Quasi-geostrophic modes in the Earth’s fluid core with an outer stably stratified layer
Jérémie Vidal, Nathanaël Schaeffer

To cite this version:

HAL Id: insu-01110339
https://hal-insu.archives-ouvertes.fr/insu-01110339v2
Submitted on 26 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
Quasi-geostrophic modes in the Earth’s fluid core with an outer stably stratified layer

J. Vidal1,2 and N. Schaeffer1,2

1 Univ. Grenoble Alpes, ISTerre, F-38041 Grenoble, France
2 CNRS, ISTerre, F-38041 Grenoble, France

June 26, 2015

Abstract

Seismic waves sensitive to the outermost part of the Earth’s liquid core seem to be affected by a stably stratified layer at the core-mantle boundary. Such a layer could have an observable signature in both long-term and short-term variations of the magnetic field of the Earth, which are used to probe the flow at the top of the core. Indeed, with the recent SWARM mission, it seems reasonable to be able to identify waves propagating in the core with period of several months, which may play an important role in the large-scale dynamics.

In this paper, we characterize the influence of a stratified layer at the top of the core on deep quasi-geostrophic (Rossby) waves. We compute numerically the quasi-geostrophic eigenmodes of a rapidly rotating spherical shell, with a stably stratified layer near the outer boundary. Two simple models of stratification are taken into account, which are scaled with commonly adopted values of the Brunt-Väisälä frequency in the Earth’s core.

In the absence of magnetic field, we find that both azimuthal wavelength and frequency of the eigenmodes control their penetration into the stratified layer: the higher the phase speed, the higher the permeability of the stratified layer to the wave motion. We also show that the theory developed by Takehiro and Lister [2001] for thermal convection extends to the whole family of Rossby waves in the core. Adding a magnetic field, the penetrative behaviour of the quasi-geostrophic modes (the so-called fast branch) is insensitive to the imposed magnetic field and only weakly sensitive to the precise shape of the stratification.

Based on these results, the large-scale and high frequency modes (1 to 2 month periods) may be detectable in the geomagnetic data measured at the Earth’s surface, especially in the equatorial area where the modes can be trapped.

1 Introduction

The existence of a stably stratified layer at the top of the Earth’s liquid core can have consequences on different aspects of the Earth’s core dynamics. Such a layer can have a chemical origin with the accumulation of light elements coming from the growth of the inner core [Fearn and Loper, 1981, Braginsky, 2007, Gubbins and Davies, 2013] or from chemical interactions with the mantle if the outer part of the core is under-saturated in oxygen and silicium [Buffett and Seagle, 2010]. It can also have a thermal origin, if the heat flux at the core mantle-boundary is lower than the adiabatic heat flux in the core. With their recent
estimations of the thermal iron conductivity in the Earth’s core, de Koker et al. [2012] and Pozzo et al. [2012] claim that such a layer can be thermally stable at the top of the core. The strength of the stratification in such a layer is characterized by the Brunt-Väisälä frequency

\[N = \sqrt{-\frac{g}{\rho} \frac{dp}{dr}}, \]

where \(\rho(r) \) is the density profile as a function of the radius, and \(g \) the acceleration of gravity, which is considered constant in the thin layer [e.g. Crossley, 1984]. A stably stratified layer corresponds to the case \(N^2 > 0 \), and a convective region to \(N^2 < 0 \). The comparison between \(N \) and the planetary rotation rate \(\Omega \) allows to distinguish two stratification regimes: weak stratification when \(N < 2\Omega \) and strong stratification when \(N > 2\Omega \).

The presence of such a stratified layer at the top of the outer core has been advocated by some seismologists to explain travel-time anomalies of seismic body waves sensitive to the outermost part of the Earth’s liquid core. It is however difficult to detect small density anomalies in this region, because body waves are also affected by the strong heterogeneities of the D” layer at the base of the mantle [Souriau, 2007]. Optimistic estimations give a thickness of the stratified layer between 50-100 km [Lay and Young, 1990] and 300 km [Helfrich and Kaneshima, 2010], with a weak stratification corresponding to \(N/2\Omega \sim 0.1 \) in the latter case.

In a stratified layer, waves in which the Coriolis and buoyancy forces play an important role exist [Friedlander and Siegmann, 1982]. These inertia-gravity waves have been investigated for several decades in the geophysical and astrophysical contexts [Olson, 1977, Crossley and Rochester, 1980, Crossley, 1984, Friedlander, 1985, Dintrans et al., 1999]. If we could detect them, they would also provide evidence for the existence of a stably stratified layer in the outermost part of the Earth’s core. The possible detection of these waves in the geodetic high frequency spectrum attracted attention some years ago, thanks to the development of superconducting gravimeters [Melchior and Ducarme, 1986, Aldridge and Lumb, 1987]. Unfortunately, the observations in the high frequency range do not require a stably stratified layer to explain the data [Melchior et al., 1988], mainly because of the uncertainty on the frequencies of the waves [Rieutord, 1995]. The evolution of the magnetic field of the Earth also gives constraints on the stratification at the top of the core [Gubbins, 2007].

Although still debated, and with characteristics such as depth and \(N \) not known, the existence of such a layer would give constraints on the thermal history of the core [Labrosse et al., 1997, Lister and Buffett, 1998, Labrosse, 2003]. This layer may also modify the dynamics of the Earth’s liquid core. Zhang and Schubert [1997], Takehiro and Lister [2001, 2002] and more recently Nakagawa [2011] studied the penetration of columnar convective motions of a rapidly rotating spherical shell in a stably stratified layer located at the outer boundary. Their results show that the stratification acts as an interface, which can be crossed by large-scale motions while small-scale ones are trapped below the layer when the stratification is strong enough. Such a layer has then the ability to partially hide geophysical flows inside the Earth’s core, which has important implications for core flow inversion.

