
HAL Id: insu-01102599
https://insu.hal.science/insu-01102599

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of fluid deformation on mixing-induced chemical
reactions in heterogeneous flows

Tanguy Le Borgne, Timothy Ginn, Marco Dentz

To cite this version:
Tanguy Le Borgne, Timothy Ginn, Marco Dentz. Impact of fluid deformation on mixing-induced
chemical reactions in heterogeneous flows. Geophysical Research Letters, 2014, 41 (22), pp.7898-7906.
�10.1002/2014GL062038�. �insu-01102599�

https://insu.hal.science/insu-01102599
https://hal.archives-ouvertes.fr


GeophysicalResearchLetters

RESEARCHLETTER
10.1002/2014GL062038

Key Points:

• Impact of fluid deformation on

chemical reaction

• Reactive lamellar mixing model

• Upscaling from lamella scale to global

reaction behavior

Correspondence to:

M. Dentz,

marco.dentz@idaea.csic.es

Citation:

Le Borgne, T., T. R. Ginn, and M. Dentz

(2014), Impact of fluid deformation on

mixing-induced chemical reactions in

heterogeneous flows, Geophys. Res.

Lett., 41, doi:10.1002/2014GL062038.

Received 29 SEP 2014

Accepted 30 OCT 2014

Accepted article online 4 NOV 2014

Impact of fluid deformation onmixing-induced chemical

reactions in heterogeneous flows

Tanguy Le Borgne1, Timothy R. Ginn2, andMarco Dentz3

1Geosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, Rennes, France, 2Civil and Environmental Engineering,

University of California, Davis, California, USA, 3Spanish National Research Council, IDAEA-CSIC, Barcelona, Spain

Abstract Fast chemical reactions in geophysical flows are controlled by fluid mixing, which perturbs

local chemical equilibria and thus triggers chemical reactions. Spatial fluctuations in the flow velocity lead

to deformation of material fluid elements, which form the support volumes of transported chemical species.

We develop an approach based on a lamellar representation of fluid mixing that provides a direct link

between fluid deformation, the distribution of concentration gradients, and the upscaled reaction rates

for fast reversible reactions. The temporal evolution of effective reaction rates is determined by the flow

topology and the distribution of local velocity gradients. This leads to a significant increase of the reaction

efficiency, which turns out to be orders of magnitude larger than in homogeneous flow. This approach

allows for the systematic evaluation of the temporal evolution of equilibrium reaction rates and establishes

a direct link between the reaction efficiency and the spatial characteristics of the underlying flow field as

quantified by the deformation of material fluid elements.

1. Introduction

Flow heterogeneity leads to chemical reaction dynamics that are very different from the ones observed

under homogeneous conditions. Hence, the quantitative relation between the heterogeneity controls of

mixing and effective reaction rates is of central concern in disciplines as diverse as geophysics, chemical

engineering, biology, and hydrology [e.g., Tel et al., 2005; Neufeld and Hernandez-Garica, 2010;Weiss and

Provenzale, 2008; Dentz et al., 2011]. In porous media flows, effective reaction rates have been shown to dif-

fer significantly from those predicted by effective dispersion coefficients [e.g., Gramling et al., 2002; Luo et al.,

2008; Battiato et al., 2009; Tartakovsky et al., 2009; Chiogna et al., 2012; de Anna et al., 2014a; Hochstettler and

Kitanidis, 2013]. Geochemical reaction kinetics can be either limited by the characteristic time of intrinsic

chemical phenomena (kinetic limitation) or by the time necessary to bring reactants into contact, either in

solution or in the solid phase (mixing limitation).

The upscaling of kinetically limited geochemical reactions in the presence of physical and chemical medium

heterogeneity has been addressed in the literature using volume averaging techniques, probability den-

sity function (PDF) approaches for the concentration statistics, multicontinuum approaches, and reactive

streamtube models [e.g., Dentz et al., 2011, and literature therein]. The upscaling of mixing limited geo-

chemical reactions, on the other hand, is still largely an open question and remains a challenge due to the

intimate coupling of chemical reaction, mixing, and physical heterogeneity. Recent approaches have sought

to link effective reactivity to transport at local scales using particle-based Lagrangian modeling frameworks

[Tartakovsky et al., 2008; Benson and Meerschaert, 2008; Edery et al., 2009] and interface deformation mod-

els [de Anna et al., 2014b]. Many of these works focus on irreversible homogeneous bimolecular reactions,

which depend mainly on the collocation of the dissolved chemical species. Here we focus on reversible

chemical reactions, such as dissolution or precipitation processes, which are triggered by the perturbation

of local chemical equilibria due to fluid mixing [De Simoni et al., 2005, 2007]. To date, the explicit relation

between flow heterogeneity and mixing-induced chemical reactions remains a key challenge, despite its

importance in controlling many geochemical processes.

