011.
DOI : 10.1016/j.epsl.2011.06.007

F. Bejina, V. Sautter, and O. Jaoul, Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule, Physics of the Earth and Planetary Interiors, vol.172, issue.1-2, pp.5-12, 2009.
DOI : 10.1016/j.pepi.2008.08.014

URL : https://hal.archives-ouvertes.fr/hal-00532175

J. S. Boesenberg, M. Cosarinsky, K. D. Mckeegan, M. Chaussidon, and R. H. Hewins, An experimental study of Fe-Mg and oxygen isotope exchange between relict olivine and chondrule melt, Lunar Planet. Sci. XXXVIII. Lunar Planet. Inst. #, p.1621, 2007.

N. L. Bowen and J. F. Schairer, The system, FeO-SiO 2, American Journal of Science, vol.5, issue.141, pp.177-213, 1932.
DOI : 10.2475/ajs.s5-24.141.177

F. Brunet and G. Chazot, Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen, Chemical Geology, vol.176, issue.1-4, pp.51-72, 2001.
DOI : 10.1016/S0009-2541(00)00351-X

A. A. Cabral, A. A. Cardoso, and E. D. Zanotto, Glass-forming ability versus stability of silicate glasses. I. Experimental test, Journal of Non-Crystalline Solids, vol.320, issue.1-3, pp.1-8, 2003.
DOI : 10.1016/S0022-3093(03)00079-6

S. Chakraborty, J. R. Farver, R. A. Yund, R. , and D. C. , Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO2, Physics and Chemistry of Minerals, vol.21, issue.8, pp.489-500, 1994.
DOI : 10.1007/BF00203923

M. Chaussidon, G. Libourel, and A. N. Krot, Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System, Geochimica et Cosmochimica Acta, vol.72, issue.7, pp.1924-1938, 2008.
DOI : 10.1016/j.gca.2008.01.015

F. J. Ciesla, Chondrule-forming processes ? An overview In Chondrites and the protoplanetary disk, ASP conference series, pp.811-819, 2005.

F. J. Ciesla and J. N. Cuzzi, The evolution of the water distribution in a viscous protoplanetary disk, Icarus, vol.181, issue.1, pp.178-204, 2006.
DOI : 10.1016/j.icarus.2005.11.009

R. N. Clayton, The origin of oxygen isotope variations in the early solar system, Lunar Planet. Sci. XXXV. Lunar Planet. Inst, 2004.

B. A. Cohen and R. H. Hewins, An experimental study of the formation of metallic iron in chondrules, Geochimica et Cosmochimica Acta, vol.68, issue.7, pp.1677-1689, 2004.
DOI : 10.1016/j.gca.2003.10.004

J. Connelly, Y. Amelin, A. N. Krot, and M. Bizzarro, Chronology of the Solar System's Oldest Solids, The Astrophysical Journal, vol.675, issue.2, pp.121-124, 2008.
DOI : 10.1086/533586

J. N. Connelly, M. Bizzarro, A. N. Krot, Å. Nordlund, D. Wielandt et al., The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk, Science, vol.338, issue.6107, pp.651-655, 2012.
DOI : 10.1126/science.1226919

H. C. Connolly, R. H. Hewins, R. D. Ash, B. Zanda, G. E. Lofgren et al., Carbon and the formation of reduced chondrules, Nature, vol.371, issue.6493, pp.136-139, 1994.
DOI : 10.1038/371136a0

H. C. Connolly and G. R. Huss, Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites, Geochimica et Cosmochimica Acta, vol.74, issue.8, pp.2473-2483, 2010.
DOI : 10.1016/j.gca.2010.01.005

H. C. Connolly, G. R. Huss, K. Nagashima, M. K. Weisberg, R. D. Ash et al., Oxygen isotopes and the nature and origins of type-II chondrules in CR2 chondrites, Lunar Planet. Sci. XXXIX. Lunar Planet. Inst. #, p.1675, 2008.

J. N. Cuzzi, A. , and C. M. O-'d, Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across, Nature, vol.622, issue.7092, pp.483-485, 2006.
DOI : 10.1038/nature04834

S. J. Desch, F. J. Ciesla, L. L. Hood, and T. Nakamoto, Heating of chondritic materials in solar nebula shocks, Chondrites and the protoplanetary disk, ASP conference series, pp.849-872, 2005.