Indeed, using recordings of the magnetic field, it is possible to infer the flow at the core surface using inversion techniques [Holme, 2007]. Assuming a quasi-geostrophic (columnar) flow, it is then possible to reconstruct the flow in the core interior [see e.g. Pais and Jault, 2008]. Although there is evidence for quasi-geostrophic dynamics in the Earth’s core [Gillet et al., 2011], the presence of a stratified layer may prevent us to reconstruct part of the interior flow [Bloxham, 1990]. Moreover, a stratified layer can host its own eigenmodes, which may
then be distinct from the flow in the bulk of the core [Braginsky, 1998, 1999, Buffett, 2014]. In this study, we characterize the effect of a stratified layer on otherwise quasi-geostrophic inertial modes in the Earth’s core, also known as Rossby modes. Their time-scale is typically of a few months, and their signature may be actually seen in the geomagnetic data from the new SWARM mission [Olsen et al., 2013]. Using a numerical eigenmode solver, we compute the linear hydromagnetic modes in a simplified model of the Earth’s core including a stratified layer at the outer boundary. The effect of an imposed magnetic field on the modes is briefly considered in the case of a simple toroidal magnetic field depending only on the cylindrical radius s [Malkus, 1967].

The paper is divided as follows. Section 2 presents the mathematical modelling and section 3 the numerical methods used to solve the problem. The results are shown in section 4 with an emphasis on the shape of the eigenmodes and the dependence of their penetration length on governing parameters. Section 5 discusses our findings. We end the paper with a conclusion.

2 Mathematical modelling

2.1 Basic equations

The geometry of the system is illustrated in the Figure 1a. We consider a rapidly rotating spherical shell of inner radius R_i and outer radius R_o, surrounded by perfectly insulating mantle and inner core. We assume an aspect ratio $\gamma = R_i/R_o = 0.35$, similar to that of the Earth’s core. The shell, the mantle and the inner sphere are rotating at the same angular velocity $\Omega = \Omega \hat{z}$ aligned with the unitary vertical axis \hat{z} in cylindrical polar coordinates (s, ϕ, z). We work in the rotating reference frame attached to the mantle, in cylindrical polar coordinates or in spherical polar coordinates (r, θ, ϕ). The velocity v, the magnetic field B, the temperature T and the density ρ are subjected to small perturbations around a basic
state \((U_0, B_0, T_0, \rho_0)\). Let us write

\[
\begin{align*}
[v, B](r, t) &= [U_0, B_0](r) + [u, b](r, t), \\
T(r, t) &= T_0(r) + \Theta(r, t), \\
\rho(r, t) &= \rho_0 (1 - \alpha \Theta(r, t)),
\end{align*}
\]

where \(\alpha\) is the volume coefficient of thermal expansion and \((u, b, \Theta, -\rho_0 \alpha \Theta)\) the perturbations of small amplitude. For the sake of simplicity, we impose \(U_0(r) = 0\), which corresponds to a solid-body rotation in the inertial frame. We also assume that the background density \(\rho_0\) is constant, neglecting the variations due to adiabatic compression across the shell [Rientord 1995]. We take into account the density perturbation only in the gravity term with the Boussinesq approximation, considering a gravity field of the form \(g = -g_0 \hat{r}\) with \(g_0 R_o\) the acceleration of gravity at the outer boundary and \(\hat{r}\) the unitary radial vector.

To keep the model simple, we suppose that the background magnetic field \(B_0\) in the shell is either an axial field

\[
B_0 = B_0 \hat{z},
\]

or the Malkus field [Malkus 1967]

\[
B_0(r) = B_0 b_0(r) = B_0 r \sin \theta \hat{\phi}.
\]

The latter is a purely toroidal and azimuthal field which increases with the cylindrical radius \(s = r \sin \theta\). This assumption is consistent with our choice for the background velocity, since no basic velocity \(U_0\) is needed for the basic state to be in equilibrium (the resulting Lorentz force is balanced by the pressure gradient).

We use \(R_o\) as the length scale, \(\Omega^{-1}\) as the time scale, \(\rho_0 R_o \Omega^{-2}\) as the pressure scale, \(\Omega^2 R_o / \alpha g_o\) as the temperature scale and \(\sqrt{\mu_0 \rho_0 \Omega R_o}\) as the magnetic scale. As we are interested by the eigenmodes, we neglect the non-linear terms and the dimensionless equations satisfied by the perturbations are

\[
\begin{align*}
\partial_t u + 2 \hat{z} \times u &= -\nabla P + Le \left[(\nabla \times b) \times b_0 + (\nabla \times b_0) \times b \right] + r \Theta \hat{r} + E \nabla^2 u, \\
\partial_t \Theta &= -\frac{N^2(r)}{\Omega^2} u \cdot \hat{r} + \frac{E}{Pr} \nabla^2 \Theta, \\
\partial_t b &= Le \nabla \times (u \times b_0) + E_\eta \nabla^2 b.
\end{align*}
\]

Five governing parameters appear in the previous equations, namely the Ekman number \(E\), the magnetic Ekman number \(E_\eta\), the Prandtl number \(Pr\), the Lehnert number \(Le\) and the dimensional Brunt-Väisälä frequency \(N\). They are defined by

\[
E = \frac{\nu}{\Omega R_o^2}, \quad E_\eta = \frac{\eta}{\Omega R_o^2}, \quad Pr = \frac{\nu}{\kappa}, \quad Le = \frac{B_0}{\sqrt{\rho_0 \mu_0 \Omega R_o}} \quad \text{and} \quad N(r) = \sqrt{\alpha g_o \frac{dT_0}{dr}},
\]

with \(\nu, \kappa\) and \(\eta\) respectively the viscous, thermal and magnetic diffusivities and \(B_0\) the strength of the background magnetic field. In the computations, we take \(Pr = 0.1 - 10\) and \(Le = 10^{-4}\). Because of numerical constraints, we choose \(E = E_\eta = 10^{-7}\).
Equations (7), (8) and (9) are completed with boundary conditions on the velocity, the temperature and the magnetic field. We impose on both shells the no-slip boundary condition for the velocity field
\[u = 0 \] (11)
and a constant heat flux
\[\frac{\partial \Theta}{\partial r} = 0. \] (12)
The magnetic field boundary conditions are the continuity of \(b \) and the continuity of the radial component of \(\nabla \times b \). The spherical harmonic expansion (introduced below) allows to write this as a boundary condition.