In this study, we start from the observation that the deformation action of heterogeneous flow fields cre-

ates a lamellar structure of the spatial distribution of the chemical species [Duplat and Villermaux, 2008;

Villermaux, 2012; Le Borgne et al., 2013; de Anna et al., 2014b]. Geochemical transformation processes can

be linked to the kinematics of mixing by focusing on the deformation of the material fluid elements, called

lamellae, which form the support volumes of the heterogeneous species distributions. Note that lamella
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based approaches have been used for the efficient modeling of different classes of homogeneous reactions

in fluctuating fluid flows [Ranz, 1979; Clifford et al., 1998; Clifford, 1999]. Here we develop a reactive lamella

model for reversible heterogeneous reactions that provides an explicit relation between fluid deformation

and effective reaction rates. This approach is used to analyze a series of practically relevant porous media

flow scenarios that exhibit distinct topological features and quantify their impact on the temporal evolution

of chemical reactivity.

2. LamellarMixing and Reaction

To study the fundamental interactions between fluid mixing and chemical reaction, we consider the

paradigmatic reversible heterogeneous reaction

A + B ⇌ C, (1a)

in which C represents a pure-phase mineral and therefore has activity 1. The mass action law relates the

equilibrium concentrations of A and B by cAcB = K , with K the equilibrium constant. This reaction may rep-

resent for instance mixing-induced precipitation of gypsum. While simple, it captures the essence of the

impact of fluid mixing on reaction systems in local chemical equilibrium [De Simoni et al., 2005]. The method

developed in the following can be extended straightforwardly to more complex chemical reaction systems

[De Simoni et al., 2007].

Transport of the dissolved species A and B is described by the advection-dispersion reaction equation

�ci

�t
+ ∇ ⋅ vci − D∇2ci = r, (1b)

with i = A, B. We set the constant porosity equal to 1, which is equivalent to rescaling time. Notice that

we adopt an approximate model of dispersion that relies on a constant dispersion coefficient D, in order to

expedite the overall concept, and emphasize the impact of flow heterogeneity on the reaction efficiency,

which is quantified by the reaction rate r. Furthermore, we assume that the dispersion coefficients are equal

for both species. The methodology can be straightforwardly extended to account for anisotropic local-scale

dispersion. For fast reactions, the reaction rate is determined by the mixing properties of the flow and trans-

port system. While the reaction is locally at equilibrium at each point of the medium, this equilibrium is

disturbed due to spatial mass transfer by advection and diffusion, or, in other words, by mixing. Thus, the

effective reaction rate depends fully on the mass transfer rates induced by the deformation of material

interfaces and diffusion.

The quantitative relation between the effective reaction rate and the mixing dynamics for fast reversible

chemical reaction has been studied in the papers by De Simoni et al. [2005, 2007]. These authors demon-

strate that the reaction rate can be written as

r =
d2ci

du2
D(∇u)2, (1c)

where u = cA − cB is the conservative component (as used in conventional speciation calculations), for the

bimolecular reaction, which is transported according to (1b) for r = 0. The mixing dynamics are encoded

in the scalar dissipation rate � = D(∇u)2, which reflects the elementary mass transfer mechanisms, the cre-

ation of concentration gradients, and their attenuation by diffusion. Note that the form (1c) of the reaction

rate requires that the diffusion coefficients for both species are equal.

2.1. The Lamellar Representation of Mixing

As solutes are transported in heterogeneous flow fields, they tend to organize into elongated structures

that are naturally formed by the repeated action of advection [Villermaux, 2012; Le Borgne et al., 2013; de

Anna et al., 2014b]. This is illustrated in Figure 1, where the shear action of a stratified flow field induces a

deformation of the reactive fronts that may be viewed as a collection of stretched lamellae. The lamellar

representation provides a powerful approach to quantify the impact of fluid deformation on mixing [Ranz,

1979; Duplat and Villermaux, 2008]. In the following, we develop an approach based on this concept to

quantify the impact of these mechanisms on fast reversible reactions.

