V. K. Gupta and S. , Application of low-cost adsorbents for dye removal ??? A review, Journal of Environmental Management, vol.90, issue.8, pp.2313-2342, 2009.
DOI : 10.1016/j.jenvman.2008.11.017

E. Forgacs, T. Cserháti, and G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International, vol.30, issue.7, pp.953-971, 2004.
DOI : 10.1016/j.envint.2004.02.001

L. Pereira and M. Alves, Dyes???Environmental Impact and Remediation
DOI : 10.1007/978-94-007-1591-2_4

URL : http://repositorium.sdum.uminho.pt/bitstream/1822/25109/1/Ch%204%20-%20Dyes.pdf

. Grohmann, Environmental Protection Strategies for Sustainable Development, pp.111-162

A. Mittal, V. Gajbe, and J. , Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials, Journal of Hazardous Materials, vol.150, issue.2
DOI : 10.1016/j.jhazmat.2007.04.117

J. Pal, M. Deb, D. Deshmukh, and B. Sen, Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution, Applied Nanoscience, vol.38, issue.1, pp.61-65, 2014.
DOI : 10.1007/s13204-012-0170-0

A. E. Ofomaja, E. E. Ukpebor, and S. A. Uzoekwe, Biosorption of Methyl violet onto palm kernel fiber: Diffusion studies and multistage process design to minimize biosorbent mass and contact time, Biomass and Bioenergy, vol.35, issue.10, pp.35-4112, 2011.
DOI : 10.1016/j.biombioe.2011.05.024

M. Esteva, A. M. Ruiz, and A. M. Stoka, Trypanosoma cruzi: methoprene is a potent agent to sterilize blood infected with trypomastigotes, Experimental Parasitology, vol.100, issue.4, pp.248-251, 2002.
DOI : 10.1016/S0014-4894(02)00022-X

S. Laube, Skin infections and ageing, Ageing Research Reviews, vol.3, issue.1, pp.69-89, 2004.
DOI : 10.1016/j.arr.2003.08.003

M. Saji, S. Taguchi, K. Uchiyama, E. Osono, N. Hayama et al., Efficacy of gentian violet in the eradication of methicillin-resistant Staphylococcus aureus from skin lesions, Journal of Hospital Infection, vol.31, issue.3, pp.31-225, 1995.
DOI : 10.1016/0195-6701(95)90070-5

M. Wainwright, Dyes for the medical industry Handbook of textile and industrial dyeing, pp.204-230, 2011.

P. Li, Y. Su, Y. Wang, B. Liu, and L. Sun, Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder, Journal of Hazardous Materials, vol.179, issue.1-3, pp.179-222, 2010.
DOI : 10.1016/j.jhazmat.2010.02.054

H. Zollinger, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, Leonardo, vol.22, issue.3/4, 1991.
DOI : 10.2307/1575449

S. Chakraborty, S. Chowdhury, and P. D. Saha, Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydrate Polymers, vol.86, issue.4, pp.1533-1541, 2011.
DOI : 10.1016/j.carbpol.2011.06.058

F. Chen, P. Fang, Y. Gao, Z. Liu, Y. Liu et al., Effective removal of high-chroma crystal violet over TiO 2 -based nanosheet by adsorption?photocatalytic degradation, Chem. Eng. J, pp.204-206, 2012.

Z. Chen, T. Wang, X. Jin, Z. Chen, M. Megharaj et al., Multifunctional kaolinitesupported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Colloid Interf. Sci, pp.398-59, 2013.

M. A. Gabal, E. A. Al-harthy, Y. M. Angari, and M. Salam, MWCNTs decorated with Mn 0.8 Zn 0.2 Fe 2 O 4 nanoparticles for removal of crystal-violet dye from aqueous solutions, Chem. Eng. J, pp.255-156, 2014.

A. Pal, S. Pan, and S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads, Chemical Engineering Journal, vol.217, pp.426-434, 2013.
DOI : 10.1016/j.cej.2012.11.120

K. P. Singh, S. Gupta, A. K. Singh, and S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, Journal of Hazardous Materials, vol.186, issue.2-3, pp.186-1462, 2011.
DOI : 10.1016/j.jhazmat.2010.12.032

Y. S. Al-degs, M. I. El-barghouthi, A. H. El-sheikh, and G. M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm, pp.77-93, 2008.