2.2 Basic state for the stratification

The Brunt-Väisälä frequency \(N(r) \) in the core is highly speculative. Following Lister and Buffett [1998], let us assume that the spherical shell is divided in two parts (Figure 1a). A stably stratified layer with \(N^2(r) > 0 \) is located above a convective core of dimensionless radius \(d \), which is supposed to be neutral with respect to the stratification \(N^2(r) = 0 \). This assumption filters out the coupling between waves and convection [Rieutord, 1995]. We set the radius \(d = 0.96 \), which corresponds to a stratified layer of thickness 140 - 150 km. This thickness belongs to the range estimated by seismic studies [Helffrich and Kaneshima, 2010]. It is also inferred by Buffett [2014] to match the geomagnetic secular variation of the axial dipole with slow Magneto-Archimedes-Coriolis (MAC) waves. Following Takehiro and Lister [2001, 2002] and Nakagawa [2011], we adopt
\[N(r) = N_0 \sqrt{1 - \frac{1}{2} \left[1 - \tanh \left(\frac{r - d}{a} \right) \right]} \] (13)
which is illustrated in Figure 1b. \(N_0 \) is the Brunt-Väisälä frequency at the outer boundary and \(a = 0.005 \) the transition thickness between the neutral core and the stratified layer. \(N(r) \) is thus a smooth profile in the core with a roughly constant value \(N(r) \simeq N_0 \) in the outer layer. Different values of \(N_0 \) are taken into account. In addition, we also consider a profile similar to the one used by Rieutord [1995] and Buffett [2014], i.e.
\[N(r) = \begin{cases} 2N_0(r - d)/(1 - d) & \forall r \geq d \\ 0 & \forall r < d \end{cases} \] (14)
It is linear in the stratified layer, with a mean value \(N_0 \) and a maximum value \(2N_0 \) at the outer boundary.

3 Numerical modelling

3.1 Spectral method

As they are solenoidal, \(u \) and \(b \) are decomposed into poloidal and toroidal parts
\[u = \nabla \times \nabla \times (Ur) + \nabla \times (Vr), \] (15)
\[b = \nabla \times \nabla \times (Gr) + \nabla \times (Hr), \] (16)
with \((U, G)\) and \((V, H)\) the poloidal and toroidal scalars. The scalars \((U, V, G, H, \Theta)\) are then expanded on orthonormalized spherical harmonics \(Y_{lm}(\theta, \phi)\), of degree \(l\) and order \(m\), as

\[
[U, V, \Theta](r, t) = \sum_{l=m}^{\infty} [U_{lm}, V_{lm}, \Theta_{lm}](r) Y_{lm}(\theta, \phi) \exp(\lambda t),
\]

\[(17)\]

\[
[G, H](r, t) = \sum_{l=m}^{\infty} [G_{lm}, H_{lm}](r) Y_{lm}(\theta, \phi) \exp(\lambda t).
\]

\[(18)\]

Since the basic state \(\textbf{U}_0, \textbf{B}_0\) is axisymmetric, there is no coupling between Fourier modes \(m\) in the equations (7) to (9). Thus, one can seek solutions \((u, \Theta, b)\) with a single azimuthal wavenumber \(m\). As we are interested in the eigenmodes of the system, we assume that the time dependence of all perturbations is proportional to \(\exp(\lambda t)\), with the complex eigenvalue

\[
\lambda = \tau + i\omega
\]

\[(19)\]

where \(\tau\) is the growth rate of the mode and \(\omega\) its frequency, both non-dimensional.

Thanks to the spectral decomposition, the boundary conditions are easy to express. On the two boundaries, the no-slip condition becomes

\[
U_{lm} = \frac{dU_{lm}}{dr} = V_{lm} = 0
\]

\[(20)\]

and the constant heat flux condition

\[
\frac{d\Theta_{lm}}{dr} = 0.
\]

\[(21)\]

With the insulating boundary condition, the magnetic field matches a potential field in both the mantle and the inner sphere, resulting to

\[
\frac{dG_{lm}}{dr} - \frac{l}{r} G_{lm} = H_{lm} = 0
\]

\[(22)\]

on the inner boundary \((r = \gamma)\) and

\[
\frac{dG_{lm}}{dr} + \frac{l+1}{r} G_{lm} = H_{lm} = 0
\]

\[(23)\]

on the outer boundary \((r = 1)\).

3.2 Symmetry considerations

The equations (7 - 9) are symmetric or anti-symmetric with respect to the equatorial plane. This implies that solutions can be characterized by their symmetry with respect to the equator \([\text{Gubbins and Zhang, 1993}]\).

