L. Gonidec and D. Gibert, Multiscale analysis of waves reflected by granular media: Acoustic experiments on glass beads and effective medium theories, Journal of Geophysical Research, vol.97, issue.2, 2007.
DOI : 10.1029/2006JB004518

URL : https://hal.archives-ouvertes.fr/insu-00156260

V. Y. Zaitesev, P. Richard, R. Delannay, V. Tournat, and V. E. Gusev, Pre-avalanche structural rearrangements in the bulk of granular medium: Experimental evidence, EPL (Europhysics Letters), vol.83, issue.6, 2008.
DOI : 10.1209/0295-5075/83/64003

J. Thirot, Y. Le-gonidec, and B. Kergosien, Acoustic emissions in granular structures under gravitational destabilization, Acoustics of ordered and disordered granular strctures AIP Conference Proceedings, International Congress on Ultrasonics, pp.143-146, 2011.
DOI : 10.1063/1.3703157

URL : https://hal.archives-ouvertes.fr/insu-00749898

V. Tournat, V. Y. Zaitsev, V. E. Gusev, V. Nazarov, P. Béquin et al., Probing Weak Forces in Granular Media through Nonlinear Dynamic Dilatancy: Clapping Contacts and Polarization Anisotropy, Physical Review Letters, vol.92, issue.8, 2004.
DOI : 10.1103/PhysRevLett.92.085502

URL : https://hal.archives-ouvertes.fr/hal-00171056

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65, 1979.
DOI : 10.1680/geot.1979.29.1.47

S. Mcnamara and M. Dynamique-moléculaire, Modélisation numérique discrète de matériaux granulaires, Traité MIM -Mécanique et ingénierie des matériaux, pp.25-48, 2010.

R. M. Alford, K. R. Kelly, and D. M. Boore, ACCURACY OF FINITE???DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION, GEOPHYSICS, vol.39, issue.6, pp.834-842, 1974.
DOI : 10.1190/1.1440470

D. Kosloff and D. Kessler, Seismic numerical modeling, Oceanographic and Geophysical Tomography, Houches Summer Session, pp.249-312, 1990.

O. C. Zienkiewicz, The finite element method in engineering science, 1971.

I. Babu?ka, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3, pp.179-192, 1973.
DOI : 10.1007/BF01436561

R. Glowinski, T. Pan, and J. Periaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem ??? Generalization to some flow problems, Japan Journal of Industrial and Applied Mathematics, vol.92, issue.1, pp.87-108, 1995.
DOI : 10.1007/BF03167383

E. Heikkola, Y. A. Kuznetsov, P. Neittaanmäki, and J. Toivanen, Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems, Journal of Computational Physics, vol.145, issue.1, pp.89-109, 1998.
DOI : 10.1006/jcph.1998.6014

R. Glowinski, T. Pan, and J. Periaux, Fictitious domain methods for incompressible viscous flow around moving rigid bodies The Mathematics of Finite Elements and Applications, 1996.

L. Rhaouti, A. Chaigne, and P. Joly, Time-domain modeling and numerical simulation of a kettledrum, The Journal of the Acoustical Society of America, vol.105, issue.6, pp.3545-3562, 1999.
DOI : 10.1121/1.424679

R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrande multiplier method, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.327, issue.7, pp.693-698, 1998.
DOI : 10.1016/S0764-4442(99)80103-7

R. Glowinski, T. Pan, T. Hesla, and D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

V. Bokil and R. Glowinksi, An operator splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems, Journal of Computational Physics, vol.205, issue.1, 2005.
DOI : 10.1016/j.jcp.2004.10.040

D. Imbert and S. Mcnamara, Fictitious domain method to model a movable rigid body in a sound wave, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.3-4
DOI : 10.1515/jnum-2012-0014

URL : https://hal.archives-ouvertes.fr/hal-00825762

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, 1994.
DOI : 10.1006/jcph.1994.1159

W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates, Microwave and Optical Technology Letters, vol.6, issue.2934, pp.599-604, 1994.
DOI : 10.1002/mop.4650071304

H. H. Hu, Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, vol.22, issue.2, pp.335-35210, 1996.
DOI : 10.1016/0301-9322(95)00068-2

B. Lombard, Modélisation numérique de la propagation des ondes acoustiques etélastiqueset´etélastiques en présence d'interfaces, 2002.

N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, and T. Pan, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.26, issue.9, pp.1509-1524, 2000.
DOI : 10.1016/S0301-9322(99)00100-7

R. Glowinski, T. Pan, and J. Périaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.1-2, pp.1-2, 1998.
DOI : 10.1016/S0045-7825(97)00116-3

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Mathematical Aspects of Finite Element Methods, pp.292-315, 1977.
DOI : 10.1007/BF01436186

E. Bécache, J. Rodríguez, and C. Tsogka, Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.377-398, 2009.
DOI : 10.1051/m2an:2008047

J. Li, T. Arbogast, and Y. Huang, Mixed methods using standard conforming finite elements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.5-8, 2009.
DOI : 10.1016/j.cma.2008.10.002

G. I. Marchuk, Splitting and alternating direction methods of Handbook of Numerical Analysis, pp.10-1016, 1990.

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.159, issue.1, 1967.
DOI : 10.1103/PhysRev.159.98

W. C. Swope, H. C. Andersen, H. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, pp.637-649, 1982.
DOI : 10.1063/1.442716

H. C. Elman and G. H. Golub, Inexact and Preconditioned Uzawa Algorithms for Saddle Point Problems, SIAM Journal on Numerical Analysis, vol.31, issue.6, pp.1645-1661, 1994.
DOI : 10.1137/0731085

C. Potel and M. Bruneau, Acoustique Générale -´ Equations différentielles et intégrales, solutions en milieux fluide et solide, 2006.

H. Lamb, Hydrodynamics,sizì eme Edition, Dover publications, 1945.