Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa

Gilbert Midende, Philippe Boulvais, Luc Tack, Franck Melcher, Axel Gerdes, Stijn Dewaele, Daniel Demaiffe, Sophie Decrée

To cite this version:
The Matongo carbonatite intrusion belongs to the Neoproterozoic Upper Ruvubu alkaline plutonic complex (URAPC), that is located in Burundi along the western branch of the East African Rift. Beside the Matongo carbonatite, the URAPC alkaline complex comprises feldspathoidal syenites, diorites, quartz-bearing syenites and granites.

Three main facies have been recognized in the Matongo carbonatite: (1) Sövites represent the dominant facies. Two varieties have been recognized. A scarce coarse-grained
sövite (sövite I), which is altered and poorly enriched in REE (4<\(\Sigma\text{REE}\)<8ppm), is encountered in highly fractured zones. A fine-grained sövite (sövite II), which is made of saccharoidal calcite, commonly associated with apatite, aegirine and amphibole, is abundant in the intrusion. Sövite II is enriched in LREE (442<\(\Sigma\text{REE}\)<1550ppm, 49<\(\text{La}_N/\text{Yb}_N\)<175). (2) Ferrocarbonatites, that form decimeter-wide veins crosscutting the sövites, are characterized by a LREE enriched patterns (225<\(\Sigma\text{REE}\)<1048 ppm, 17<\(\text{La}_N/\text{Yb}_N\)<64). (3) K-feldspar and biotite-rich fenite facies (silicocarbonatites) have been recognized at the contact between the carbonatites and the country rock. They are likewise LREE-enriched (134<\(\Sigma\text{REE}\)<681ppm, 25<\(\text{La}_N/\text{Yb}_N\)<46). Additionally, “late” hydrothermal MREE-rich carbonatite veinlets can be found in sövite I. They are characterized by moderate enrichment in REE (\(\Sigma\text{REE}\)= 397 ppm), with a MREE-humped pattern (\(\text{La}_N/\text{Yb}_N\) = 3.7). The different facies represent the typical magmatic evolution of a carbonatite, while the silicocarbonatites are interpreted as resulting from the fenitisation of the country host-rocks. In addition, the most REE-depleted and fractionated facies, i.e. the coarse-grained sövite facies and the “late” calcite veinlets testify for hydrothermal processes that occurred after carbonatite emplacement and result from REE mobilization and redistribution.

Large idiomorphic zircon crystals (megacrysts), found in the vicinity of the carbonatite can directly be related to the carbonatite evolution. They have been dated at 705.5 ± 4.5Ma (U-Pb concordant age, LA-ICP-MS). Similar zircon megacrysts of the Lueshe carbonatite (DRCongo) have been dated and give a concordant age at 798.5 ± 4.9Ma (U-Pb, LA-ICP-MS). Considering that an extensional tectonic regime occurred at that time in Central Africa - what remains debated - both ages could relate to different stages of Rodinia breakup, with uprise of mantle-derived magmas along Palaeoproterozoic lithospheric zones of weakness.
Keywords: Matongo, Upper Ruvubu, carbonatite, alkaline magmatism, Neoproterozoic, Burundi

1. Introduction

More than 850 alkaline complexes and carbonatites have been recognized in Africa (Woolley, 2001; Fig. 1A). They represent about 40% of the world known occurrences. Their ages range from 2 Ga (Phalaborwa, South Africa) to the present (Oldoinyo Lengai, Tanzania), with two abundance peaks during the Lower Paleozoic and the Cretaceous. Half of the African carbonatites are spatially associated to the African rift (Woolley, 2001). In central Africa, Tack et al. (1984) and Kampunzu et al. (1985) have recognized 23 Neoproterozoic alkaline plutonic massifs that are distributed over a distance of 1700 km along the present-day Western Rift (i.e. the western branch of the East African Rift) (Fig. 1B).

Among these massifs, the Matongo carbonatite in Burundi is part of the Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (URAPC, Fig. 2). This carbonatite does not outcrop and was discovered by drilling in the 80’s. It displays a classical magmatic series, with a calciocarbonatite-ferrocarbonatite-fenite suite (Midende, 1984), and shows exceptional mineralization features, including large (> 1cm) zircons (Burke, 1998; Fransolet and Tack, 1992).