In the following, we focus on equatorially symmetric \(u\) and \(\Theta\), because quasi-geostrophic flows have this equatorial symmetry. They satisfy

\[
[u_r, u_\theta, u_\phi](r, \theta, \phi) = [u_r, -u_\theta, u_\phi](r, \pi - \theta, \phi),
\]

\[(24)\]

\[
\Theta(r, \theta, \phi) = \Theta(r, \pi - \theta, \phi).
\]

\[(25)\]
Figure 2: Sparse matrices A and B in the non-magnetic case. $L_{max} = 6$ and $N_r = 20$. The black lines separate the poloidal and toroidal components of the velocity and the temperature field. The first line of blocks represents the evolution equation of the poloidal component of the velocity (coupled to the toroidal flow by the Coriolis force and to the temperature by the Buoyancy force), the second line is the equation for the toroidal velocity, and the last line is the equation for the temperature (coupled to the poloidal flow only in the stratified layer).

Taking the symmetry of Y_l^m into account, the spherical harmonic expansions for the poloidal and toroidal components of \mathbf{u} (and \mathbf{b}) alternate to match the equatorial symmetry. Note also that the Coriolis force couples U_l^m and V_{l+1}^m. Following Schmitt [2010], the symmetric part of \mathbf{u} and Θ is given by

$$(U_l^m, V_{l+1}^m, \Theta_l^m), \quad (26)$$

for a given azimuthal number m and with $l = m, m+2, m+4, \ldots$

Because \mathbf{u} is symmetric, the symmetry of \mathbf{b} is the same as the one of \mathbf{B}_0: \mathbf{b} is equatorially symmetric for the Malkus field, while it is equatorially antisymmetric for the axial magnetic field. Hence, for the magnetic field we add to the state vector

$$(G_l^m, H_{l+1}^m) \quad \text{or} \quad (G_{l+1}^m, H_l^m) \quad (27)$$

respectively for symmetric or antisymmetric imposed fields.

3.3 Numerical implementation

Substituting from (17) and (18) into the governing equations (7) to (9) leads to a set of linear differential equations which forms a generalized eigenvalue problem with its boundary conditions. To get numerical solutions, the spherical harmonic expansions are truncated at the harmonic degree L_M and the differential operators are represented by a second order finite difference scheme on an irregular mesh of N_r levels, adjusted to properly resolve the Ekman boundary layers. The eigenvalue problem is now in a matrix form as a complex, non-hermitian and generalized eigenvalue problem

$$AX = \lambda BX. \quad (28)$$

λ is the eigenvalue and X is the associated symmetric eigenvector given by

$$X = (U_l^m(r_i), V_{l+1}^m(r_i), \Theta_l^m(r_i), G_l^m(r_i), H_{l+1}^m(r_i))^T, \quad (29)$$
with \(i = 0, 1, \ldots, N_r \) and \(l = m, m + 2, m + 4, \ldots \) for a symmetric eigenmode permeated by a symmetric imposed field. The two matrices \(A \) and \(B \), collecting the terms on the left-hand side and right-hand side of the equations, have approximately \((5L_MN_r/2)^2\) elements. In order to have good spatial and spectral resolutions, we use \(L_M \sim 350 \) and \(N_r \simeq 850 \) for Ekman number \(E = 10^{-7} \). Matrices \(A \) and \(B \) have a large number of elements, but most of them are zero. They are stored as sparse matrices in order to reduce the required memory (see Figure 2).

Following Rieutord et al. [1997] and Dintrans et al. [1999], the linear eigenvalue problem (28) is solved using the shift-and-invert spectral transformation: instead of solving the problem (28), the related problem

\[
(A - \sigma B)^{-1}B\mathbf{X} = \mu \mathbf{X}
\]

is solved with \(\sigma \) the shift and the new eigenvalue \(\mu \) related to \(\lambda \) by

\[
\mu = \frac{1}{\lambda - \sigma}.
\]

With this spectral transformation, it is easier to get the least damped quasi-geostrophic modes, imposing \(\sigma = i\omega \) with \(\omega \ll 1 \). Only eigenvalues with absolute residuals \(|(A - \sigma B)^{-1}B\mathbf{X} - \mu \mathbf{X}| < 10^{-12}\) are accepted as good eigenvalues.

We wrote a Python code, nicknamed Singe (Spherical INertia-Gravity Eigenmodes), that relies on the SLEPc library [Hernandez et al., 2005] to solve the eigenvalue problem using the restarted Krylov-Schur method [Hernandez et al., 2009] together with the shift-and-invert strategy. SLEPc is an open-source scientific library developed to efficiently solve large and sparse eigenvalue problems on parallel computers. It is itself based on PETSc [Balay et al., 1997, 2014], another open-source library intended to solve scientific problems modelled by partial differential equations. Finally, Singe uses the SHTns library [Schaeffer, 2013] for the spherical harmonic transforms.

The Singe code was benchmarked with the theoretical solutions of Zhang et al. [2001], Liao et al. [2001] and Zhang et al. [2003] in the full sphere. As benchmarks for the spherical shell geometry, we used the numerical results of Rieutord et al. [1997] without stratification and of Dintrans et al. [1999] with a constant stratification in the shell.

Singe is available at https://bitbucket.org/nschaeff/singe as free software.

4 Results

4.1 Description of eigenmodes

To study the behaviour of quasi-geostrophic inertial modes in the presence of a stratified layer, we first focus on the non-magnetic case. Characteristics of some modes are gathered in Table 1. Each mode is specified by a triplet \((\omega, m, n_c)\), with \(m \) the azimuthal wave number and \(n_c \) the number of zero-crossings of a velocity component \((u_s \text{ or } u_\phi)\) along a cylindrical radial profile (measuring latitudinal variations). The dimensionless frequency \(\omega \), with corresponding periods ranging from one to several months, is always negative because the eigenmodes propagate eastwards. It is a characteristic of Rossby waves in the Earth’s core geometry [e.g. Busse, 1970]. Indeed, looking at the different forces, we find that the modes are dominated by the Coriolis force, with some exceptions in the stably stratified layer (see below).
Along a meridian, the wave number \(m \) and \(n \) define a given mode. The frequency depends on the length scale of the modes. For a given azimuthal number \(m \), high frequency modes are large scale modes with a small number of columns \(n \), while low frequency are small scale modes with a large number of columns.