S. J. Desch and H. C. Connolly, A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules, Meteoritics & Planetary Science, vol.62, issue.Suppl., pp.183-207, 2002.
DOI : 10.1111/j.1945-5100.2002.tb01104.x

S. J. Desch, M. A. Morris, H. C. Connolly, and A. P. Boss, The importance of experiments: Constraints on chondrule formation models, Meteoritics & Planetary Science, vol.73, issue.7, pp.1139-1156, 2012.
DOI : 10.1111/j.1945-5100.2012.01357.x

R. Dohmen and S. Chakraborty, Fe???Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine, Physics and Chemistry of Minerals, vol.98, issue.B1, pp.409-430, 2007.
DOI : 10.1007/s00269-007-0158-6

A. V. Fedkin, L. Grossman, F. J. Ciesla, and S. B. Simon, Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories, Geochimica et Cosmochimica Acta, vol.87, pp.81-116, 2012.
DOI : 10.1016/j.gca.2012.03.020

A. V. Fedkin and L. Grossman, Vapor saturation of sodium: Key to unlocking the origin of chondrules, Geochimica et Cosmochimica Acta, vol.112, 2013.
DOI : 10.1016/j.gca.2013.02.020

H. Gaye and P. V. Riboud, Oxidation kinetics of iron alloy drops in oxidizing slags, Metallurgical Transactions B, vol.52, issue.no. 4, pp.409-415, 1977.
DOI : 10.1007/BF02696927

P. Georges, G. Libourel, and E. Deloule, Experimental constraints on alkali condensation in chondrule formation, Meteoritics & Planetary Science, vol.29, issue.Suppl., pp.1183-1188, 2000.
DOI : 10.1111/j.1945-5100.2000.tb01507.x

S. Greeney and A. Ruzicka, Relict forsterite in chondrules: Implications for cooling rates, Lunar Planet. Sci. XXXV. Lunar Planet. Inst, 2004.

J. N. Grossman and J. T. Wasson, The origin and history of the metal and sulfide components of chondrules, Geochimica et Cosmochimica Acta, vol.49, issue.4, pp.925-939, 1985.
DOI : 10.1016/0016-7037(85)90308-4

L. Grossman, Vapor-condensed phase processes in the early solar system, Meteoritics and Planetary Science, vol.59, pp.7-20, 2010.
DOI : 10.1111/j.1945-5100.2009.01010.x

L. Grossman, J. R. Beckett, A. V. Fedkin, S. B. Simon, C. et al., Redox Conditions in the Solar Nebula: Observational, Experimental, and Theoretical Constraints, Oxygen in the solar system, pp.93-140, 2008.
DOI : 10.2138/rmg.2008.68.7

L. Grossman, A. V. Fedkin, and S. B. Simon, Formation of the first oxidized iron in the solar system, Meteoritics & Planetary Science, vol.86, issue.12, pp.1-10, 2012.
DOI : 10.1111/j.1945-5100.2012.01353.x

D. R. Haughton, P. L. Roeder, and B. J. Skinner, Solubility of Sulfur in Mafic Magmas, Economic Geology, vol.69, issue.4, pp.451-467, 1974.
DOI : 10.2113/gsecongeo.69.4.451

R. H. Hewins, Minor element zoning of olivine in type IIA chondrules in Semarkona, Lunar Planet. Sci. XXXX. Lunar Planet. Inst, 2009.

R. H. Hewins, R. , and P. M. , Temperature conditions for chondrule formation, Meteoritics, vol.48, issue.4, pp.309-318, 1990.
DOI : 10.1111/j.1945-5100.1990.tb00715.x

R. H. Hewins, H. C. Connolly, G. E. Lofgren, and G. Libourel, Experimental constraints on chondrules formation, Chondrites and the protoplanetary disk, asp conference series, pp.286-316, 2005.

R. H. Hewins, J. Ganguly, and E. Mariani, Diffusion modeling of cooling rates of relict olivine in semarkona chondrules, Lunar Planet. Sci. XXXX. Lunar Planet. Inst, 2009.