We consider solute transport in the coordinate system attached to a material segment. In this coordi-

nate system, the flow velocity is represented by its linearization about the center of the lamella, such that
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Figure 1. Illustration of a reaction front in a stratified random flow field based on lamellar mixing. (a) Concentration pro-

file of the conservative component illustrating the interface between displacing and resident waters, which is deformed

by the action of the flow heterogeneity and develops a lamellar structure. (b) Reaction rates along the interface normal-

ized by the reaction rates for homogeneous flow. Interface elongation enhances concentration gradients by decreasing

the lamella width and thus increases chemical reactivity.

v′ = � ⋅ x′, where � = ∇′v′
T
is the velocity gradient in the moving lamella system; the superscript T denotes

the transpose. The dominant deformation is stretching along, and compression perpendicular to the lamella

as expressed by the diagonal components �ii, which satisfy
∑

i �ii = 0 due to fluid incompressibility. The rela-

tive lamella elongation is � = �∕�0 with � the current and �0 the initial lamella length. Thus, the stretching

rate �11 = � is given by the relative elongation � of the lamella as

� =
1

�

d�

dt
. (2)

Thus, the evolution of concentration across the lamella satisfies [Ranz, 1979;Meunier and Villermaux, 2010]

�ci

�t
− �(t)n

�ci

�n
− D

�2ci

�n2
= r(t), (3)

where n is the coordinate perpendicular to the main direction of elongation of the lamella, D is the local

diffusion coefficient for mass transfer in the n direction exclusively. Concentration gradients in the stretching

direction are much smaller than the ones perpendicular to the lamella and are ignored here. Concentration

gradients in the direction perpendicular to the lamella are steepened due to compression. The width s of

the lamella is a measure for the concentration gradient scale.

Notice that this picture of lamellar transport is valid as long as the lamellae can be considered as indepen-

dent. This is the case for linear shear flows and radial flow scenarios, for example. In heterogeneous flows,

lamellae may start interacting through coalescence [Villermaux, 2012; Le Borgne et al., 2013]. The time scale

for the transition from the stretching-enhanced mixing regime to coalescence is typically set by the mix-

ing time scale �m [Villermaux, 2012], which quantifies the competition of fluid deformation to decrease the

lamella width and diffusion to increase it.

2.2. Dispersion and Reaction at the Lamella Scale

Equation (3) can be transformed into a diffusion-reaction equation with constant parameters by considering

the variable transform [Ranz, 1979;Meunier and Villermaux, 2010] to the reduced coordinate ñ and warped

time � , which are defined by

ñ =
n

s0
�, � =

t

∫
0

dt′D
�2

s2
0

, (4)

where s0 is the initial lamella width in the n direction. This transformation leads to the following reaction

diffusion equation:

�c̃i

��
−

�2c̃i

�ñ2
= r̃(ñ, �), (5)
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where the concentration ci(n, t) and the reaction rate r(n, t) are related to c̃i(ñ, �) and r̃(ñ, �) as

ci(n, t) = c̃i[ñ(n), �(t)] r(n, t) =
D�2

s2
0

r̃[ñ(n), �(t)]. (6)

Notice that this variable transform is equivalent to a transformation into the characteristic system of (3).

Notice also that the transformation (6) assumes constant and isotropic dispersion.

The reaction rate r(n, t) integrated over a lamella segment is given by

R
�
(t) = �0�

∞

∫
−∞

dnr(n, t) =
D�0�

2

s0

∞

∫
−∞

dñr̃[ñ, �(t)], (7)

where we used (4) and (6). This equation relates the reaction rate of a lamella to that of a one-dimensional

diffusion-reaction system. The global, upscaled reaction rate then is given by the sum of the contributions

of the individual lamellae as

R(t) =
∑

�

R
�
(t). (8)

2.3. Fast Reversible Bimolecular Reactions

We illustrate this approach for the fast reversible bimolecular reaction system (1), which is fully determined

by the mixing properties of the flow and transport system. In the coordinate system attached to the material

strip, the conservative component u = cA − cB now satisfies the diffusion equation in reduced coordinates

�u

��
−

�2u

�ñ2
= 0. (9)

The general expression (1c) for the reaction rate is now given in reduced coordinates by

r̃(ñ, �) =
d2c̃A

du2

(
�u

�ñ

)2

. (10)

The concentration of species A in terms of u is obtained from the mass action law c̃AcB = K and u = c̃A− c̃B as

c̃A(u) =
u

2
+

√
u2

4
+ K . (11)

In the following, we solve the mixing-induced reactive transport problem for a reaction front in a spatially

variable flow.