Table 1: Wave number \(m \) (azimuthal), approximative number of quasi-geostrophic columns along a meridian \(n_c \), dimensionless frequency \(\omega \) and period in months of some numerical eigenmodes for four values of \(N_0 \), without magnetic field. Computations at \(E = 10^{-7} \) and \(Pr = 0.1 \). \(N(r) \) is given by expression (13). In addition, we have also computed the same modes by replacing the stratified layer by a solid layer, with stress-free (solid SF) or no-slip (solid NS) boundary conditions.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n_c)</th>
<th>(N_0 = 0)</th>
<th>(N_0 = \Omega)</th>
<th>(N_0 = 2\Omega)</th>
<th>(N_0 = 10\Omega)</th>
<th>solid SF</th>
<th>solid NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>-0.0046</td>
<td>-0.0051</td>
<td>-0.0054</td>
<td>-0.0060</td>
<td>-0.0051</td>
<td>-0.0043</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-0.014</td>
<td>-0.017</td>
<td>-0.020</td>
<td>-0.023</td>
<td>-0.015</td>
<td>-0.014</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.019</td>
<td>-0.020</td>
<td>-0.023</td>
<td>-0.025</td>
<td>-0.020</td>
<td>-0.019</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>-0.069</td>
<td>-0.075</td>
<td>-0.080</td>
<td>-0.084</td>
<td>-0.072</td>
<td>-0.066</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-0.021</td>
<td>-0.024</td>
<td>-0.029</td>
<td>-0.031</td>
<td>-0.022</td>
<td>-0.021</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>-0.079</td>
<td>-0.084</td>
<td>-0.093</td>
<td>-0.093</td>
<td>-0.083</td>
<td>-0.076</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-0.018</td>
<td>-0.020</td>
<td>-0.022</td>
<td>-0.024</td>
<td>-0.018</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Coriolis force tends to align the flow along the spin axis to create Taylor columns, and the modes are mainly quasi-geostrophic inertial modes (almost invariant along the rotation axis). The frequency depends also on the length scale of the modes. For a given azimuthal number \(m \), high frequency modes are large scale modes with a small number of columns \(n \), while low frequency are small scale modes with a large number of columns.

The precise shape of the modes depends on the stratification, which may influence the penetration of the flow in the outer layer [Zhang and Schubert, 1997, Takehiro and Lister, 2001]. However, the overall pattern of the modes in the neutral part of the core smoothly evolves with the stratification strength \(N_0 \). For commonly adopted values of the Brunt-Väisälä frequency \(N_0 \), the number of columns of a mode remains approximatively the same, while the exact position and thickness of the columns change near the outer layer. A smooth increase of \(N_0 \) allows us to study the evolution of the modes. It can be done with an iterative process to follow a given mode defined by \((m,n_c)\). As observed in Table 1, \(\omega \) slowly increases with \(N_0 \). This slow increase of the frequency \(\omega \) cannot be attributed to a geometrical effect. Indeed, when replacing the stratified layer by a solid layer, the variation in frequency is much smaller, especially at large wave-numbers (see Table 1).

The cylindrical components \(u_r \) and \(u_\phi \) in the equatorial plane of some modes are shown in Figure 3. It is worth noting that lower frequency modes are spiralling more than higher frequency modes. The spiralling appears because the viscosity is overestimated in our computations (see appendix A for more details). Finally, the kinetic energy is dominated by the azimuthal component of the velocity \(u_\phi \), which is more concentrated in the equatorial region when the frequency is higher. This phenomenon, called trapping, is known for inertial waves [Zhang, 1993] as well as for inertia-gravity waves [Crossley, 1984, Friedlander, 1985]. When \(E < 10^{-7} \), we observe that this trapping becomes more efficient. Unfortunately, it is then expensive to resolve numerically, because it needs enough grid points to capture the boundary layer and enough spherical harmonics to describe the trapping. For these reasons, we set the Ekman number to \(10^{-7} \) in our computations.

Let us now switch on the background magnetic field \(B_0 \) given by expression (6). Without
Figure 3: Contours of the cylindrical components u_z and u_ϕ of four numerical eigenmodes from Table 1 (without magnetic field) in the plane $(m, |\omega|)$. ω is the dimensionless frequency. Contours are shown in the equatorial plane as seen from above. The vertical component u_z is not shown because it vanishes in the equatorial plane. The velocity is normalized by the maximum value of u_z. The black dashed circles represent the transition between the neutral core and the stably stratified layer. The modes were computed at $E = 10^{-7}$ and $Pr = 0.1$. $N(r)$ is given by (13) and $N_0 = \Omega$. (a) High-frequency mode $m = 1$. (b) Low-frequency mode $m = 1$. (c) High-frequency mode $m = 6$. (d) Low-frequency mode $m = 6$.
stratification, a background magnetic field splits the modes into ”slow” and ”fast” magneto-
Coriolis (MC) waves, the latter being essentially pure inertial waves [see e.g. Zhang et al.
2003].