P. C. Vandevivere, R. Bianchi, and W. Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, J. Chem

M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science, vol.209, pp.172-184, 2014.
DOI : 10.1016/j.cis.2014.04.002

J. Bujdák, Effect of the layer charge of clay minerals on optical properties of organic dyes. A review, Applied Clay Science, vol.34, issue.1-4, pp.58-73, 2006.
DOI : 10.1016/j.clay.2006.02.011

F. Zhao, W. Z. Tang, D. Zhao, Y. Meng, D. Yin et al., Adsorption kinetics, isotherms and mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a modified magnetic polyacrylamide microcomposite adsorbent, Journal of Water Process Engineering, vol.4, pp.47-57, 2014.
DOI : 10.1016/j.jwpe.2014.09.003

L. Ai, Y. Zhou, and J. Jiang, Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance, Desalination, vol.266, issue.1-3, pp.72-77, 2011.
DOI : 10.1016/j.desal.2010.08.004

X. Sun, B. Liu, Z. Jing, and H. Wang, Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent, Carbohydrate Polymers, vol.118
DOI : 10.1016/j.carbpol.2014.11.013

V. K. Gupta, S. Agarwal, and T. A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Research, vol.45, issue.6, pp.2207-2212, 2011.
DOI : 10.1016/j.watres.2011.01.012

V. Rocher, J. Siaugue, V. Cabuil, and A. Bee, Removal of organic dyes by magnetic alginate beads, Water Research, vol.42, issue.4-5, pp.1290-1298, 2008.
DOI : 10.1016/j.watres.2007.09.024

R. Sivashankar, A. B. Sathya, K. Vasantharaj, and V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration ??? A review, Environmental Nanotechnology, Monitoring & Management, vol.1, issue.2, pp.1-2, 2014.
DOI : 10.1016/j.enmm.2014.06.001

Y. Chang, C. Ren, J. Qu, and X. Chen, Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline, Applied Surface Science, vol.261, pp.504-509, 2012.
DOI : 10.1016/j.apsusc.2012.08.045

J. Duan, R. Liu, T. Chen, B. Zhang, and J. Liu, Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions, Desalination, vol.293, pp.46-52, 2012.
DOI : 10.1016/j.desal.2012.02.022

J. Pan, H. Yao, L. Xu, H. Ou, P. Huo et al., Selective Recognition of 2,4,6-Trichlorophenol by Molecularly Imprinted Polymers Based on Magnetic Halloysite Nanotubes Composites, The Journal of Physical Chemistry C, vol.115, issue.13, pp.5440-5449, 2011.
DOI : 10.1021/jp111120x

Y. Xie, D. Qian, D. Wu, and X. Ma, Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes, Chemical Engineering Journal, vol.168, issue.2, pp.959-963, 2011.
DOI : 10.1016/j.cej.2011.02.031

S. Yang, P. Zong, J. Hu, G. Sheng, Q. Wang et al., Fabrication of ??-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U(VI), Chemical Engineering Journal, vol.214, pp.214-376, 2013.
DOI : 10.1016/j.cej.2012.10.030

Y. Zhang and H. Yang, Halloysite nanotubes coated with magnetic nanoparticles, Applied Clay Science, vol.56, pp.97-102, 2012.
DOI : 10.1016/j.clay.2011.11.028

Z. Zhang and J. Kong, Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution, Journal of Hazardous Materials, vol.193, pp.325-329, 2011.
DOI : 10.1016/j.jhazmat.2011.07.033

I. D. Mall, V. C. Srivastava, G. V. Kumar, and I. M. Mishra, Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.278, issue.1-3, pp.175-187, 2006.
DOI : 10.1016/j.colsurfa.2005.12.017

Y. Lvov and E. Abdullayev, Functional polymer???clay nanotube composites with sustained release of chemical agents, Progress in Polymer Science, vol.38, issue.10-11, pp.1690-1719, 2013.
DOI : 10.1016/j.progpolymsci.2013.05.009

E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi et al., Halloysite clay minerals ??? a review, Clay Minerals, vol.40, issue.4, pp.383-426, 2005.
DOI : 10.1180/0009855054040180

M. E. Alcaraz-cienfuegos and . Gutiérrez-ruiz, Characterization and surface reactivity of natural and synthetic magnetites, Chem. Geol, vol.347, pp.233-245, 2013.

B. V. Raij, Determina????o do ponto de carga zero em solos, Bragantia, vol.32, issue.unico, pp.337-347, 1973.
DOI : 10.1590/S0006-87051973000100018

URL : http://doi.org/10.1590/s0006-87051973000100018

M. Suzuki, Adsorption engineering, 1990.

T. H. Cunha, I. S. Fernandes, and . Pinto, Removal of remazol black B textile dye from aqueous solution by adsorption, Desalination, vol.269, pp.92-103, 2011.

