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Abstract The simulation of unstable invasion patterns in porous media flow is very challenging because
small perturbations are amplified, so that slight differences in geometry or initial conditions result in signifi-
cantly different invasion structures at later times. We present a detailed comparison of pore-scale simulations
and experiments for unstable primary drainage in porous micromodels. The porous media consist of Hele-
Shaw cells containing cylindrical obstacles. By means of soft lithography, we have constructed two experimen-
tal flow cells, with different degrees of heterogeneity in the grain size distribution. As the defending (wetting)
fluid is the most viscous, the interface is destabilized by viscous forces, which promote the formation of prefer-
ential flow paths in the form of a branched finger structure. We model the experiments by solving the Navier-
Stokes equations for mass and momentum conservation in the discretized pore space and employ the Vol-
ume of Fluid (VOF) method to track the evolution of the interface. We test different numerical models (a 2-D
vertical integrated model and a full-3-D model) and different initial conditions, studying their impact on the
simulated spatial distributions of the fluid phases. To assess the ability of the numerical model to reproduce
unstable displacement, we compare several statistical and deterministic indicators. We demonstrate the
impact of three main sources of error: (i) the uncertainty on the pore space geometry, (ii) the fact that the ini-
tial phase configuration cannot be known with an arbitrarily small accuracy, and (iii) three-dimensional effects.
Although the unstable nature of the flow regime leads to different invasion structures due to small discrepan-
cies between the experimental setup and the numerical model, a pore-by-pore comparison shows an overall
satisfactory match between simulations and experiments. Moreover, all statistical indicators used to character-
ize the invasion structures are in excellent agreement. This validates the modeling approach, which can be
used to complement experimental observations with information about quantities that are difficult or impossi-
ble to measure, such as the pressure and velocity fields in the two fluid phases.

1. Introduction

In the last decade, increasing attention has been focused on modeling multiphase flow at the pore scale.
Indeed, it is generally accepted that the extended Darcy formulation, which is traditionally used to describe
multiphase flow in porous media at the continuum scale, is applicable only under specific assumptions,
which are not justified in many modern applications involving complex flow regimes. This has led the
research community to reconsider the problem from the fundamentals, focusing on the scale at which the
physical processes occur, in order to assess the accuracy of standard Darcy models. Numerical simulations
of pore-scale processes provide tools that can help to define and parameterize macroscopic quantities so
that they correctly account for pore-scale heterogeneity [Kang et al., 2007].

The growing interest in pore-scale modeling has been fostered by two factors: the availability of new meth-
ods to characterize the pore space with a high level of details, and the recent advances in high-
performance computing. Methods such as X-ray microtomography techniques (see Wildenschild and Shep-
pard [2013] for a complete review on the subject) or magnetic resonance imaging (MRI) [see, e.g., Yang
et al., 2013; Chen and Kinzelbach, 2002; Chen et al., 2002] allow reconstructing a three-dimensional porous
medium from a series of two-dimensional images taken at different angles, with a resolution sufficient to
identify individual grains and interfaces. This information can be used in an appropriate pore-scale model to
compute the flow velocity in the pore space [Porter et al., 2009; Raeini et al., 2014]. Although pore-network
models have been widely used due to their computational efficiency, recent advances in computational
facilities have provided the resources to use methods that allow subpore resolution and are based on
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conservation principles (e.g., Smoothed Particles Hydrodynamics methods (SPH), Lattice Boltzmann meth-
ods (LB), and Direct Numerical Simulation methods (DNS)). Moreover, the development of refined numerical
techniques such as high-performance iterative solvers, multiscale methods, and parallel computing will ena-
ble the use of pore-scale models on domains of sizes that would have been considered intractable only a
few years ago [Ferrari and Lunati, 2013; Tomin and Lunati, 2013; Yang et al., 2013].

Despite these advances, a compromise between numerical accuracy and domain size is still necessary
when dealing with a large number of pores as encountered in porous media applications. For large and
complex geometries high resolutions cannot be achieved without drastically increasing the computa-
tional costs; therefore, it becomes necessary to investigate the ability of these numerical approaches to
model experimental data with a practicable resolution. In this context, a major challenge is modeling
unstable flow, as it can arise, for instance, from a viscosity difference that causes the formation of pref-
erential flow paths.

In this paper, we report on our experience in modeling experiments of unstable primary drainage in
micromodels. We focus on a quasi two-dimensional (2-D) geometry consisting of a Hele-Shaw cell that
contains cylindrical obstacles. Primary drainage or imbibition in quasi two-dimensional porous media
has been studied since the pioneering works performed in the 1980s, either in network channels [Lenor-
mand and Zarcone, 1985; Lenormand et al., 1988] or in monolayers of beads [Måløy et al., 1985, 1987;
M�eheust et al., 2002]. During drainage, the defending fluid wets the solid walls, so that capillary forces
oppose the displacement of the interface (a review article on drainage processes in two-dimensional
systems was written by Toussaint et al. [2012]). When the defending fluid is the most viscous, viscous
forces destabilize the interface according to a mechanism first discovered by Saffman and Taylor in a
classic Hele-Shaw cell [Saffman and Taylor, 1958]. In quasi two-dimensional porous media, the presence
of obstacles causes capillary forces to act at the scale of the pore necks, which leads to different dis-
placement structures depending on the relative magnitude of viscous to capillary forces, which is quan-
tified by the capillary number. The limiting configurations for low and high capillary numbers are
capillary fingering and viscous fingering, respectively; they have been first classified in Lenormand’s
phase diagram [Lenormand et al., 1988]. More recently, it has been shown that at intermediate regimes,
capillary fingering is dominant at smaller scales, while viscous fingering dominates at larger scales
[Løvoll et al., 2004; Toussaint et al., 2005].

The experiments described in this paper have been performed in porous micromodels consisting of cylin-
drical obstacles in Hele-Shaw cells, which we have manufactured by soft lithography [de Anna et al., 2014].
In comparison to 3-D experiments, these quasi 2-D micromodels provide an immediate visualization of the
interface dynamics through standard image acquisition techniques and make it easier to compare experi-
ments and simulations. To model the pore-scale processes, we use Direct Numerical Simulations (DNS) of
two-phase flow, in which a Navier-Stokes solver is coupled with the Volume of Fluid (VOF) method [Hirt and
Nichols, 1981], which is used to track the interface between the two fluids. VOF is based on first principles
(mass and momentum conservation) and has proved able to model drop impact onto a liquid layer [Berber-
ović et al., 2009], breakup of a 3-D liquid jet in ambient air [Gomaa et al., 2011], wetting phenomena
[Afkhami et al., 2009; Lunati and Or, 2009], and transition from stable displacement to viscous fingering in
porous media [Ferrari and Lunati, 2013].