R. H. Hewins and B. Zanda, Chondrules: Precursors and interactions with the nebular gas, Meteoritics & Planetary Science, vol.43, issue.7, pp.1120-1138, 2012.
DOI : 10.1111/j.1945-5100.2012.01376.x

R. H. Hewins, B. Zanda, and C. Bendersky, Evaporation and recondensation of sodium in Semarkona Type II chondrules, Geochimica et Cosmochimica Acta, vol.78, pp.1-17, 2012.
DOI : 10.1016/j.gca.2011.11.027

B. C. Johnson and H. J. Melosh, Distal impact ejecta: Melt droplets, impact lapilli and tektites, Lunar Planet. Sci. XXXXIII. Lunar Planet. Inst, 2012.

B. C. Johnson, D. A. Minton, H. J. Melosh, and M. T. Zuber, Impact jetting as the origin of chondrules, Nature, vol.117, issue.7534, pp.339-341, 2015.
DOI : 10.1016/j.ijimpeng.2010.10.013

M. C. Johnson, The solar nebula redox state as recorded by the most reduced chondrules of five primitive chondrites, Geochimica et Cosmochimica Acta, vol.50, issue.7, pp.1497-1502, 1985.
DOI : 10.1016/0016-7037(86)90323-6

M. Kimura, J. N. Grossman, and M. K. Weisberg, Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites, Meteoritics & Planetary Science, vol.31, issue.22, pp.1161-1177, 2008.
DOI : 10.1111/j.1945-5100.2008.tb01120.x

N. T. Kita, G. R. Huss, S. Tachibana, Y. Amelin, and L. E. Nyquist, Constraints on the Origin of Chondrules and CAIs from Short-lived and Long-lived Radionuclides, Chondrites and the Protoplanetary Disk, ASP Conference Series, pp.558-587, 2005.

N. T. Kita, H. Nagahara, S. Tachibana, S. Tomomura, J. Spicuzza et al., High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6610-6635, 2010.
DOI : 10.1016/j.gca.2010.08.011

A. N. Krot, G. Libourel, C. A. Goodrich, and M. I. Petaev, Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for condensation origin from fractionated nebular gas, Meteoritics & Planetary Science, vol.265, issue.12, pp.1931-1955, 2004.
DOI : 10.1111/j.1945-5100.2004.tb00088.x

L. Kuo and J. Kirkpatrick, Kinetics of crystal dissolution in the system diopside-forsterite-silica, American Journal of Science, vol.285, issue.1, pp.51-90, 1985.
DOI : 10.2475/ajs.285.1.51

E. Kurahashi, N. T. Kita, H. Nagahara, and Y. Morishita, 26Al???26Mg systematics of chondrules in a primitive CO chondrite, Geochimica et Cosmochimica Acta, vol.72, issue.15, pp.3865-3882, 2008.
DOI : 10.1016/j.gca.2008.05.038

D. S. Lauretta, P. R. Buseck, and T. J. Zega, Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment, Geochimica et Cosmochimica Acta, vol.65, issue.8, pp.1337-1353, 2001.
DOI : 10.1016/S0016-7037(00)00615-3

D. S. Lauretta, H. Nagahara, A. , and C. M. , Petrology and origin of ferromagnesian silicate chondrules, Meteorites and the Early Solar System II, pp.431-459, 2006.

L. Lemelle, F. Guyot, H. Leroux, and G. Libourel, An experimental study of the external reduction of olivine single crystals, American Mineralogist, vol.86, issue.1-2, pp.47-54, 2001.
DOI : 10.2138/am-2001-0106

URL : https://hal.archives-ouvertes.fr/hal-00291211

H. Leroux, G. Libourel, L. Lemelle, and F. Guyot, Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction, Meteoritics & Planetary Science, vol.265, issue.1, pp.81-94, 2003.
DOI : 10.1111/j.1945-5100.2003.tb01047.x

G. Libourel, Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines, Contributions to Mineralogy and Petrology, vol.136, issue.1-2, pp.63-80, 1999.
DOI : 10.1007/s004100050524

G. Libourel and M. Chaussidon, Experimental constraints on chondrule reduction, Meteoritics. (abstr, 1995.

G. Libourel and M. Chaussidon, Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites, Earth and Planetary Science Letters, vol.301, issue.1-2, pp.9-21, 2011.
DOI : 10.1016/j.epsl.2010.11.009

G. Libourel and A. N. Krot, Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin, Earth and Planetary Science Letters, vol.254, issue.1-2, pp.1-8, 2007.
DOI : 10.1016/j.epsl.2006.11.013

G. Libourel, A. N. Krot, and L. Tissandier, Evidence for high temperature condensation of moderately-volatile elements during chondrule formation, Lunar Planet. Sci. XXXIV. Lunar Planet. Inst, 2003.