The Matongo carbonatite occurs in the central part of the URAPC, which consists of an outer unit of quartz-bearing syenite, granite and gabbro-diorite and an inner unit, characterized by the presence of feldspathoidal syenite and monzonite. The whole complex was dated between ~760 and ~690 Ma (Demaiffe, 2008; Tack et al., 1984; Van den Haute, 1986). Its emplacement has been related to a linear intraplate reactivation event (Tack et al.,
1996), which marked the breakup of the Rodinia Supercontinent (Kampunzu et al., 1997).
The relationship with Rodinia breakup has already been evoked for other Neoproterozoic alkaline massifs in the area, e.g. for the Lueshe complex in RDC (Kampunzu et al., 1998; Kramm et al., 1997; Maravic and Morteani, 1980; Maravic et al., 1989; Van Overbeke et al., 1996).

This study represents a comprehensive petrographical and geochemical study of the Matongo carbonatite (the petrological evolution of the complex is however beyond the scope of the study), together with new LA-ICP-MS U-Th-Pb ages obtained on its zircon megacrysts. For comparison, zircon megacrysts from the Lueshe carbonatite have also been dated. This study is envisaged to describe the (post-)magmaic processes associated with the carbonatite emplacement and to position the Matongo carbonatitic event in the Neoproterozoic geodynamic context of Central Africa (Neoproterozoic supercontinent fragmentation/amalgamation).

2. Geological setting

The Matongo carbonatite belongs to the Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (URAPC), located in the western part of Burundi along the western branch of the East African Rift (Tack et al., 1984). The complex is hosted in rocks belonging to the Mesoproterozoic Karagwe-Ankole Belt (KAB; Fernandez-Alonso et al., 2012), which consists of metasedimentary (phyllites, graphitic schists, metaquartzites and dolomite lenses and interbedded metavolcanic rocks of Palaeo- or Mesoproterozoic age (Cahen et al., 1984; Brinckmann et al., 2001; Fernandez-Alonso et al., 2012). The metasedimentary and metavolcanic rocks of the Western Domain (WD) of the KAB were intruded by S-type
granites, which are part of the 1375 Ma old bimodal magmatic “Kibaran event” (U-Pb SHRIMP on zircon; Tack et al., 2010). At 986 ± 10 Ma (U-Pb SHRIMP on zircon; Tack et al. 2010) “tin granites” were emplaced. The magmatism has been related to the ~1.0 Ga Southern Irumides collisional orogeny, corresponding to the Rodinia amalgamation (Fernandez-Alonso et al., 2012). The orogeny is responsible for the general fold-and-thrust-belt geometry of the KAB (Fernandez-Alonso et al., 2012). The tin mineralisation was emplaced in a relaxational setting following the deformation (Dewaele et al., 2011; Melcher et al., 2013). In the URAPC region, pegmatites including feldspar, quartz, muscovite, biotite and more exceptionally black tourmaline, cassiterite and garnet have been dated between 977 ± 8 Ma (Rb-Sr on muscovite and feldspar; Cahen and Ledent, 1979) and 969 ± 8 Ma (Rb-Sr on muscovite and whole-rock; Brinckmann and Lehmann, 1983).

Later events in the KAB have been related to Panafrican tectonothermal processes in the Western Rift area as (1) brittle reworking of pegmatites along fractures at 628 ± 110 Ma and 622 ± 56 Ma (Romer and Lehmann, 1995), (2) muscovite Ar-Ar resetting ages in Rwanda (Sn-Ta pegmatite at 593 Ma; Dewaele et al., 2011), and (3) N–S trending shear-controlled gold mineralization emplacement at 535 in NW Burundi (Brinckmann et al., 2001). Such Panafrican overprint has not been recognized in the URAPC area yet. At ~750 Ma, in probable association with the Rodinia Supercontinent breakup (Kampunzu et al., 1997), some 23 alkaline complexes were emplaced along lithosphere-scale shear zones (Tack et al., 1996). The URAPC, roughly NW-SE oriented, is made up of both a silica-oversaturated and silica-undersaturated unit as well as a carbonatite (the Matongo carbonatite; Fig. 2). The “outer unit” comprises an intimate association of plutonic rocks from olivine-bearing gabbros and diorites, to granites and quartz-bearing syenites. The “inner unit” comprises feldspathoidal syenites and monzonites. Numerous dykes of feldspathoidal syenite intrude the “outer unit”,
especially in its western part. The whole complex has undergone extensive supergene
lateritization. Kaolinitization, notably in the region close to Matongo where kaolinite has been
exploited (Inamvumvu), is developed on top of the subsurface carbonatite in a contact aureole
as a result of hydrothermal alteration of the host quartz-bearing syenites.