Our objective is to give a detailed assessment of the accuracy and limitations of modeling unstable primary
drainage experiments. We compare the spatial distribution of the two fluids at breakthrough to the results
of VOF simulations. In particular, we compare several macroscopic quantities such as the finger width, the
fractal dimension of the interface, the length of the water-air interface in the midplane of the Hele-Shaw
cell, the longitudinal saturation profile, and a measure of the mismatch between the numerical and experi-
mental displacement structures at breakthrough. Although the experimental micromodel can be seen as a
(quasi) two-dimensional medium, the constraint imposed on the flow by the presence of the bottom and
top plates must be taken into account [Hele-Shaw, 1898]. We consider two models that account for this
effect: a full-3-D model and a 2-D integrated model (similar to the one used in Horgue et al. [2013]), which
allows saving computational time. In section 2 we present the soft lithography technique and the experi-
mental setup, in section 3 the numerical model is described in details, while the comparison between simu-
lations and laboratory experiments is presented in section 4 and discussed in section 5. The last section
addresses conclusions and future outlooks.
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2. Drainage Experiments in Micromodels

2.1. Analogous Two-Dimensional Porous Media
The experimental setup used in this work is similar to the one used by de Anna et al. [2014]. A two-dimensional
(2-D) porous medium, consisting of a Hele-Shaw cell filled with cylindrical grains, is built using soft lithography,
which is a technique commonly used in microfluidics [Xia and Whitesides, 1998]. A mask with the negative image
of the chosen geometry is printed at high resolution and placed on top of two glass plates, between which an
hydrophilic [W€agli et al., 2011] UV-sensitive glue is injected. Using a UV-light source, grains are polymerized at
locations corresponding to the transparent regions in the mask; the glue that remains in the space between
obstacles is then cleaned out using water and solvents (80% ethanol-20% acetone). The final model dimensions
are L3W5150 mm 390 mm, with a thickness a 5 0.5 mm. The mean grain diameter and the mean pore size,
as well as the porosity and the absolute permeability, calculated from single-phase flow simulations are given in
Table 1 for the two geometries used in the experiments. The micromodel is drained by connecting a syringe
pump to the outlet, while the inlet is in contact with the atmosphere. On both sides, a triangular-shaped channel
is used to connect the porous medium to the tubing in order to produce a velocity profile that is quasihomoge-
neous in the direction transverse to flow (see Figure 1).

The wetting fluid is a solution of water dyed with fluorescein (fluorescein sodium salt) at concentration c 5 51 mg
L21, which is used to distinguish between the wetting and nonwetting phase (air). The model is illuminated
from below with a panel source (backlight panel-Kesetexas, cold cathode) that produces a light of spatially
homogenous intensity. An optical filter (LEE 126 Mauve) is located between the light panel and the micromodel
to block wavelengths in the range 505–580 nm, which allows exciting the fluorescent tracer at 494 nm (the exci-
tation wavelength of fluorescein). A band-pass filter (Edmunds optics) of wavelength 521 6 10 nm (the emission
wavelength of fluorescein) is located between the model and the camera and allows only photons emitted by
the solution to reach the camera (Figure 1). A CCD camera (Princeton Instruments-Megaplus EP 11000, actively
cooled) is placed above the micromodel at a distance of 32 cm and acquires gray-scale (eight bits) images of
the model, taken at regular time intervals (every 1.5 s). The images consist of 365532241 pixels, which corre-
sponds to a spatial resolution of�0:04 mm per pixel (or�25 pixels per mm).

The porous medium is initially saturated with the wetting phase. The displacement is imposed by extracting
the wetting phase in order to avoid compressibility effects in the gaseous nonwetting phase (air). A con-
trolled flow rate Q 5 1000 mL h21 is imposed at the outlet by means of a syringe pump (Kd Scientific
KDS210) and a glass syringe of volume 50 mL (Tomopal Inc.). Volumetric flow rate variations were monitored
during the experiment and did not exceed 3%.

2.2. Flow Conditions
The experiments are performed at room temperature (1961C

�
). Under this conditions, the water has a viscos-

ity around lw51023 Kg m21 s21 and a density qw5103 Kg m23, whereas air has a viscosity lnw51:8 � 1025

Kg m21 s21 and a density qnw51:2 Kg m23. The resulting viscosity and density ratios are M5lnw=lw � 1022

and H5qnw=qw � 1023, respectively, and the surface tension between the two fluids is r57:231022 N m21.

In addition to density and viscosity ratios, the flow regime is controlled by two more dimensionless num-
bers. The Reynolds number Re5qwUr=lw (where U5Q=Wa is the average flow velocity and r is the average
pore size) quantifies the relative magnitude of inertial to viscous forces, whereas the capillary number Ca5

lU=r quantifies the relative magnitude of viscous to capillary forces during the displacement.

In the configuration considered here, the flow is horizontal, with no significant gravity influence and the effect
of the density ratio is negligible. The viscosity ratio, however, plays an important role in deciding the flow/dis-

placement regime. In the present experiment M< 1
and the flow is unstable with respect to viscous
forces. This is one of the most challenging regimes to
simulate.

3. Numerical Model

3.1. Pore-Scale Simulation Methods and Their
Validations
Several methods exist to model multiphase flow at
the pore scale. They can be classified into two

Table 1. Properties of the Two Porous Media

Property Homogeneous Heterogeneous

Dimensions (mm3) 90 3 150 3 0.5 90 3 150 3 0.5
Number of grains 4536 4522
Mean radius, r (mm) 0.48 0.42
Standard deviation,

Dr (mm)
0.04 0.14

Porosity, U (2) 75% 78%
Permeability, k (m2) 4:3231029 4:8231029
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groups: direct simulations, in which the
flow equations are directly solved on a
discretized pore space extracted from
images of rock samples or from analog-
ical samples; and network modeling, in
which simplified flow equations are
solved in an idealized pore-network
derived from the real geometry [Blunt
et al., 2013].

Since the first pioneering work [Fatt,
1956], pore-network models have
been largely used to investigate pore-
scale processes. The comparison
between quasi-static pore-network
models and experiments shows that
they can predict relative permeability
curves for two-phase flow [Blunt et al.,
2002], three-phase flow [Lerdahl et al.,
2000], as well as interfacial area-
saturation curves [Joekar Niasar et al.,
2009]. However, these models employ
an idealization of the porous medium,
which is replaced by a lattice of con-
nected pore bodies and pore throats,
and a simplified physics. Pore inva-
sion is controlled by a certain number

of filling rules that often rely on quasi-static considerations. Although some pore-network models are
able to account for dynamic effects [Aker et al., 1998] and reproduce some features of the displacement
structures (e.g., fractal dimensions, distributions of the sizes of trapped clusters) at large capillary num-
bers [Aker et al., 2000a, 2000b], their validity for benchmarking conceptual and theoretical models is
always limited by the assumptions introduced in their design [Ferrari and Lunati, 2013]. Despite these
limitations, they are attractive due to their computational efficiency. However, the continuous progress
of computational facilities over the last years has made it possible to use methods that explicitly resolve
the pore geometry and the interface between fluids. Since many processes, such as reactive transport
or multiphase flow, have been found to strongly depend on small-scale heterogeneities, these models
provide new insights to devise more appropriate macroscopic models and constitutive relationships.
Several methods have been developed and successfully used to simulate two-phase flow at the pore
scale; here, we briefly mention some of them and refer to Meakin and Tartakovsky [2009] for a complete
review.