2.4. Reaction Front

We consider the scenario of miscible displacement of solutions of two different chemical compositions, each

at chemical equilibrium. Between the two solutions, a mixing interface develops, which is deformed due to

velocity gradients. Mass transport across the interface is, as outlined above, determined by the interaction

of interface compression and diffusion/dispersion. This scenario can be described by the initial distribution

u(ñ, � = 0) =
1

2
Δu0erfc(ñ∕

√
2) + ur , where Δu0 = ud − ur , and ud and ur the differences of the species

concentrations in the displacing and resident fluids. As boundary conditions we set u(−∞, �) = ud and

u(∞, �) = ur . Under these conditions, the scalar distribution and the scalar gradient across the front have

the scaling form

u(ñ, �) = û(ñ∕s̃),
�u

�ñ
=

1

s̃

�û(a)

�a

||||a=ñ∕s̃
, (12)

where we defined the nondimensional interface width s̃ =
√
1 + 2� . The scaling function here is simply

given by û(ñ) = u(ñ, 0). Using the scaling forms (12) in (10), we obtain for the global reaction rate (7) on a

single lamella the expression

R
�
=

�0s0Δu0s0�
2

�D

√
1 + 2�

, (13)
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where the constant is given by

 =
1

Δu0

∞

∫
−∞

da
d2cA

dû2

(
�û

�a

)2

. (14)

The diffusion time �D over the initial interface width is given by �D = s2
0
∕D. The solution (13) aligns clearly the

terms contributing to the global reaction rate: diffusion quantified by D, lamella elongation and elongation

history through warped time � , see (4), and the speciation term encoded in, which represents the chem-

istry. This general result shows that for a single fast reaction the effective rate is dependent on the nature of

the chemical equilibrium and on the entire history of the deformation of the individual lamellae making up

the mixing front. In principle this means that given a deterministic, or suitable stochastic, definition of the

deformation paths taken by the lamellae, the global reaction rate can be computed, for essentially arbitrary

nonuniform flows and heterogeneous flows in general.

The reactive transport scenario is illustrated in Figure 1 for a heterogeneous stratified flow. To quantify the

reaction dynamics at the diffuse interface, the front is considered as a set of lamellae, on which chemical

gradients develop and reactions occur.

3. Stretching Scenarios and Reaction Rates

We evaluate the impact of stretching-enhanced mixing as quantified by the global reaction rate (13) for a

series of idealized yet fundamental stretching scenarios that exhibit distinct topological features. We study

these basic cases to test the theoretical results of section 2 and to provide a basis for subsequent analyses

of more sophisticated case studies. Uniform homogeneous flow serves as the base case, then we consider a

radial flow scenario as well as linear and random shear flows.

3.1. Uniform Homogeneous Flow

Under uniform homogeneous flow conditions, there are no velocity gradients and therefore there is no

deformation of material fluid elements. Thus, relative elongation is constant � = 1 and warped time is simply

time rescaled by �D as � =
t

�D
. This gives, for the global reaction rate, the simple expression

R(t) =
Ls0Δu0A

�D

√
1 + 2

t

�D

, (15)

where L is the initial front length. For times t ≪ �D, diffusion has not smoothed the concentration gradient

at the interface, which is nearly constant, while mass is transferred across the interface at constant rate. Thus,

the reaction rate is approximately constant. For times t ≫ �D, concentration gradients decrease due to

diffusive interface growth and thus the reaction rate decreases as t−1∕2.

3.2. Radial Flow

We now consider a reaction front under radial flow conditions, which is typical of field operations for pump

and treat groundwater remediation, geothermal energy exploitation, and carbon dioxide storage in deep

saline aquifers [e.g., Kitanidis and McCarthy, 2012; Nordbotten and Celia, 2012].

For a constant volumetric flow rate Q at the well, the radial flow velocity is given by v(r) = Q∕(2�rh) for

r > rw with rw the well radius. Mass conservation gives for the front radius rf (t) = rw

√
�t + 1where the strain

rate � = Q∕(�r2
w
h) with h the height of the flow domain (e.g., confined aquifer or fracture). The relative front

length � = rf∕rw then is given by � =
√
�t + 1. Thus, we obtain for the warped time �

� =
t

�D

(
1 +

�t

2

)
. (16)

From (13), the global reaction rate then is given by

R =
Ls0hΔu0

�D

�t + 1√
1 + 2

t

�D

(
1 +

�t

2

) , (17)
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where L = 2�rw . For times �−1 ≪ t ≪ �m, the reaction rate increases linearly with time as