G. Libourel, A. N. Krot, and L. Tissandier, Role of gas-melt interaction during chondrule formation, Earth and Planetary Science Letters, vol.251, issue.3-4, pp.232-240, 2006.
DOI : 10.1016/j.epsl.2006.09.011

G. Libourel, E. Deloule, and M. J. Toplis, Phosphorus Partitioning in Basalts: An Experimental and Ion Probe Study, Mineralogical Magazine, vol.58, issue.2, pp.527-528, 1994.
DOI : 10.1180/minmag.1994.58A.2.12

G. E. Lofgren, A Dynamic Crystallization Model for Chondrule Melts, International conference: Chondrules and the protoplanetary disk, pp.187-196, 1996.

G. E. Lofgren and L. Le, Partial melting of type I chondrule precursor aggregates: An experimental and petrographic study, Lunar Planet. Sci. XXIX. Lunar Planet. Inst, 1998.

Y. Marrocchi and G. Libourel, Sulfur and sulfides in chondrules, Geochimica et Cosmochimica Acta, vol.119, pp.117-136, 2013.
DOI : 10.1016/j.gca.2013.05.020

J. Matas, Y. Ricard, L. Lemelle, and F. Guyot, An improved thermodynamic model of metal-olivine-pyroxene stability domains, Contributions to Mineralogy and Petrology, vol.140, issue.1, pp.73-83, 2000.
DOI : 10.1007/s004100000177

URL : https://hal.archives-ouvertes.fr/hal-00291200

S. Matsunami, K. Ninagawa, S. Nishimura, N. Kubono, I. Yamamoto et al., Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process, Geochimica et Cosmochimica Acta, vol.57, issue.9, pp.2101-2110, 1993.
DOI : 10.1016/0016-7037(93)90096-F

M. C. Mccanta, J. R. Beckett, and E. M. Stolper, Zonation of phosphorus in olivine: Dynamic crystallization experiments and a study of chondrule olivine in unequilibrated ordinary chondrites, Lunar Planet. Sci. XXXIX. Lunar Planet. Inst, 2008.

D. Vielzeuf and E. Stolper, Zoning of phosphorus in igneous olivine, Contrib. Mineral. Petrol, vol.155, pp.739-765, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303802

M. A. Morris, A. C. Boley, S. J. Desch, and T. Athanassiadou, CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS, The Astrophysical Journal, vol.752, issue.1, p.27, 2012.
DOI : 10.1088/0004-637X/752/1/27

M. A. Morris and S. J. Desch, THERMAL HISTORIES OF CHONDRULES IN SOLAR NEBULA SHOCKS, The Astrophysical Journal, vol.722, issue.2, pp.1474-1494, 2010.
DOI : 10.1088/0004-637X/722/2/1474

M. Miyamoto, D. S. Mckay, G. A. Mckay, and M. B. Duke, Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules, Journal of Geophysical Research: Solid Earth, vol.18, issue.B12, pp.12804-12816, 1986.
DOI : 10.1029/JB091iB12p12804

M. Miyamoto, T. Mikouchi, and R. H. Jones, Cooling rates of porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization, Meteoritics & Planetary Science, vol.33, issue.4, pp.521-530, 2009.
DOI : 10.1111/j.1945-5100.2009.tb00748.x

B. W. Murck and I. H. Campbell, The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts, Geochimica et Cosmochimica Acta, vol.50, issue.9, pp.1871-1887, 1986.
DOI : 10.1016/0016-7037(86)90245-0

H. Nagahara, N. T. Kita, K. Ozawa, and Y. Morishita, Condensation during chondrule formation: Elemental and mg isotopic evidence, Lunar Planet. Sci. XXXI. Lunar Planet. Inst, 1999.