One of the most commonly used approach is the Lattice Boltzmann (LB) method, in which particles
move and collide on a discrete lattice in such a way that the average motion of a large number of par-
ticles mimics the solution of the Navier-Stokes equations [Shan and Chen, 1993; He and Luo, 1997]. Vis-
cosity, surface tension, and contact angle are modeled by means of special forces between the lattice
nodes. LB methods are easier to implement than traditional CFD methods and may not require any
interface tracking algorithm. The main drawbacks are the stochastic nature of the model, which requires
averaging over quite a large number of particles to obtain an accurate description of the fluid flow, and
the ambiguity in the relationships between internode forces and physical parameters [Meakin and Tarta-
kovsky, 2009]. Moreover, numerical instabilities arise in multiphase flow simulations, limiting the range
of viscosity and density ratios that can be modeled. LB methods have been used to reproduce experi-
ments: Porter et al. [2009] found a good agreement between interfacial areas calculated in column-scale
experiment and LB simulations during drainage, but they observed more discrepancies during imbibi-
tion; Vogel et al. [2005] simulated pressure-saturation curves using a full morphology model, a pore-
network model and a LB model and found good correspondence among the three; Schaap et al. [2007]

Figure 1. Scheme of the experimental setup. To perform drainage tests, the
porous medium is initially saturated by the wetting phase (dyed water), and the
wetting phase is subsequently pumped out from the outlet end of the cell, allow-
ing the nonwetting phase (air) to invade the medium. A spatially homogeneous
radiation of light excites the fluorescent tracer transported within the pores. A
combination of optical filters allows to remove all undesirable wavelengths for
excitation and emission of the fluorescent tracer.
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applied a multiphase LB model to simulate the flow through a geometry obtained from microtomo-
graphic data, and found an encouraging agreement between observed and simulated water-air pres-
sure-saturation characteristic, but less satisfactory results for a water-Sotrol system.

The Smoothed Particle Hydrodynamic method (SPH) is a fully Lagrangian particle method, which has many
advantages for modeling multiphase flow in porous media [Monaghan, 1994; Bandara et al., 2011]. In partic-
ular, SPH does not require complex interface tracking schemes and it is free of numerical dispersion. Similar
to LB models, fluid-fluid and fluid-solid interactions are accounted for by adding special forces between dif-
ferent particles. SPH has been used to model droplet flow through a Y-shaped fracture junction [Tartakovsky
and Meakin, 2005] and the capillary trapping mechanism during CO2 injection [Bandara et al., 2011]. An
attempt to use SPH simulations to simulate experiments has been recently published [Bandara et al., 2013],
but the comparison is only qualitative due to the much smaller domain considered in the simulations with
respect to the experiments.

In contrast to the LB and SPH methods, Computational Fluid Dynamics (CFD) approaches are directly based
on a discretized form of the partial differential equations of motion on a Eulerian mesh. For most applica-
tions, this approach is preferable due to the highly refined numerical schemes developed in traditional CFD
and their ability to deal with large density and viscosity ratios [Meakin and Tartakovsky, 2009]. Despite its
superior numerical efficiency and the conceptually straightforward extension of CFD to pore-scale model-
ing, the implementation for multiphase flow is more complex than for LB or SPH methods. A Navier-Stokes
solver has to be coupled with an interface-capturing or an interface-tracking method which is used to
advect the menisci. Interface capturing methods, such as Volume of Fluid (VOF), Level-Set (LS), or Phase
Field, are normally preferred to interface tracking algorithms because they employ static meshes and are
more appropriate to model complex interface deformations [Ferrari and Lunati, 2013]. In this work, we
employ the VOF method, first introduced by Hirt and Nichols [Hirt and Nichols, 1981]. It has been used to
model experiments of single and two-phase flow in porous media. Yang et al. [2013] compared steady state
single-phase pore velocity in bead pack with magnetic resonance observations and found very similar spa-
tial patterns; Horgue et al. [2013] studied the spreading of a liquid jet in a small array of cylinders and
showed a good agreement with experiments; Ferrari and Lunati [2014] employed VOF simulations to assess
the role of inertial effects during imbibition processes that exhibit rapid meniscus reconfigurations; Ferrari
and Lunati [2013] demonstrated that the VOF method can correctly model the transition between stable
displacement and viscous fingering under drainage, but no comparison with experiments was provided.
The present work represents, to our knowledge, the first attempt to quantitatively compare the front mor-
phology obtained by CFD-based numerical simulation with data from micromodel experiments containing
a large number of pores (>4400).

3.2. Description of the Numerical Model
We consider the isothermal motion of two incompressible fluids within a solid matrix and adopt a whole-
domain description of the system [Scardovelli and Zaleski, 1999; Ferrari and Lunati, 2013]. This formulation
allows us to consider the two phases as a single fluid with space-dependent properties and replaces the
jump condition at the interface by a force that acts only in the interface region. In contrast with a two-fluid
formulation, it does not require solving a moving boundary problem, which is extremely difficult and com-
putationally expensive. Below, we briefly introduce the equations of motion and the Volume of Fluid
method, and we discuss the different models employed: the 2-D integrated model and the 3-D model. We
then analyze the geometry and the different boundary and initial conditions used in the simulations.

3.2.1. Navier-Stokes Equations
In the whole-domain formulation the flow of two immiscible fluids is governed by a single set of Navier-
Stokes equations, i.e.,

$ � u50; (1)

which expresses the conservation of the total mass, and

@qu
@t

1$ � quuð Þ52$p1$ � ð2lEÞ1f s; (2)

which describes the conservation of momentum. In the above equations, u is the fluid velocity, p is the
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pressure, and E5 1
2 ru1ruTð Þ is the rate-of-strain tensor. The last term in equation (2) represents the sur-

face force acting at the interface between the two fluids and is defined as

f s5rj n dC; (3)

where r is the surface tension, j is the curvature of the interface, n is the normal to the interface, and dC is
a Dirac function that is zero everywhere except at the interface. Therefore, f s is nonzero only at the interface
and describes the Laplace pressure.

3.2.2. The Volume of Fluid (VOF) Method
The volume of fluid method allows tracking the evolution of the interface according to the velocity field
provided by the solution of the Navier-Stokes equations. The spatial distribution of the two phases is
described using a color function (or fluid function), which is defined as

a5
1 in the wetting fluid;w;

0 in the non-wetting fluid; nw:

(
(4)

In equation (2), the density and the viscosity vary in space as they are functions of a, i.e.,

q5aqw1 12að Þqnw and l5alw1 12að Þlnw (5)

and the surface force, f s, is replaced by the corresponding volume force,

f v5rj$a; (6)

which acts on the volume occupied by the interface, i.e., on the region where 0 < a < 1. It can be shown
that this continuum interpretation of the surface force (Continuum Surface Force (CSF) model) [Brackbill
et al., 1992] is exact when the thickness of the interface (h) goes to zero, i.e.,

lim
h!0

f v5f s: (7)

The curvature is defined as the divergence of the unit normal to the interface, n,

j52$ � n52$ � $a
k$ak

� �
: (8)

The wetting properties of the solid are described by imposing that the angle, h, between the normal to the
interface, n, and the normal to the wall, ns, be the equilibrium contact angle defined by Young’s law,
rcos h5rnw2rw, where rnw and rw are the surface tension coefficients of the nonwetting fluid-solid and
wetting fluid-solid interfaces, respectively. They can be interpreted as the energy cost of creating a unit
area, or equivalently as the magnitude of the force per unit length that pulls the contact line; for a full dis-
cussion of the wetting equilibrium in terms of free energy and forces, including forces normal to the solid
wall, see Lunati [2007]. This is equivalent to imposing that the normal to the interface on the wall, ndC , be
defined as

ndC5ns cos h1ts sin h; (9)

where ts is the unit vector tangent to the solid, perpendicular to the contact line and pointing into the wet-
ting phase.