The Matongo carbonatite is only known by drilling in the Matongo area (Fig. 2). It
occurs at a depth of about 40-80 m and forms a NNE elongated intrusion of 2750m long and
250m wide. Interestingly, another hidden carbonatitic body is inferred in Burundi (Van
Wambeke, 1977), in the Gakara-Karonge area (60 km far from Matongo), which is known for
its REE hydrothermal deposits (Lehmann et al., 1994).

Fine- and coarse-grained calciocarbonatite and a ferrocarbonatite have been identified
in the Matongo carbonatite (Demaiffe, 2008; Midende, 1984). “Late” calcite veinlets that
crosscut the coarse-grained calciocarbonatite have been interpreted to represent a
hydrothermal event (Midende, 1984). Fenitization is also well developed in the external part
of the carbonatite (Midende, 1984). The Sr and Nd isotope compositions indicate a cogenetic
relation between the carbonatite and felspathoidal syenites (Tack et al., 1996). Initial εNd
values (+0.7 to +5.2) and low initial 86Sr/87Sr ratios of 0.7025-0.7030 support a mantle-
derived origin for the URAPC rocks without evidence for significant assimilation of crustal
material (Tack et al., 1984). The inferred source appears less depleted in incompatible
elements than the typical Depleted Mantle (DM) (Demaiffe, 2008).

Available ages on the URAPC show some inconsistency. For the “outer unit” U-Pb on
zircon fraction and zircon Pb-evaporation ages at 748 ± 2 Ma and 741 ± 2 Ma respectively
(Tack et al., 1995) have been obtained, while a Rb-Sr whole rock isochron yielded an age of
707 ± 17 Ma (Tack et al., 1984). U-Pb on bulk zircon on the “inner unit” of the URAPC gave
an age of 739 ± 7 Ma, while the Rb-Sr isochron age of this unit yielded an age of 699 ± 13 Ma
(Tack et al., 1984). Also, a fission track age on sphene of 762 ± 33 Ma has been obtained on the “inner unit” (Van den Haute, 1986) and is questionable as being older than U-Pb zircon age. On the Matongo carbonatite, a Pb-Pb isochron age of 690 ± 32 Ma (Demaiffe, 2008) is consistent with the Rb-Sr age (699Ma) but significantly younger than the U-Pb zircon age (739Ma) of the “inner unit”. Concerning the zircon megacrysts, lead-evaporation ages o yielded an age of 738 ± 4 Ma (Tack et al., 1995). For the Lueshe Complex, the geochronological data are Rb-Sr isochron ages on whole rocks, varying between 548 - 568 Ma (Kramm et al., 1997), 619 ± 42 Ma (Van Overbeke, 1996) and 822 ± 120 Ma (Kampunzu et al., 1998), and a K-Ar biotite age (516 ± 26 Ma; Bellon and Poulet, 1980). These ages overlap the URAPC zircon existing ages.