K. Nagashima, A. N. Krot, G. Libourel, and G. R. Huss, Magnesian porphyritic chondrules surrounded by ferroan igneous rims from CR chondrite GRA 95229, Lunar Planet. Sci. XXXXIV. Lunar Planet. Inst, 2013.

J. W. Nettles, G. E. Lofgren, W. D. Carlson, and H. Y. Mcsween, Extent of chondrule melting: Evaluation of experimental textures, nominal grain size, and convolution index, Meteoritics & Planetary Science, vol.50, issue.7, pp.1059-1071, 2006.
DOI : 10.1111/j.1945-5100.2006.tb00504.x

U. Nitsan, Stability field of olivine with respect to oxidation and reduction, Journal of Geophysical Research, vol.267, issue.5, pp.706-711, 1974.
DOI : 10.1029/JB079i005p00706

O. Neill, H. S. Mavrogenes, and J. A. , The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400degreesC and 1 bar, Journal of Petrology, vol.43, issue.6, pp.1049-1087, 2002.
DOI : 10.1093/petrology/43.6.1049

C. Petry, S. Chakraborty, and H. Palme, Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation, Geochimica et Cosmochimica Acta, vol.68, issue.20, pp.4179-4188, 2004.
DOI : 10.1016/j.gca.2004.02.024

P. M. Radomsky and R. H. Hewins, Formation conditions of pyroxene-olivine and magnesian olivine chondrules, Geochimica et Cosmochimica Acta, vol.54, issue.12, pp.3475-3490, 1990.
DOI : 10.1016/0016-7037(90)90299-Z

E. R. Rambaldi, Relict grains in chondrules, Nature, vol.287, issue.5833, pp.558-561, 1981.
DOI : 10.1038/293558a0

P. L. Roeder and R. F. Emslie, Olivine-liquid equilibrium, Contributions to Mineralogy and Petrology, vol.3, issue.No 4, pp.275-289, 1970.
DOI : 10.1007/BF00371276

P. L. Roeder, R. , and I. , Crystallization of Chromite and Chromium Solubility in Basaltic Melts, Journal of Petrology, vol.32, issue.5, pp.909-934, 1991.
DOI : 10.1093/petrology/32.5.909

N. G. Rudraswami, T. Ushikubo, D. Nakashima, and N. T. Kita, Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies, Geochimica et Cosmochimica Acta, vol.75, issue.23, pp.7596-7611, 2011.
DOI : 10.1016/j.gca.2011.09.035

S. S. Russell, L. Hartmann, J. Cuzzi, A. N. Krot, M. Gounelle et al., Timescales of the solar protoplanetary disk The University of Arizona Press, Meteorites and the early solar system II, pp.233-251, 2006.

A. Ruzicka, C. Floss, and M. Hutson, Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials, Geochimica et Cosmochimica Acta, vol.72, issue.22, pp.5530-5557, 2008.
DOI : 10.1016/j.gca.2008.08.017

A. Ruzicka, H. Hiyagon, M. Hutson, and C. Floss, Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs, Earth and Planetary Science Letters, vol.257, issue.1-2, pp.274-289, 2007.
DOI : 10.1016/j.epsl.2007.02.037

A. Ruzicka, C. Floss, and M. Hutson, Agglomeratic olivine (AO) objects and Type II chondrules in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules, Geochimica et Cosmochimica Acta, vol.76, pp.103-124, 2012.
DOI : 10.1016/j.gca.2011.10.020

A. Ruzicka, Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals, Meteoritics & Planetary Science, vol.224, issue.This issue, pp.2218-2236, 2012.
DOI : 10.1111/j.1945-5100.2012.01412.x

I. S. Sanders and E. R. Scott, Origin of chondrules, chondrites and cores, Meteoritics and Planetary Science, 2012.

D. L. Schrader, H. C. Connolly, L. , and D. S. , Opaque phases in type-II chondrules from CR2 chondrites: Implications for CR parent body formation, Geochimica et Cosmochimica Acta, vol.72, issue.24, pp.6124-6140, 2008.
DOI : 10.1016/j.gca.2008.09.011

E. R. Scott and A. N. Krot, Chondrites and their components, Treatise on geochemistry, pp.143-200, 2003.

D. W. Sears, S. Huang, and P. H. Benoit, Open-system behaviour during chondrule formation, International conference: Chondrules and the protoplanetary disk, pp.221-231, 1996.