Equations (1) and (2) allow computing the velocity field that determines the evolution of the interface
through a simple advection equation. In the implementation of the VOF that is used here [OpenFOAM,
2011], the advection equation reads

@a
@t

1r � auð Þ1r � a 12að Þurð Þ50; (10)

where the last term is an artificial compression term used to limit numerical diffusion (ur is a suitable com-
pression velocity [see, e.g., OpenFOAM, 2011; Rusche, 2003; Ferrari and Lunati, 2013]).

3.2.3. Two-Dimensional Integrated Model Versus 3-D Model
Despite the fact that the micromodel used in the experiment can be seen as a two-dimensional object, the
effect of the flow confinement along the third-dimension has to be taken into account. A first approach
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consists in directly solving the system of equations presented above (equations (1), (2), and (10)) in the 3-D
geometry, with appropriate boundary conditions. A second approach, alternative to the full-3-D model, is a
2-D integrated model (as used in Horgue et al. [2013]) that accounts for the drag exerted by the two parallel
plates of the Hele-Shaw cell and for the radius of curvature of the menisci in the vertical direction. In this
work we employ both approaches: the 2-D integrated model allows us to save computational time at the
expense of vertical resolution, while the full-3-D model is computationally more expensive but can account
for complex 3-D effects. Below, we describe the equations that are solved in the 2-D integrated model in
order to account for the vertical confinement of the flow by the horizontal walls.

The no-slip condition at the two parallel plates of the Hele-Shaw cell and its impact on the velocity field can
be modeled by introducing a Darcy-like term in the momentum conservation equation, which accounts for
the drag force exerted by the walls, i.e.,

@qu
@t

1$ � quuð Þ52$p1$ � ð2lEÞ1f s2
l
k

u: (11)

Assuming that the vertical profile of the velocity is parabolic everywhere, the permeability can be approxi-
mated as k5a2=12, where a is the aperture of the Hele-Shaw cell. If the radius of curvature in the vertical
plane is assumed constant, it can be written as a function of the aperture. Then, the total curvature is the
sum of the curvature calculated in the horizontal plane and the constant curvature in the vertical plane
[Horgue et al., 2013], i.e.,

j52r � n2
2
a

cos h: (12)

Notice that this is an approximation of the real 3-D solution and that corner flow around the obstacles and
wetting films are not captured by the 2-D model.

3.2.4. Computational Domain, Boundary, and Initial Conditions
The pore geometries used in the experiments and in the simulations have been generated from a two-
dimensional packing of disks, obtained by deposition [Vinningland et al., 2007]. A connected pore space of
the desired porosity has been obtained by imposing a random compression of the obstacle radii. We have
generated two geometries by varying the width of the grain-radius distribution while keeping the mean
value constant. During the manufacturing of the micromodels, the cleaning procedure that removes the
UV-sensitive glue in excess is particularly delicate and affects the final geometries of the micromodels,
which differ from the generated (numerical) geometries. For example, the porosity of the numerical geome-
tries was calculated to be around 70%, whereas the experimental porous media had a porosity around 75%;
this suggests that the grain size of the micromodels was systematically smaller compared to the generated
numerical geometries. These discrepancies led to unsatisfactory preliminary results (not shown here) when
the simulations were performed using the ‘‘ideal’’ model geometry. Therefore, we measured the grain posi-
tions and radii distributions from experimental images of the micromodels and used these geometries as
input for the flow simulations, rather than the original numerical geometries. The resulting properties of the
two media, measured from experimental images, are shown in Table 1. Hereafter, we will refer to the weakly
heterogeneous distribution as the homogeneous distribution, and to the strongly heterogeneous distribu-
tion as the heterogeneous distribution (see Figure 2).

The computational domain is obtained by discretization of the pore space by means of a mesh generator
that creates split-hexahedrals (around the obstacles) and hexahedrals (elsewhere) from the triangulated sur-
face geometry. An example of the resulting mesh around the obstacles can be found in Ferrari and Lunati
[2013]. The simulations presented in this work are performed with the open-source code OpenFOAM [2011],
in which equations (1), (2) (or equation (11)), and (10) are discretized by a finite volume method with an
accuracy of first order in time and second order in space. Given the large number of pores considered, a
compromise has to be found between discretization and computational costs. In order to capture the wet-
ting film around the obstacles in the 3-D simulations, the mesh has to be refined significantly. A previous
study [Horgue et al., 2012] has shown that at least two grid cells per film thickness are necessary to accu-
rately reproduce the wetting film with a diffuse interface model. For a 2-D geometry very similar to the one
used in this work, Ferrari and Lunati [2013] have shown that a discretization with cell size Dx5r=6, where r
is the mean pore radius, ensures that the difference with respect to the results obtained with a finer grid is
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below 10%. Based on these considerations, we construct the mesh with a typical cell size about 50 mm
(Dx � r=8 for the heterogeneous geometry and Dx � r=9 for the homogeneous geometry), which guaran-
tees more than two cells in the wetting film and Dx < r=6. The final mesh consists of about 43106 cells for
the 2-D model and 23107 cells for the 3-D model; the computational time required for the 2-D simulations
varies between 3 and 5 days using 80 processors, whereas about 25 days on 200 processors were required
for the 3-D simulations.

No-slip boundary conditions are assigned on the solid obstacles. In the 3-D model, taking advantage of the
axial symmetry of the problem, we simulate only half of the domain and assign no-slip boundary conditions
on the front side (adjacent to the cell plate) and symmetry boundary conditions on midcell plane of the
domain. To reproduce the experimental conditions, a constant total flux, Q 5 1000 mL h21, is assigned at
the outlet boundary, whereas a constant atmospheric pressure is specified at the inlet boundary. The equi-
librium contact angles at the water-air-plate contact line as well as at the water-air-obstacles contact line
are estimated from a photograph as slightly less than 30

�
and slightly higher than 30

�
, respectively. In the

simulation, lacking a more accurate characterization, we set an equal equilibrium contact angle h530
�

on
plate and obstacles.