We computed these fast modes with $Pr = 0.1$ and a Lehnert number $Le = 10^{-4}$ corre-
sponding to $B_0 = 3$ mT [in the range estimated for the Earth’s core, see Gillet et al.,
2010]. For the Malkus field (eq. 6), we were able to compute the modes down to $E = E_\eta = 10^{-7}$. Computation of the modes with an axial field (eq. 5) was numerically more demanding, probably because of the additional coupling terms in the corresponding matrix. Indeed, in that case we were able to compute the modes down to $E = E_\eta = 10^{-5}$ only. For azimuthal wave-numbers ranging from $m = 1$ to $m = 26$, the frequency ω changes by less than 1% and the shape of the modes is indistinguishable from the ones obtained without magnetic field. Note however that the overall damping rate of the mode is affected, especially when $E = E_\eta = 10^{-5}$, but we expect it to remain small in the Earth’s core, where $E_\eta \sim 10^{-10}$. This holds for every eigenmode considered here, for all values of the Brunt-Väisälä frequency N_0 investigated here, and for the two magnetic field models (Malkus and axial). It shows that the eigenmodes considered in this study are barely modified by the background magnetic field, because they are mainly ”fast” quasi-geostrophic inertial modes. These results are in agreement with the theoretical predictions of Malkus [1967] and Zhang et al. [2003] for a homogeneous fluid contained in a full sphere. Furthermore, Canet et al. [2014] considered a quasi-geostrophic model of magneto-Coriolis (MC) waves and showed that various shapes of a toroidal background magnetic fields do not affect the fast modes either.

Since our quasi-geostrophic modes are not affected significantly by the magnetic field, with or without a stratified layer, we will no longer consider the magnetic field in the remainder of this paper, effectively solving only equations (7) and (8) with $Le = 0$. This simplifies the numerical study quite a bit. Note that although the fast branch considered here is unaffected, the slow branch will most certainly be affected by the magnetic field, but this is beyond the scope of this paper.

4.2 Penetration into the stratified layer

In order to quantify the penetration of the quasi-geostrophic modes into the stratified layer, we compute profiles at a given distance s from the rotation axis. Figure 4 shows the profiles of the azimuthal average of the quasi-geostrophic kinetic energy $u_s^2 + u_\phi^2$ along the axial direction, for three values of N_0 and two wave numbers m. For a given N_0, the modes have approximately the same frequency. The points are chosen along the column located at the cylindrical radius $s = 0.7$, where the energy is non-zero in the equatorial plane. The sharp bump before the decrease of the kinetic energy, observed on all curves, corresponds to the Ekman layer. When $N_0 = 0.1 \Omega$, the Taylor column penetrates into the outer layer. The flow just below the Ekman layer is nearly the same as that in the neutral core. When $N_0 = \Omega$, the kinetic energy decreases in the layer, although it does not vanish before the Ekman layer is reached. When $N_0 = 2 \Omega$, the kinetic energy is further reduced, and even more so for higher azimuthal modes m.

From these profiles (Fig. 4), we can define a transmission coefficient T. It is our key parameter to compare quantitatively the penetration of the flow inside the stably stratified outer layer, for eigenmodes of various shapes and frequencies. Let us define T as the ratio of the value of the square root of the azimuthal average of the quasi-geostrophic kinetic energy $u_s^2 + u_\phi^2$, taken just under the Ekman boundary layer (Figure 4), to that in the equatorial
Figure 4: Distribution of the azimuthal average of the quasi-geostrophic kinetic energy $u_z^2 + u_\phi^2$, along a quasi-geostrophic column located near the cylindrical radius $s = 0.7$, for some high frequency modes of the Table 1, computed at $E = 10^{-7}$ and $Pr = 0.1$. $N(r)$ is given by eq. (13). The horizontal axis $z - z_{layer}$ represents the difference between the vertical coordinate z along the column and the coordinate of the bottom of the stratified layer z_{layer}. The vertical dashed line marks the position of the transition between the neutral core and the stably stratified layer. For each m, the modes have approximately the same shape in the neutral core. The bumps in the energy at the right-hand side of the curves show the effect of the Ekman pumping. The curves are normalized by the value of their energy in the equatorial plane (not shown).
Figure 5: Maps of the amplitude of the transmission coefficient T as a function of the azimuthal number m and the dimensionless frequency $|\omega|$ of the modes. Top row: layer with constant Brunt-Väisälä frequency (eq. 13); bottom row: layer with linear Brunt-Väisälä frequency (eq. 14). The Brunt-Väisälä frequency is set to $N_0 = \Omega$ on the left column and $N_0 = 2\Omega$ on the right column. Values are computed at the cylindrical radius $s = 0.7$. T is interpolated between the black dots which represent numerical modes for which there are quasi-geostrophic columns at s where the kinetic energy is non-zero. In the two models, the stratified layer has the same thickness (140 - 150 km).
Figure 6: Dependence of transmission coefficient T with the dimensionless phase velocity $c_\phi = |\omega|/m$ of the modes, for various cylindrical radius s and Brunt-Väisälä frequency N_0. Computations were performed at $E = 10^{-7}$, $Pr = 0.1$ and $N_0 = \Omega$. T is computed automatically for all the modes. Only the results for constant Brunt-Väisälä frequency (eq. 13) are shown.

Because $N(r)$ is not known in the Earth’s core, Figure 5 also compares the effect of two stratification profiles (13) and (14). The modes can penetrate slightly deeper in the layer with the linear profile, but the overall distribution is similar. Therefore, the exact shape of $N(r)$ does not seem to affect the leading order behaviour for a layer with a given thickness. Finally, we have also observed that the thicker the layer, the less the modes penetrate into the outer layer, which is the expected behaviour [Takehiro and Lister, 2001]. The lines of constant transmission coefficient T displayed in Figure 5 suggest that a single parameter may control T. Figure 6 shows the transmission coefficient T as a function of the dimensionless angular phase velocity $c_\phi = |\omega|/m$ for profiles taken on modes with various m and ω, three cylindrical radii s, and two values of N_0. The modes with different m and ω collapse quite well, although a residual dependence on s (the location of the quasi-geostrophic column in the shell) and N_0 is now apparent. Columns at high and mid latitudes can penetrate slightly better in the outer layer than columns at low latitudes. At a given s, modes with a larger phase velocity are in general less affected by the outer layer than the others. There are also some departures from the general trend, which are likely to come from the automatic
procedure to follow modes as the parameters are changed and the automatic evaluation of T.