S. B. Simon, S. R. Sutton, and L. Grossman, Constraints on the oxidation state of chondrule precursors from titanium XANES analysis of Semarkona chondrules, Lunar Planet. Sci. XXXIX. Lunar Planet. Inst, p.1352, 2008.

S. B. Simon, S. Sutton, M. Newville, and L. Grossman, The valence of titanium in refractory forsterite, Lunar Planet. Sci. XXXVIII. Lunar Planet. Inst, p.1892, 2007.

C. Soulié, G. Libourel, L. Tissandier, and J. Hiver, Kinetics of olivine dissolution in chondrule melts : An experimental study, Lunar Planet. Sci. XXXXIII. Lunar Planet. Inst, p.1840, 2012.

I. M. Steele, Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites, Geochimica et Cosmochimica Acta, vol.50, issue.7, pp.1379-1395, 1986.
DOI : 10.1016/0016-7037(86)90312-1

S. J. Symes and G. E. Lofgren, Distribution of FeO and MgO between olivine and melt in natural and experimental chondrules, Lunar Planet. Sci. XXX. Lunar Planet. Inst, p.1869, 1999.

S. Tachibana, H. Nagahara, S. Mostefaoui, and N. T. Kita, Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites, Meteoritics & Planetary Science, vol.37, issue.6, pp.939-962, 2003.
DOI : 10.1111/j.1945-5100.2003.tb00289.x

S. Tachibana, S. Tamada, H. Kawasaki, K. Ozawa, and H. Nagahara, Interdiffusion of Mg???Fe in olivine at 1,400???1,600????C and 1??atm total pressure, Physics and Chemistry of Minerals, vol.147, issue.B6, pp.511-519, 2013.
DOI : 10.1007/s00269-013-0588-2

L. A. Taylor and E. H. Cirlin, Olivine/melt Fe/Mg K D 's <0.3: Rapid cooling of olivinerich chondrules, Lunar Planet. Sci. XVII. Lunar Planet. Inst, pp.19-38, 1986.

T. J. Tenner, T. Ushikubo, E. Kurahashi, N. T. Kita, and H. Nagahara, Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs, Geochimica et Cosmochimica Acta, vol.102, pp.226-245, 2013.
DOI : 10.1016/j.gca.2012.10.034

T. J. Tenner, D. Nakashima, T. Ushikubo, N. T. Kita, M. K. Weisberg et al., Oxygen Dentritic crystallization: A single process for all the textures of olivine in basalts, Journal of Petrology, vol.54, issue.3, pp.539-574, 2013.

M. J. Wick and R. H. Jones, Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs, Geochimica et Cosmochimica Acta, vol.98, pp.140-159, 2012.
DOI : 10.1016/j.gca.2012.09.027

J. A. Wood, Unresolved issues in the formation of chondrules and chondrites, International conference: Chondrules and the protoplanetary disk, pp.55-70, 1996.

Y. Yu and R. H. Hewins, Transient Heating and Chondrule Formation: Evidence From Sodium Loss in Flash Heating Simulation Experiments, Geochimica et Cosmochimica Acta, vol.62, issue.1, pp.159-172, 1998.
DOI : 10.1016/S0016-7037(97)00321-9

Y. Yu, R. H. Hewins, C. M. Alexander, W. , and J. , Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts, Geochimica et Cosmochimica Acta, vol.67, issue.4, pp.773-786, 2003.
DOI : 10.1016/S0016-7037(02)01176-6

H. Yurimoto and J. T. Wasson, Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess, Geochimica et Cosmochimica Acta, vol.66, issue.24, pp.4355-4363, 2002.
DOI : 10.1016/S0016-7037(02)01218-8

B. Zanda, Chondrules, Earth and Planetary Science Letters, vol.224, issue.1-2, pp.1-17, 2004.
DOI : 10.1016/j.epsl.2004.05.005

B. Zanda, M. Bourot-denise, C. Perron, and R. H. Hewins, Origin and Metamorphic Redistribution of Silicon, Chromium, and Phosphorus in the Metal of Chondrites, Science, vol.265, issue.5180, pp.1846-1849, 1994.
DOI : 10.1126/science.265.5180.1846