When dealing with unstable flow, the onset of the instability is extremely difficult to capture without an
appropriate initialization. Hence, we have decided to impose two different initial conditions to study the
influence of the initial configurations on the evolution of the displacement structures. The first initial condi-
tion corresponds to a medium that is fully saturated with the wetting phase (water); this corresponds to the
situation at time t0 in the experiments, when the interface has not yet entered the porous medium. As the
simulation advances, water is extracted at the outlet, whereas air enters at the inlet and starts invading the
porous region. The second initial condition is obtained from the first experimental image of the cell
acquired after the nonwetting phase (air) has started invading the medium (i.e., the first image acquired at
time t > t0). We shall see that this small change in the time at which the interface position is initialized plays
an important role in controlling the later evolution of the front morphology.

3.3. Flow Conditions
To reproduce the experimental conditions (see section 2.2), we used the densities and the viscosities of
water as wetting fluid and air as nonwetting fluid, as well as the surface tension corresponding to this fluid
pair. The Reynolds number associated with the displacement is Re � 1 for both geometries, which indicates
that the flow regime is laminar [Bear, 1972], whereas the capillary number is Ca � 8:031025 for both media.
At a given volumetric flow rate, the capillary numbers for the two porous media (homogeneous and hetero-
geneous) are the same. What distinguishes primary drainage processes occurring in these two geometries
is the ratio of the magnitude of viscous forces to that of the fluctuations in capillary pressure throughout

Figure 2. (a) Normalized grain radii distributions for the homogeneous (red line) and heterogeneous (blue line) geometry; (b) estimate of the normalized capillary threshold pressure dis-
tributions for the two geometries, which represents the minimum entry pressure needed to invade the various pores. It has been calculated directly for the radii distributions assuming
that for each pore it is of the order of rcos h=r (the inset shows the full range of the capillary threshold distribution in semilog scale).
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the medium. This is quantified by the fluctuation number [see M�eheust et al., 2002], F5ð1=2Þðr=DrÞCa,
where Dr is the width of the pore size distribution. It has been conjectured [M�eheust et al., 2002] that the
fluctuation number is in turn related to the width or lateral extension, w, of the finger, w � F2m=ð11mÞ, where
m is the correlation length; therefore, an increase in Dr results in an increase of the finger width. The fluctua-
tion numbers for the two geometries are F 5 6 Ca for the homogeneous geometry and F 5 1.5 Ca for the
heterogeneous one.

4. Results

In this section, the flow patterns produced by the simulations in the two geometries (homogeneous and
heterogeneous) are compared with those recorded during the corresponding drainage experiments. We
use two different initial conditions (with and without initialization of the finger) and two different numerical
models: (i) the vertically integrated, 2-D model for both the homogeneous and the heterogeneous geome-
tries, and (ii) the full 3-D model for the heterogeneous geometry only. Figure 3 shows the measured and
the simulated displacement structures: three different times are shown for the heterogeneous geometry
(t � 1:5s; t � 3s, and t5t�, where t� is the breakthrough time), whereas only the structure at breakthrough
time is shown for the homogeneous geometry. Notice that since the injection rate is constant and we con-
sider only times prior to the breakthrough (t < t�), time and global saturation are simply related by
Snw5Qt=Vtot, where Vtot is the total pore volume of the porous medium. The saturations at breakthrough,
expressed in terms of the relative difference with respect to the breakthrough saturation of the correspond-
ing experiments, Es, are specified in Table 2 for all simulations.

In the next sections, we will quantify the differences between the displacement structure observed in the
drainage experiments and the corresponding simulations (we define the displacement structure, or invasion
structure, as the portion of the cell midplane that is occupied by air). First, we compare macroscopic quanti-
ties: typical finger width, fractal dimension, air-water interfacial length, and average longitudinal saturation
profile. Then, we calculate the relative mismatch area between displacement structures obtained at break-
through (and in the midplane of the Hele-Shaw cell) by the numerical simulations and those measured in
the experiments.

4.1. Typical Finger Width
The typical finger width of the structure created by air through the wetting fluid corresponds to the scale
over which the viscous pressure drop in the wetting fluid starts dominating the fluctuations of the capillary
pressure thresholds along the interface and dictates the shape of the displacement structure [see, e.g., Tous-
saint et al., 2005]. When it can be defined without ambiguity, the typical finger width is thus a critical feature
of a two-phase flow process. However, due to the stochastic nature and the branched shape of the displace-
ment structure, the finger width is not easy to accurately determine. We estimate the finger width by meas-
uring the length of the transverse cuts of the structure and computing their probability density function
(pdf). The pdf, which is shown in Figure 4 for the homogeneous (a) and the heterogeneous geometry (b),
exhibits two main peaks, one at a length that is the mean pore size (here, about twice the mean grain
radius), and the other at a length that we consider to be an estimate of the typical finger width. For the
experimental displacement structures the finger width is 3.3 and 3.5 mean grain diameters (see Figure 4).
The finger widths measured for the simulated structures deviate from those values by less than 10% (see
Table 2).

4.2. Fractal Dimension of the Displacement Structure
The fractal dimension is a measure of the geometrical complexity of the structure and depends on the inter-
play between capillary and viscous forces. For very slow displacements (Ca� 1), the width of the capillary
threshold distribution is larger than the viscous pressure drop over the whole system [Løvoll et al., 2004]
and the flow is controlled by the fluctuations of capillary threshold. In this case, the displacement structure
can be simply described by invasion percolation [Lenormand and Zarcone, 1985], which has fractal dimen-
sion Dc51:8360:01. At high flow rates the morphology of the front is typical of viscous fingering, which
has fractal dimension Dv � 1:53 [Toussaint et al., 2005]. As the drainage experiments were performed at
intermediate capillary numbers, we expect capillary forces to dominate at a smaller scales, while viscous
forces dominate at a larger scales [Løvoll et al., 2004; Toussaint et al., 2005]. The smooth crossover between
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Figure 3. Experiments (first row) and simulations in the heterogeneous and homogeneous geometry for different times/saturations. t� represents the breakthrough time; the relative dif-
ferences in breakthrough times with respect to the corresponding experiment can be found as Es in Table 2 (Exp 5 experiments; N.I. 5 simulations with no initialization; and
W.I. 5 simulation with initialization).
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these two regimes is expected to occur at scales close to the typical finger width, which is smaller than 3.5
mean grain diameters (see section 4.1)), so we do not expect to observe it in our data.

The fractal dimension D of the displacement structure is analyzed by the standard box-counting method.
The number of boxes of size s needed to cover the displacement structure, N(s), is plotted in log-log scale
as function of the normalized box size s/r. The slope of the curve, which corresponds to –D, is calculated by
linear regression of the points corresponding to the last image of the experiments and the last calculated
time step of the simulation. Scales smaller than one pore diameter (2r) are little relevant, and in any case
they should be characterized by a fractal dimension 2. At the largest scales investigated, the box size
reaches the width of the system, and the fluctuations around the power law behavior increase due to the
limited statistics. A meaningful fractal dimension can be calculated only in an intermediate region; there-
fore, we fit a power law to the data in the interval between s/r 5 1 and s/r 5 10–20, and find NðsÞ
� s21:6560:04 for the experiment in the homogeneous geometry and NðsÞ � s21:6860:04 for the experiment in
the heterogeneous geometry. These values are consistent with the fact that the experiments are performed
at intermediate Ca. The experimental data and the numerical data are shown in Figure 5, together with the
corresponding fractal dimensions, which are in good agreement between experiment and simulations.