T. Calvete, E. C. Lima, N. F. Cardoso, S. L. Dias, and F. A. Pavan, Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution???Kinetic, equilibrium, and thermodynamic studies, Chemical Engineering Journal, vol.155, issue.3, pp.155-627, 2009.
DOI : 10.1016/j.cej.2009.08.019

R. Liu, B. Zhang, D. Mei, H. Zhang, and J. Liu, Adsorption of methyl violet from aqueous solution by halloysite nanotubes, Desalination, vol.268, issue.1-3, pp.111-116, 2011.
DOI : 10.1016/j.desal.2010.10.006

K. A. Guimarães-gusmão, L. V. Alves-gurgel, T. M. Sacramento-melo, and L. F. Gil, Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions ? Kinetic and equilibrium studies, Dyes Pigm, pp.92-967, 2012.

B. H. Hameed, Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, Journal of Hazardous Materials, vol.154, issue.1-3, pp.204-212, 2008.
DOI : 10.1016/j.jhazmat.2007.10.010

W. Plazinski, W. Rudzinski, and A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: A review, Advances in Colloid and Interface Science, vol.152, issue.1-2, pp.2-13, 2009.
DOI : 10.1016/j.cis.2009.07.009

Y. S. Ho and G. Mckay, Pseudo-second order model for sorption processes, Process Biochemistry, vol.34, issue.5, pp.451-465, 1999.
DOI : 10.1016/S0032-9592(98)00112-5

S. L. Pavan, E. V. Dias, E. A. Benvenutti, and . Silva, Adsorption of Cu(II) on Araucaria angustifolia wastes: Determination of the optimal conditions by statistic design of experiments, J. Hazard. Mater, pp.140-211, 2007.

K. Y. Foo and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, vol.156, issue.1, pp.2-10, 2010.
DOI : 10.1016/j.cej.2009.09.013

S. Rangabhashiyam, N. Anu, M. S. Giri-nandagopal, and N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, Journal of Environmental Chemical Engineering, vol.2, issue.1
DOI : 10.1016/j.jece.2014.01.014

C. Namasivayam and M. V. Sureshkumar, Modelling Thiocyanate Adsorption onto Surfactant-Modified Coir Pith, an Agricultural Solid 'Waste', Process Saf, Environ, vol.85, pp.521-525, 2007.
DOI : 10.1205/psep06071

M. H. Kalavathy and L. R. Miranda, Comparison of copper adsorption from aqueous solution using modified and unmodified Hevea brasiliensis saw dust, Desalination, vol.255, issue.1-3, pp.165-174, 2010.
DOI : 10.1016/j.desal.2009.12.028

J. Wu, C. Liu, K. H. Chu, and S. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, Journal of Membrane Science, vol.309, issue.1-2, pp.239-245, 2008.
DOI : 10.1016/j.memsci.2007.10.035

G. Annadurai, R. Juang, and D. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, Journal of Hazardous Materials, vol.92, issue.3, pp.92-263, 2002.
DOI : 10.1016/S0304-3894(02)00017-1

A. E. Ofomaja, Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust, Chemical Engineering Journal, vol.143, issue.1-3, pp.85-95, 2008.
DOI : 10.1016/j.cej.2007.12.019

J. Saikia, Y. Sikdar, B. Saha, and G. Das, Malachite nanoparticle: A potent surface for the adsorption of xanthene dyes, Journal of Environmental Chemical Engineering, vol.1, issue.4, pp.1166-1173, 2013.
DOI : 10.1016/j.jece.2013.09.002

K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, and K. Ueda, Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin, Journal of Hazardous Materials, vol.146, issue.1-2, pp.146-185, 2007.
DOI : 10.1016/j.jhazmat.2006.11.049

W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-bielu?, and U. Narkiewicz, Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe 2 O 4 spinel ferrite nanoparticles, J. ColloidInterf. Sci, pp.398-152, 2013.

G. R. Mahdavinia, A. Massoudi, A. Baghban, and E. Shokri, Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels, Journal of Environmental Chemical Engineering, vol.2, issue.3
DOI : 10.1016/j.jece.2014.05.020

S. Zeng, S. Duan, R. Tang, L. Li, C. Liu et al., Magnetically separable Ni 0.6 Fe 2.4 O 4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption, Chem. Eng. J, pp.258-218, 2014.

C. Cao, L. Xiao, C. Chen, X. Shi, Q. Cao et al., In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction???precipitation method and their application in adsorption of reactive azo dye, Powder Technology, vol.260, pp.90-97, 2014.
DOI : 10.1016/j.powtec.2014.03.025