R =
Ls0�0hΔu0

�D
�t, (18)

as a result of stretching-enhanced mass transfer across the interface and the
√
t evolution of the inter-

face length. The mixing time here is given by �m =
√
�D∕�. For t ≫ �m, the reaction converges toward

the constant

R = Ls0hΔu0
√

�

2�D
, (19)

which reflects the balance between the increases of the interface length as
√
t and diffusive mass trans-

fer across it as 1∕
√
t. It is worth pointing out that this has implications for the evaluation of reactive

push-pull tracer tests [Istok, 2013] because reactivity is enhanced by the mere deformation of the radial

solute interface.

3.3. Linear Shear Flow

Here we consider the impact of linear shear deformation on chemical reactions. This type of flow topology

is realized locally in heterogeneous d = 2 dimensional media where the Okubo-Weiss parameter, or equiv-

alently, the determinant of the velocity gradient is equal to zero [Okubo, 1970;Weiss and Provenzale, 2008].

Linear shear flows are naturally realized in double diffusion experiments between salt and freshwater [Dror

et al., 2003a, 2003b], and may occur for saltwater intrusion in coastal aquifers at low-Péclet numbers [Dentz

et al., 2006]. Bolster et al. [2011] studied the shear and stretching-enhanced mixing of a conservative solute

in this type of flow field.

The flow field is given by v(y) = �ye1 aligned with the one direction of the coordinate system, � is the shear

rate. The interface is aligned perpendicular to the direction of stratification such that the relative lamella

elongation is given by � =
√
1 + (�t)2. Accordingly, we obtain for the warped time �

� =
t

�D

[
1 +

(�t)2

3

]
. (20)

Hence, we obtain from (13) for the global reaction rate

R =
Ls0Δu0

�D

1 + (�t)2
√

1 + 2
t

�D

[
1 +

(�t)2

3

] . (21)

For �−1 ≪ t ≪ �m, it increases quadratically with time as

R ≈
Ls0Δu0

�D
(�t)2. (22)

The mixing time scale �m = (�D∕�
2)1∕3 denotes the time at which the compression deformation of

the line due to shear equilibrates with diffusion [Villermaux, 2012; Le Borgne et al., 2013]. The significant

increase in the global reaction rate is due to the linear evolution of the interface length on one hand and

stretching-enhanced mass transfer on the other. For t ≫ �m, the reaction rate approaches asymptotically

R = Ls0Δu0|�|
√

3t

2�D
. (23)

This behavior is the result of the linear interface elongation combined with essentially diffusive mass trans-

fer across the interface. In both regimes, the reaction rate is dramatically increased compared to the case of

uniform homogeneous flow. Figure 2 shows the evolution of the global reaction rates for linear shear, radial,

and uniform flow.
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Figure 2. Global reaction rates for (solid line) linear

shear flow with � = 1, (dashed dotted line) radial

flow with � = 1, and (dashed line) uniform flow. The

reaction rates are normalized by Ls0Δu0∕�D.

3.4. Stratified Random Flow

Transport in stratified random flow [Matheron and

de Marsily, 1980] has been frequently studied in the

literature as a model for heterogeneous aquifers [Zavala–

Sanchez et al., 2009, and literature therein]. In fact, many

geological media exhibit geostatistical stratification,

which means that the horizontal correlation length is

much larger than the vertical. Random shear flows, both

steady and unsteady, have been studied in the physics

literature as a simplified model for heterogenous and tur-

bulent flows [Bouchaud and Georges, 1990; Majda and

Kramer, 1999].

We consider the random shear flow v(y) = v(y)e1 aligned

with the one direction of the coordinate system. A mate-

rial fluid segment initially located at x = 0 and y = y0 is

elongated according to

� =

√
�(y0)

2t2 + 1, (24)

The shear rate is given by �(y0) = [v(y0+�0)−v(y0)]∕�0 with �0 the initial lamella size, which is much smaller

than the variation scale of the shear rate. The reaction rate for a single lamella is given by (21) with � ≡ �(y0).

The global reaction rate is obtained by integration over the PDF p�(�) of shear rates and multiplication by

the number of lamellae L∕�0 such that

R = Ls0Δu0
∞

∫
−∞

d�
p�(�)[1 + (�t)2]

�D

√
1 + 2

t

�D

[
1 +

(�t)2

3

] , (25)

where L is the initial front length. The PDF p�(�) is obtained by spatial sampling along the initial line of

length L as

p�(�) =
1

L

L

∫
0

dy0��0 [� − �(y0)], (26)

where �
�0
(�) is a sampling function of width �0 and height 1∕�0.