4.3. Air-Water Interfacial Length
While it is quite easy to obtain the three interfacial areas (w – nw, w – solid, nw – solid) from the simulations
[see, e.g., Ferrari and Lunati, 2013], no information about the third-dimension can be extracted from the 2-D
experimental images and a direct measure of the experimental interfacial area is not possible. As a simple
alternative, we compare the extension of the contact line between the interface and the front plate of the
Hele-Shaw cell. However, this introduces an ambiguity due to the presence of wetting films in the corners
formed by the plates and the obstacles: these films, which are present in the experiments, are well captured
by the 3-D model, but they cannot be reproduced by the 2-D model.

To eliminate this ambiguity, we have computed the interfacial length by neglecting the wetting film on the
horizontal plates, that is, by attributing the film to the air phase. This should correspond to calculating the

Table 2. Relative Error on the Typical Finger Width, Dw=w, Saturation Errors, ES, and Mismatch Ratio, Emm, for All the Simulations in the
Homogeneous and Heterogeneous Geometry (N.I. 5 Simulations With No Initialization and W.I. 5 Simulation With Initialization)

Dw=w (%) Aexp2Asim ES (%) jAexp2Asimj Emm (%)

Homogeneous 2-D N.I. 28.2 122.984 11.9 860.201 39.5
2-D W.I. 28.3 91.534 8.9 696.039 32.4

Heterogeneous 2-D N.I. 23.8 362.401 21.0 883.289 28.7
2-D W.I. 25.7 12.182 0.7 591.397 17.2
3-D N.I. 26.5 190.005 11.0 802.599 24.7
3-D W.I. 29.8 167.411 9.7 666.351 20.3

Figure 4. Probability density functions for the lengths of one-pixel-wide transverse cuts of the displacement (air) structure: (a) homogeneous medium and (b) heterogeneous medium.
The peak at 2r indicates the mean pore size, while the second peak to its right denotes the typical finger width, of 6.6 for experimental data recorded in the homogeneous system and
7.1 for the experimental data recorded in the heterogeneous system. The corresponding relative deviations of the finger width of the simulated structures with respect to the experimen-
tal measure are shown in Table 2.
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length of the intersection between the interface and the midcell plane. In that plane cylindrical obstacles are
expected to be in contact with the air phase, because in a partial wetting regime (h530

�
) a thin film covering

the entire surface of a cylindrical grain is unstable. This hypothesis is supported by the results of the 3-D simu-
lations, which clearly show that pendular rings exist only in the corner between the plate and the obstacles,
whereas air is in direct contact with the obstacles at the midcell plane (see Figure 6g). From the raw experi-
mental images, we isolate the films around the obstacles from the rest of the wetting phase and we attribute
them to the nonwetting fluid (Figures 6a–6d). For the 3-D simulations the full information is available and the
same structure can be obtained simply by extracting the color function on the midcell plane (Figures 6e–6h),
which corresponds to the back plane of Figure 6g as we simulate only half a cell (see section 3.2.4). The inter-
facial length, Lnw, is then calculated by counting the pixels on the perimeter of the resulting structures for all
geometries. It is plotted as a function of the saturation of the nonwetting phase in Figure 7.

4.4. Longitudinal Saturation Profiles
The interfacial length is an integrated quantity and does not provide information about fluid distributions: for
the same saturation, two structures might have a very different shape while having the same interfacial length.

The typical finger width and the fractal dimension carry important information about the relevant physical
processes, but they can be reliably calculated only up to a scale of 10–20 pores. They also contain little infor-
mation about the penetration speed of the nonwetting phase: typical finger widths and fractal dimensions
are quite similar in the two micromodels, but the saturations at breakthrough are considerably different,
indicating a higher penetration speed of the air in the homogeneous geometry.

To better quantify the penetration speed, we analyze the longitudinal saturation profiles (averaged in the
transverse direction) at the breakthrough time; they are plotted in Figure 8 as a function of the normalized
longitudinal coordinate, Y/L. The longitudinal saturation profile is also intimately related to the traditional
macroscopic description of flow through porous media, which is based on volume averaging and on the
concept of Representative Elementary Volume (REV) [see, e.g., Bear, 1972]. In the drainage experiments, the
experimental displacement structure is only poorly representative of the statistics of the invasion process
due to the limited extension of the micromodels in both the longitudinal and transverse direction. However,
despite the fluctuations, the longitudinal saturation profile is rather informative of the penetration speed
and of the lateral extension of the displacement structures, which are different in the two geometries.

4.5. Mismatch Area
Finally, we compare the invasion structures from experiments and numerical simulations pixel by pixel, and
we compute the mismatch area between them. In Figure 9, the different structures obtained at break-
through from simulations with initialization are superimposed to the corresponding experiments to high-
light differences. We denote by Aexp the characteristic matrix of the experimental displacement structure
(i.e., the matrix whose values are one for pixels belonging to the displacing phase and zero otherwise) and

Figure 5. Fractal dimension of the invading structure at the breakthrough for experiments and simulations in (a) the homogeneous geometry and (b) the heterogeneous geometry. The
slope of each curve, D, is calculated by linear regression of the points in the interval between s/r 5 1 and s/r 5 10–20, (Exp 5 experiments; N.I. 5 simulations with no initialization; and
W.I. 5 simulation with initialization).
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by Asim the analogous quantity for the image obtained from the simulation. The relative difference in air sat-
uration between experimental and numerical images is

ES5

X
i;j

Aði;jÞexp2Aði;jÞsim

� �
X

i;j

Aði;jÞexp

; (13)

which gives a measure of the relative cell-saturation difference at breakthrough.

A better measure of the discrepancy between the displacement structures is the mismatch ratio,

Emm5
X

i;j

jAði;jÞexp2Aði;jÞsim j

X
i;j

Aði;jÞexp1Aði;jÞsim

� �
;

(14)

which is in effect the sum of the nonoverlapping areas normalized by the sum of the total experimental
and numerical areas. Notice that this normalization ensures that the error is one if there is no overlap
between experiment and simulation. In this case the different regions invaded in the experiment but not
invaded in the simulation and vice versa do not compensate each other and both contribute to Emm. Satura-
tion errors and mismatch ratio, calculated at breakthrough through equations (13) and (14), respectively, are
shown in Table 2.