4.3 Equatorial trapping

A peculiar behaviour is observed near the equator. There, we observe that modes of dimensionless frequency $|\omega| \gtrsim 0.02$ and of small wave numbers $m \leq 3$ can penetrate inside the equatorial region, where the azimuthal component u_ϕ can be equatorially trapped in the stably stratified layer. This phenomenon is illustrated in Figure 7. In this case, the modes still have $\omega < 0$, reminding of Rossby waves, but they are now governed by both Coriolis and buoyancy forces. This trapping has been predicted by theoretical studies [Friedlander and Siegmann, 1982, Crossley, 1984]. Note however that a strong dipolar magnetic field may release the trapped modes [Bergman, 1993].

4.4 Thermal vs chemical stratification

Thermal and chemical buoyancy are governed by the same advection-diffusion equations, the main difference being the very different value of their respective diffusivity. Estimates of diffusivities in the Earth’s core suggest that representative values of Prandtl number are $Pr \gtrsim 0.1$ for thermal diffusivity and $Pr \gtrsim 10$ for the diffusivity of light elements in the core. We can thus study the effect of thermal or chemical stratification by adjusting the value of the Prandtl number in our model. Figure 8 shows the dependence of the absolute dimensionless frequency $|\omega|$ and of the transmission coefficient T as a function of Pr, for some high frequency modes of different wave numbers m. For $Pr > 10$, an asymptotic regime is reached where both ω and T do not depend on Pr any more. In any case, Pr has only a small effect on the penetration of the columns in the outer layer.
Figure 8: Evolutions of the absolute dimensionless frequency $|\omega|$ and of the transmission coefficient T as a function of the Prandtl number Pr of some quasi-geostrophic modes. Computations at fixed $E = 10^{-7}$ and for model (13) with $N_0 = \Omega$.

5 Discussion

5.1 Comparison with previous studies

We have shown that a sufficiently stratified layer can affect the penetration of quasi-geostrophic inertial modes based on their phase speed. A theoretical value for the penetration distance δ has been derived by Takehiro and Lister [2001], using a local plane layer approximation,

$$\delta_{th} = \frac{2\Omega}{N_0} \frac{1}{\sqrt{k^2 + l^2}}$$ (32)

where k and l are the wavenumbers in the azimuthal and radial directions respectively. Because l is difficult to estimate, they further simplify their expression assuming isotropy $l = k = m/s$ for a global neutral convection mode of azimuthal wavenumber m. Although this hypothesis is questionable (and we will discuss a better one below), they find good agreement between the penetration length obtained in numerical simulations and their estimate

$$\delta_m = \frac{2\Omega}{N_0} \frac{s}{\sqrt{2}m},$$ (33)

as long as $\delta \lesssim 0.4$. However, this last expression δ_m translates into a transmission coefficient T that depends only on the azimuthal wavenumber m, in contradiction with our findings that also exhibit a strong dependence with the frequency ω (see Fig. 5).

We have found it difficult to measure reliably a penetration distance δ on the profiles shown on Figure 4 where the amplitude seems to decay exponentially in the lower region of the layer and then saturate to a constant value near the solid boundary. We therefore defined a transmission coefficient, which has the drawback of being dependent of the layer thickness, but the advantage of being well defined, even for arbitrarily shaped profiles.

The modes we have studied are very close to global Rossby modes, which have the following dispersion relation in a local plane approximation without stratified layer [Greenspan 1968]:

\[\text{Figure 8: Evolutions of the absolute dimensionless frequency } |\omega| \text{ and of the transmission coefficient } T \text{ as a function of the Prandtl number } Pr \text{ of some quasi-geostrophic modes. Computations at fixed } E = 10^{-7} \text{ and for model } (13) \text{ with } N_0 = \Omega. \]
\[\omega = 2\Omega \beta \frac{k}{k^2 + l^2} \] \hspace{1cm} (34)

where \(\beta = -s/(1 - s^2) \) for a full sphere, and all length scales are normalized by the radius of the Earth’s core \(R_0 \). Ignoring the small variations of \(\omega \) with \(N \) (see table 1), we can use this expression to estimate \(k^2 + l^2 \) from \(\omega \) and \(\beta = m/s \). Equation (32) then becomes

\[\delta_{\text{Rossby}} = \frac{1}{N_0} \sqrt{2\Omega(1 - s^2)} \frac{\omega}{m} = \frac{\cos(\theta)}{N_0} \sqrt{2\Omega} |c_\phi|, \] \hspace{1cm} (35)

where \(\theta \) is the colatitude and \(c_\phi \) the phase speed in the azimuthal direction. As shown on Figure 9, this last expression for \(\delta \) that assumes the local dispersion relation of Rossby waves (eq. 34) seems to control all the variability in the transmission coefficient \(T \).

We have thus shown that the local plane-layer theory of Takehiro and Lister [2001] for thermal convection extends to the whole family of Rossby waves (quasi-geostrophic inertial waves) in the core. This implies a transmission coefficient \(T \) for Rossby waves that depend only on phase speed \(c_\phi = \omega/m \) and on colatitude \(\theta \) in addition to the control parameters \(N_0 \) and \(\Omega \).

5.2 Possible observations in the geomagnetic data

It is worth noting that the the absolute frequency of the waves increases with \(N_0 \) (Table 1). This sensitivity of eigenmode frequencies to the Brunt-Väisälä frequency may be a way to probe for the existence of a stably stratified layer below the core-mantle boundary, but other details may also alter the frequency of the modes (ellipticity, mean flow, ...), and it will probably be difficult to tell them apart.