3. Zircon megacrysts from Matongo (Burundi) and Lueshe (DRC)

Near Matongo, numerous idiomorphic zircon megacrysts, up to 6 cm in size, in association with ilmenite megacrysts, are disseminated in a dismembered lateritic crust and in the kaolin of the Inamvumvu hill (Fig. 2). Trenching during carbonatite exploration works in the 80’s (British Sulphur Company, unpublished internal report), exposed zircon megacrysts in “pegmatitic-like” veinlets intruding supergene weathered rock with preserved original coarse-grained magmatic texture (quartz-bearing syenite or granite) (Nkurikiye, 1989; Tack, unpublished data). No more outcrop still exists. At Kiziba (Fig. 2), a comparable, although smaller (up to 1 cm in size) zircon megacrysts occur in coarse-grained veins within the feldspathoidal syenite (Fransolet and Tack, 1992), in association with alkali feldspar, nepheline, sodalite, fluorite, biotite, aegirine, calcite and ilmenite.
The zircon megacrysts of the Inamvumvu hill, from where our samples come from, are characterized by Th- and U- rich homogeneous cores and partially metamict, oscillatory zoned outer rims (Burke, 1998). They contain ubiquitous primary carbonate inclusions (calcite, magnesian calcite and nahcolite; Burke, 1998) and are thought to have crystallized from the circulation of alkaline fluids associated with the carbonatite-feldspathoidal syenite emplacement (Fransolet and Tack, 1992), i.e. relatively late in the frame of the URAP emplacement.

Similar zircon megacrysts around 2 cm in size are also known from the Lueshe complex (Fig. 1B), in particular in the silico-sövite parent rock predating the Lueshe carbonatite (Maravic, 1983; Maravic and Morteani, 1980; Philippo, 2005), i.e. relatively early in the frame of the Lueshe emplacement. Isolated zircon megacrysts are also found in the lateritic crust, in association with pyrochlore, ilmenorutile and primary or secondary phosphates. Idiomorphic and well-preserved megacrysts occur in the small Lueshe river (sample RGM 9673, 5-6 mm wide, is one of these). These zircon grains likely derive from the silico-sövite upstream, with almost no transport.

4. Sampling and analytical techniques

Twenty-one samples of the Matongo carbonatite have been studied. The samples originate from 10 drill cores (from 56 to 291 m depth), from a drilling program performed in 1976-1978 by the United Nations Development Program (location of the boreholes on Figure 2). Other samples studied are surface samples from the rock collection of the Royal Museum for Central Africa (RMCA), Tervuren (Belgium).
Petrographic description was carried out by polarized light microscopy on thin sections. Mineral compositions were measured by electron microprobe analysis (EPMA) at the Université de Louvain (UCL, Belgium). Chemical compositions of rock samples were obtained on finely grained powders (about 100 g) by X-ray fluorescence (XRF) at the University of Brussels (ULB, Belgium) for major elements analyses and at Liège (ULg, Belgium) for major and trace elements (Rb, Sr, Ba, V and Nb). Other trace element compositions have been determined at the Katholieke Universiteit Leuven (KULeuven, Belgium) by neutron activation analyses (Midende, 1984). Additional chemical analyses were performed by the Actlabs laboratory (Ontario, Canada) using ICP-AES and ICP-MS methods for major and trace elements respectively.

The dated zircon megacrysts were mounted in epoxy resin, cut and polished (BGR, Hanover, Germany). Characterization of internal textures was accomplished using back-scattered electrons (BSE) and cathodoluminescence (CL) images generated on a CAMECA SX100 electron microprobe at the BGR. Furthermore, zircons were quantitatively analyzed using wavelength-dispersive spectrometry on the same instrument using 15 kV acceleration voltage and 40 nA sample current. The following elements were measured (line, spectrometer, standard, measurement time on peak): SiKα (TAP, zircon, 10); ZrLα (PET, zircon, 10); HfMα (TAP, hafnon, 90); AlKα (TAP, metal, 20); FeKα (LLIF, metal, 60); MnKα (LLIF, metal, 60); PKα (PET, apatite, 20); CaKα (LPET, apatite, 10); TiKα (LPET, metal, 20); PbMα (LPET, galena, 90); ThMα (PET, metal, 110); UMα (LPET, metal, 100).