5. Discussion

5.1. Shape of the Invasion Structures
The geometry of observed displacement structures is typical of viscous-unstable flow dictated by an unfav-
orable viscosity ratio, and by a sufficiently high flow velocity. In the limiting case of an inviscid invading
fluid, the pressure drop in the invasion structure is negligible and the pressure can be assumed constant.
Except for capillary fluctuations, the pressure in the wetting fluid close to the interface is also constant, and

Figure 6. Example of the steps performed to calculate the interfacial length, including the wetting film into the air phase, for the experiment (first row) and the corresponding 3-D simu-
lation (second row). Through image analysis, the wetting film around the obstacles (a, b) is selected, (c) isolated from the rest, and finally (d) included into the air. In the simulations,
instead of considering (e–g) the distribution of the phases on the front plane, the same information is available by simply interpolate the color function on the midplane of medium,
where (h) the air phase touches the obstacles.
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the pressure is uniform over the outlet boundary of the medium as well. Hence, a small positive perturba-
tion of the invading front (advancing ahead of the rest) increases the pressure gradient in the wetting fluid
between the tip of the perturbation and the outlet, with respect to the unperturbed interface. This pro-
motes the growth of the perturbation and the formation of fingers. Here, in contrast to the classical

Figure 7. Interfacial length as a function of the nonwetting fluid saturation for (a) the homogeneous geometry and (b) the heterogeneous geometry (Exp 5 experiments;
N.I. 5 simulations with no initialization; and W.I. 5 simulation with initialization).

Figure 8. Average longitudinal saturation profile for (a) the homogeneous geometry; (b) the heterogeneous geometry and corresponding 2-D model; and (c) the heterogeneous geome-
try and 3-D model (Exp 5 experiments; N.I. 5 simulations with no initialization; and W.I. 5 simulation with initialization).
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Saffman-Taylor instability, in which the surface tension acts at the scale of the horizontal curvature radius,
the presence of the grains generates capillary forces that act at the scale of the pore necks, which produces
a rough interface with a different finger morphology. The pressure and the velocity fields leading to this
complex invading structure cannot be observed in the experiments, but can be easily visualized from the
numerical simulations, revealing very different velocity patterns in the two phases and a smaller but not
negligible pressure drop in the air (Figure 10).

The qualitative differences between the invading structures observed in the two micromodels (Figure 3a)
are explained by the local effects of the capillary forces. The distribution of pore throats results in a capillary
pressure threshold distribution [Løvoll et al., 2004], which represents the distribution of the minimum entry
pressures needed to invade each pore (see Figure 2b). Since the higher pore size variability of the heteroge-
neous geometry corresponds to a wider distribution of the capillary pressure thresholds, these fluctuations
are more likely to prevail over the viscous pressure drop between pores that are not too far and produce a
more ramified structure at a smaller scale. The different structures observed in the homogeneous and heter-
ogeneous experiments demonstrate that even small differences in the width of the capillary pressure
threshold distribution affect the local fluid distribution in the medium (here, the difference between the
largest and the smallest pore in the heterogeneous geometry is less than 1 order of magnitude). The rela-
tive impact of the capillary threshold fluctuations, with respect to the viscous pressure drop, is quantified
by the fluctuation number, F, defined in section 3.3.

5.2. Capability of the Simulations to Reproduce Experimental Displacement Patterns
The typical finger width is a critical feature to characterize the displacement structure: it corresponds to the
spatial scale over which viscous forces dominate fluctuations in capillary pressure thresholds. Another
important geometrical feature that has been extensively used in the literature is the fractal dimension,
whose value is known for fingering regimes at small and large capillary numbers. The values obtained in
the simulations for these two observables are in excellent agreement with the values measured from the
experimental data. This demonstrates that the numerical model is able to properly capture the relevant
pore-scale physical mechanisms that characterize the drainage process.

The temporal evolution of the interfacial length shows similar trends when comparing the simulations with
the corresponding experiments (see Figure 7). Differences are observed only at breakthrough, which corre-
sponds to the last point of the curve. In the homogeneous geometry, breakthrough occurs at later times in

Figure 9. Experiments and simulations with initialization superimposed on the same image. Yellow represents the area that has been invaded in both experiments and numerical simula-
tions; blue represents the area that has been invaded in the experiment but not in the simulations and red represents the area invaded in the simulations but not in the experiments.
(a) Homogeneous geometry; (b) heterogeneous geometry, 2-D model; and (c) heterogeneous geometry, 3-D model.
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the simulations and the interfacial length at breakthrough is overestimated by 110% if the finger is not ini-
tialized, and by 13% if the finger is initialized. On the contrary, in the simulations performed in the hetero-
geneous geometry, breakthrough occurs earlier compared to the experiment and the interfacial length is
underestimated by 222% and 26% in case of 2-D simulations with and without initialization, respectively.
When the 3-D model is employed, differences are reduced to approximately 215%, with very small changes
depending on the initialization. Similar discrepancies are observed for the saturation errors at breakthrough
(ES, see Table 2).

The average saturation profiles display relatively large fluctuations due the limited lateral extension of the
micromodels, which is not sufficient to provide a good statistics of the largest features of the displacement
structure. In general, there is a good agreement between simulations and experiments in terms of the
observed fluctuations (Figure 8).

The discrepancies between simulations and experiments are due to small differences in the displacement
structures, which are well visible when the invasion structures are superimposed (Figure 9). Some parts of the
displacement structures are not correctly captured by the simulations, which leads to different breakthrough
times. In the following paragraph, we discuss the origin of these discrepancies and how they depend on the
geometry, on the simulation initialization and on the model employed (2-D-integrated or full 3-D).

5.3. Origin of the Discrepancies Between Measured and Simulated Invasion Structures
A deterministic reproduction of the experimental viscous fingering is impossible due to the unstable nature
of the process and to small discrepancies between the numerical and experimental geometries. Even if the
geometry used for simulations has been acquired directly from experimental images, uncertainties remain
on the exact position, shape, and size of the grains. When measuring the geometry from 2-D experimental
images, we do not allow for noncylindrical grain shapes (grains tend to be slightly conical, and their section
can also deviate from the perfect disk) and we do not account for parallax errors in the images. Moreover,
the procedure used to construct the computational grid (split-hexahedral cells are created by snapping and
iteratively refining a background hex-mesh on the triangulated surface geometry) introduces further dis-
crepancies between the numerical porous medium model and the real one, which are of the order of the
typical cell size. Besides pure geometrical discrepancies, there are other sources of error such as the uncer-
tainty on the fluids properties or the uniform contact angle boundary condition assigned on the obstacles.
The latter is only an approximation, because the wettability of the micromodel is likely to be nonuniform
due to imperfections in the manufacturing and changes over sequential usage.

The mismatch ratio is smaller for the heterogeneous geometry (ranging from 17 to 30%) than for the homo-
geneous geometry (from 30 to 40%). This is due to the larger pore size variability of the heterogeneous

Figure 10. Pressure (Pa) and velocity fields (m/s) at breakthrough obtained for the heterogenous geometry using the 2D model. (a) Pressure field in the air phase (the water phase is white);
(b) pressure field in the water phase (the air phase is white); (c) velocity field in the air phase (the water phase is white); and (d) velocity field in the water phase (the air phase is white).
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geometry, which limits the impact of the small discrepancies between the real geometry and the geometry
used in the simulations. Indeed, these discrepancies can be regarded as small differences between the grain
radii distributions, which affect the capillary pressure threshold distributions. We assume that the uncer-
tainty on the real geometry is dominated by the finite resolution of the micromodel image that has been
used to calculate the position of the grains and their radii. The error is then of the order of one pixel size,
i.e., of dr50:04 mm. An error with the same order of magnitude is introduced during the mesh generation.
If we also assume that the errors introduced by measuring the geometry from an experimental image and
the inaccuracies associated with the gridding procedure are similar for both geometries, the probability
that pore-to-pore variations in capillary thresholds dominate the pore-by-pore discrepancies in capillary
threshold between the experimental geometry and the numerical one is larger in the heterogeneous geom-
etry. In fact, the estimated error is about one standard deviation of the grain size distribution in the homo-
geneous geometry and about 0.3 standard deviations of that distribution in the heterogeneous geometry.
In terms of capillary threshold distribution, it corresponds to a relative uncertainty on the capillary thresh-
olds of dr=hri58:3%, where hri is the mean grain radius.