At times t ≪ �m, the global reaction rate (25) behaves as

R ≈
Ls0Δu0

�D
⟨�2⟩t2, (27)

Figure 3. Global reaction rates for (solid line) Gaussian

distributed, (dashed line) power law (� = 3∕2) dis-

tributed shear rates, and (dotted line) constant shear

rate for (top to bottom) ⟨|�|⟩ = 102 , 101 , and 1. The

reaction rates are normalized by Ls0Δu0∕�D.

where the angular brackets denote the average over

the distribution of shear rates. The mixing time here

is set by the average absolute shear rate as �m =

(�D∕⟨|�|⟩2)1∕3. In this early time regime, the reaction

rate is related to the mean squared shear rate if it

exists. For times t ≫ �m, we obtain the characteristic

t1∕2 behavior

R = Ls0Δu0⟨|�|⟩
√

3t

2�D
. (28)

Notice that in this regime, the reaction rate is quantified

in terms of the mean absolute shear rate. To illustrate

the impact of the shear rate distribution on the reac-

tion behavior, we consider now a distribution with

well-defined variance and a broad distribution of shear

rates for which the variance does not exist.

LE BORGNE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 7
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Thus, we employ the Gaussian distribution p�(�) = exp[−�2∕(2⟨�2⟩)]∕
√
2�⟨�⟩2. The mean absolute shear

rate here is ⟨|�|⟩ =
√
2⟨�2⟩∕�. In order to illustrate the reaction behavior for a broad distribution of shear

rates, we consider a shear rate that follows the distribution p� = ��−1
0
(1+�∕�0)

−1−� for � > 0 and 1 < � < 2.

The mean shear rate is given by ⟨�⟩ = �0∕(� − 1), the variance is not defined.

Figure 3 shows the behavior of the global reaction rate for a constant shear rate, the Gaussian, and the

power law distribution. The behaviors for the constant shear rate and the Gaussian shear distribution are

almost identical. This is no surprise as the early and late time behaviors are determined by the variance and

mean absolute shear rate, respectively. The reaction rate for the power law shear distribution shows a dif-

ferent behavior at short times, which can be traced back to the fact that the variance of shear rates is not

defined here. In fact, with the same mean shear rate, the power law distribution provides a much broader

spectrum of shears (toward high shear) than the Gaussian distribution, which leads to an overall increased

reaction rate.

4. Conclusions

We quantify the impact of fluid deformation on mixing-induced reversible reactions in heterogeneous flows

using an approach that treats the reactive mixture as a composition of individual lamellae. This is achieved

by bridging the way that different flow topological features impact solute mixing [De Barros et al., 2012;

Le Borgne et al., 2013] with the role of the scalar dissipation rate in effective kinetics of mixing-controlled

reactions [De Simoni et al., 2005, 2007], through equation (13). This representation reduces much of the

complexity while honoring the mixing on the lamella as it is transported and deformed in the heteroge-

neous flow. It is valid as long as the lamella can be considered as independent. For heterogeneous flows,

this means before the mixing time, which is set by the interaction of flow deformation and dispersion.

The approach, illustrated here by a bimolecular reaction involving two dissolved species and a mineral

phase, may be extended to a range of mixing-driven geochemical reactions characterized by more complex

reaction networks.

We derive an explicit expression for the lamella-scale reaction rate that deciphers the roles of fluid defor-

mation, dispersion, and chemical reaction. The global reaction rate is obtained from the sum of the

contributions of individual lamellae and thus integrates the heterogeneous distribution of velocity gradi-

ents into large-scale reactivity. We demonstrate that the upscaled reaction rate (per equation (13)) depends

explicitly on the history of lamellae deformation related to the distribution of local velocity gradients. The

derived approach is illustrated through the analysis of four simplified yet fundamental reactive flow sce-

narios characterized by distinct topological features. Note that flows in natural heterogeneous media show,

in general, more complex stretching behaviors than these idealized flow fields [Le Borgne et al., 2013],

which, however, can be straightforwardly incorporated in the developed methodology through a statistical

description of lamellar stretching.

This approach opens an avenue to the long-standing problem of upscaling mixing-driven reactive transport

because it accommodates nonlinear transformations in heterogeneous mixtures via a statistical description

of the lamellae kinematics, which can in principle be derived from the flow heterogeneity.
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