In addition, the relatively high frequencies of our modes are very difficult to extract from the residual noise in the current geomagnetic models. However, the ability of the three SWARM satellites to better separate external and internal fields [Olsen et al., 2013], may enable us to detect the signature of these modes in the geomagnetic data.

We have computed the secular variation induced by our modes acting on a model of the present geomagnetic field [Finlay et al., 2010]. The magnetic signatures of large-scale (\(m < 3 \)) and high frequency modes (periods shorter than two months) concentrates in the equatorial area, where they are amplified (see Figure 8). If these waves are detected, the width of the equatorial belt in which they appear will also unveil the depth of the stratified layer.

5.3 Influence of the magnetic field

The quasi-geostrophic fast modes are only very weakly sensitive to the simple magnetic fields considered here (the toroidal Malkus field and the uniform axial field), for magnetic field strength in the estimated range for the Earth’s core (\(B_0 = 3 \text{ mT} \)). In particular, the magnetic field does not change their ability to penetrate the stratified layer. It comes from the fact that these modes evolve on a time scale much faster than that of the Alfvén waves, as measured by the small Lehnert number of the Earth (\(Le = 10^{-4} \)). Note that the Lehnert number depends on a length-scale \(\ell \): \(Le(\ell) = B_0/\sqrt{\rho_0 \mu_0 \Omega \ell} \), so that at small enough length-scales the magnetic field will affect even the fast modes. For the Earth however, this length-scale is beyond what can be observed [Gillet et al., 2011].
Figure 9: Transmission coefficient T as a function of theoretical penetration depth $\delta_{Rossby}/(1 - d)$, normalized by the stratified layer thickness $1 - d$. Top: constant stratification profile (eq. 13). Bottom: linear stratification profile (eq. 14). All transmission coefficients obtained for various position ($s = 0.5$, $s = 0.65$, $s = 0.75$) and two stratification strength ($N = \Omega$ and $N = 2\Omega$) collapse quite well.
We expect that the fast Rossby modes remain insensitive to more complex magnetic fields. Unfortunately, our numerical code *Singe* is not well suited to take into account complex imposed fields, because they lead to an increasing number of coupled harmonic degrees, which are cumbersome to express and translate into matrix coefficients. A possible solution would be to use computer algebra systems (CAS) to write down the coupling operators between spherical harmonics in a symbolic way [as in Schmitt 2010], and then to export them into a language suitable for numerical computations. Another more flexible approach is to use so-called matrix-free methods, which avoid to explicitly form the matrices, but require to provide appropriate preconditioners. These methods may come forward in the forthcoming years.

6 Conclusion

We have studied the possible penetration of quasi-geostrophic modes in a stratified layer at the top of the Earth’s core. The ability to penetrate depends on both the frequency $|\omega|$ and the azimuthal wave-number m: faster modes penetrate more easily than slower modes. Combining the finding of Takehiro and Lister [2001] and the dispersion relation of Rossby modes, we put forward a single parameter that accounts for all the variability in the penetration capability of the modes (eq. 35).

For an Earth-like magnetic field strength, the two simple field geometries we have considered here do not affect the shape or the frequency of our fast Rossby modes in any significant way. This is due to the small Lehnert number $Le = 10^{-4}$ which ensures that inertial waves are much faster than Alfvén waves at large spatial scales. Although more complex magnetic field should be considered, it is tempting to conjecture that these fast Rossby modes are immune to any magnetic field.

Large scale modes at periods of a few months are slow enough for their magnetic signature to be detectable in principle, and can penetrate a stratified layer with $N_0 = 2\Omega$. Close to the surface of the core, the most intense motions associated with the modes in the presence of a stratified layer are located close to the equator, where they seem to couple with a trapped mode (see Figure 8). This is where a magnetic signature may be generated and detected. Such a localized signature would provide observational evidence and constraints on the hypothetic stratified layer.

Acknowledgments The authors would like to thank the whole geodynamo team for fruitful discussions. The most demanding computations were performed using the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56) and the Equip@Meso project (reference ANR-10-EQPX-29-01). Plots were produced using matplotlib [Droettboom et al., 2014 http://matplotlib.org]. ISTerre is part of Labex OSUG@2020 (ANR10 LABX56).

A Effect of viscosity on quasi-geostrophic inertial modes

Our study includes a small viscosity, which results in a non-zero damping of the modes, a small effect on their frequency, but also a significant effect on their shape, which is spiralling in the presence of sufficient viscosity.
As shown in Figure 10, the asymptotic frequency and damping rate are approached only when $E \sim 10^{-9}$. Coincidentally, Figure 11 shows that the spiralling shape vanishes at the same very low Ekman number.

This contrasts with thermal convection in a rapidly rotating sphere, where tilted or spiralling structures are a feature of the onset \cite[e.g.]{Dormy2004,Takehiro2008} and references therein. The main reason being that, at the scale at which the convection first occurs, the viscosity is never negligible.

Note also that this does not depend on the boundary conditions (stress-free or no-slip), showing that the spirallization is an effect of the viscosity in the bulk.

All this shows that very low Ekman numbers are needed to have an asymptotic structure of quasi-geostrophic inertial waves.

References

Figure 11: Equatorial cross-section of the quasi-geostrophic pure inertial mode with $m = 3$ with a small viscosity. Left $E = 10^{-6}$, right $E = 10^{-9}$.

Paul Jacques Melchior, DJ Crossley, VP Dehant, and B Ducarme. *Have inertial waves been identified from the Earth’s core?*, volume 46. American Geophysical Union, 1988.

S I Takehiro and J R Lister. Surface zonal flows induced by thermal convection trapped below a stably stratified layer in a rapidly rotating spherical shell. *Geophysical research letters*, 29(16):50–1, 2002.