For similar reasons, a better agreement between numerical simulations and experiments is observed when
the finger is initialized. Indeed, when the fluid distribution is initialized from an experimental image in
which the finger has already started to develop, contrasts in viscous forces are significant along the devel-
oping finger, while there are no such contrasts along the initial interface, which has no roughness above
the pore scale. Consequently, when the viscous instability has developed into a finite perturbation, the
effects of the discrepancies between the numerical and the real geometry, which are of capillary origin, are
more easily dominated by viscous effects. In particular, we then observe a suppression of the secondary fin-
gers close to the inlet, as visible in Figures 3b–3e and 8a–8c.

Finally, the question of the comparison between experiments and simulations necessarily raises the ques-
tion of the reproducibility of the experiments. When performing the same primary drainage experiment in a
given geometry several times and under identical boundary conditions, we observe a small variability in the
geometry of the interface at its entrance in the porous medium. As infinitesimal perturbations grow with
time due to the unstable nature of the flow, that variability yields slightly different displacement structures,
and this all the more as the pore space heterogeneity is smaller. In this respect, the experimental data (not
shown here) indicates a mismatch ratio Emm of about 10% between successive experiments performed in
the same homogeneous micromodel. The small variability in the initial conditions for the growth of fingers,
which is the main cause for that mismatch, also explains the impact of finger initialization in the simulations,
discussed above. This is also why the difference in mismatch ratio between simulations performed with or
without initialization is expected to be of the same order as the one observed between experiments per-
formed under identical conditions. These mismatch ratios are indeed of the same order (see Table 2); for
geometries yielding perfectly reproducible experiments, we would observe little difference between simula-
tions performed with and without initialization.

In conclusion, the mismatch ratio between the numerical and experimental displacement structures can be
attributed to the uncertainty on the geometry, to the assumption of uniform wettability, and to slightly dif-
ferent initial conditions at the entrance of the porous medium.

5.4. Accuracy of the 2-D and 3-D Models
In general, good results are obtained both with the 2-D and the 3-D models. When the finger is not initial-
ized, a slightly better match with the experiment is obtained when the 3-D model is employed. However,
by comparing the results of 2-D and 3-D simulations with initialization, we observe that the 2-D simulation
performs slightly better in terms of the error indicators reported in Table 2 (in particular, the saturation error
at breakthrough is almost exact). The reason that the 3-D model is not more accurate than the 2-D model
might be purely a hazard of the statistics, and the relative performance of the two models might change
under different experimental conditions or in different geometries. Furthermore, wetting films in the cor-
ners are explicitly described in the 3-D simulation. If the geometry used in the simulations were identical to
the real geometry, this would help to faithfully describe the pore invasion, which is influenced by the effects
of the film on the pore entry pressure. However, the effects of small discrepancies between the experimen-
tal and the numerical geometries might dominate. In addition, the finger initialization of the 3-D model
from a 2-D experimental image might be not accurate enough, as no information about the fluid
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distribution in the third-dimension is available. Another limit to the accuracy of the 3-D model is the discre-
tization of the vertical direction. We have shown [Ferrari and Lunati, 2013] that a discretization of 15 cells
per obstacle is enough to ensure that the difference to the results obtained with a finer grid be below 5%.
However, the grid-convergence test was performed for 2-D geometries and the resolution required to accu-
rately capture complex 3-D effects might be larger. In any case, our results suggest that, given the remain-
ing uncertainty on the real geometry (and the limited numerical resolution), the simulation of unstable
drainage in quasi-2-D micromodels is not considerably improved by an explicit description of the third-
dimension.

6. Conclusions

We have presented a detailed analysis of unstable primary drainage experiments in micromodels that have
been manufactured by soft lithography and consist of quasi two-dimensional porous media (Hele-Shaw
cell, containing cylindrical obstacles), two degrees of heterogeneity in the grain size distribution. The experi-
ments have been modeled by means of Navier-Stokes simulations in which mass and momentum conserva-
tion equations are solved to obtain pressure and velocity distributions in the pore space. The Navier-Stokes
solver is coupled with the Volume of Fluid (VOF) method, which tracks the evolution of the interface
between the two fluids, by solving a simple advection equation.

Modeling unstable flow regimes (such as the displacement of a more viscous fluid by a less viscous fluid
that has been considered here) is a significant challenge because small errors are amplified and lead to
inaccurate predictions at later times. We have demonstrated that even for an unstable flow regime the
numerical model is able to predict the invasion structure reasonably well. A pore-by-pore comparison
shows that a large part of the invasion structure is predicted correctly. For a more heterogeneous geometry,
up to more than 80% of the invasion structure is captured in the simulation, whereas in the less heteroge-
neous geometry the fraction that is correctly captured can reach 70%.

The remaining differences between simulations and experiments result from uncertainties on the exact
geometry and on fluid properties, from the fact that the initial perturbation cannot be known with an arbi-
trarily large precision, and from discretization errors; the joint impact of this lack of information is enhanced
by the unstable nature of the flow. Simulations in a more heterogeneous geometry lead to a better local
match with the experiments because the large, measurable pore-to-pore variations dominate pore-by-pore
discrepancies between the experimental geometry and the numerical geometry. On the contrary, simulat-
ing drainage in a weakly heterogeneous geometry is more challenging because the uncertainties on the
real dimensions of the pore necks may be of the same order of magnitude as the pore-to-pore variability of
pore necks in the medium.

In most applications, the geometry of the porous medium is never known exactly and a statistical descrip-
tion is used both for the geometry and the resulting fluid structures. Therefore, the numerical model should
be able to correctly reproduce the main statistical properties of the process. We have shown that the
numerical model is indeed able to provide an excellent estimate of the most important statistical indicators
(e.g., typical width of air fingers, fractal dimension of the air pattern, air-water interfacial length, air satura-
tion at breakthrough, and average longitudinal air saturation profile).

Even with the relatively coarse discretization required to balance accuracy and computational costs, our
results demonstrate that both 2-D integrated and 3-D models are able to accurately model the pore-scale
processes occurring during unstable displacement in micromodels. The numerical model is reliable and can
be used to complement experimental observations with information on quantities that are difficult to mea-
sure or that are not at all accessible in the laboratory. An example is the velocity field (see Figure 10), which
is of paramount importance to understand how transport and mixing of a solute occur within each fluid
phase during the displacement process.
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