Uranium, thorium and lead isotope analyzes were carried out by LA-ICP-MS at the Goethe University of Frankfurt (Germany), using a slightly modified method, as previously described in Gerdes and Zeh (2006, 2009, 2012). A ThermoScientific Element 2 sector-field ICP-MS was coupled to a Resolution M-50 (Resonetics) 193 nm ArF Excimer laser (CompexPro 102,
Coherent) equipped with a two-volume ablation cell (Laurin Technic, Australia). The laser was fired with 5.5 Hz at a fluence of about 3-4 J cm\(^{-2}\). Raw data were corrected offline for background signal, common Pb, laser induced elemental fractionation, instrumental mass discrimination and time-dependent elemental fractionation of Pb/U using an in-house MS Excel© spreadsheet program (Gerdes and Zeh, 2006, 2009). Laser-induced elemental fractionation and instrumental mass discrimination were corrected by normalization to the reference zircon GJ-1 (0.0984 ± 0.0003; ID-TIMS GUF value).

5. Petrography and mineralogy of the Matongo carbonatite

Midende (1984) provided detailed descriptions of the different rocks of the Matongo carbonatite, which are complemented by our observations and new data on mineral composition (see supplementary data).

5.1. Magmatic facies

The carbonatite comprises three main magmatic facies (Demaiffe, 2008; Midende, 1984).

The sövite I facies is limited and localized in highly fractured zones of the carbonatite. Calcite grains are euhedral, up to 2 cm in size (Fig. 3A), and close to pure calcite in composition (CaO close to 55 wt%), with minor contribution of Mn and Mg (Table 1). At the contact with the host rocks, sövite I can be silicified, Fe-stained and/or crosscut by fissures filled with iron oxides and quartz.

The sövite II represents the dominant facies of the carbonatite. It mainly consists of saccharoidal calcite (polygonal mosaic), with grain sizes ranging from 1 to 4 mm in width (Fig. 3B). The calcite contains Fe (FeO between 0.5 and 3 wt %), Mg (MgO between 0.1 and 1.6%) and Sr (SrO between 0.8 and 1.5). Sövite II commonly contains discrete zones with...
vanadiferous aegirine (1.1-1.9 wt.% V₂O₃), occurring as euhedral elongated crystals up to 2 cm in length (Fig. 3C), and apatite occurring as small grains or small prismatic crystals up to 5 mm in size. Aegirine and apatite may represent local cumulates, in which pyrochlore ((Na,Ca)₂Nb₂O₆(OH,F)) and K-feldspar are also present. The vanadiferous aegirine is partly transformed into amphibole (Mg-arfvedsonite; see supplementary data), which developed along aegirine cleavages and/or crystal boundaries. Richterite, another alkali amphibole, with 8.1-12.4 wt.% Fe₂O₃, 3.2-5.8 wt.% FeO, 14.2-16.6 wt.% MgO, 4.2-6 wt.% CaO, 3.6-5.1 wt.% Na₂O and 0.6-2.0 wt.% K₂O, occurs as cm-long needles (Fig. 3D) and may constitute 30% of the sövite rock volume. It is associated with calcite, apatite, clinopyroxene and phlogopite.

The ferrocarbonatite facies forms decimeter-wide veins crosscutting the sövites. It consists of fine-grained (< 1 mm in width) dolomite and ankerite (13.7-15.4 wt.% FeO, 11.3-13.7 wt.% MgO, 0.3-0.7 wt.% MnO; Fig. 3E), with abundant euhedral V-rich magnetite (V₂O₃, up to 2 wt.%) and ilmenite crystals. Iron-stained silica veins locally crosscut this facies (Fig. 3E).

5.2. Metasomatic and hydrothermal facies

Two types of fenite alteration, which are referred to as silicocarbonatites (Demaiffe, 2008), have been recognized at the contact between the carbonatites and the Karagwe-Ankolan metasediments: biotite-bearing fenite and K-feldspar-bearing fenite (Fig. 3F). The latter occurs as replacement of the mica-bearing facies. In the biotite-bearing fenite, biotite shows well-developed crystals up to 2 cm in size (see supplementary data, Fig. 3G). Biotite is partly transformed into phlogopite (see supplementary data), both phyllosilicates being in turn replaced by feldspars (mainly K-feldspar, with accessory albite grains). Other associated minerals are titanite, richterite, calcite and apatite. In K-feldspar-bearing fenite, feldspar constitutes up to 70% of the rock volume, and occurs associated with biotite, zircon, rutile and...
pyrochlore. Feldspar crystals are present as grains with amoeboidal boundaries or form cm-long lath-shaped aggregates.

“Late” hydrothermal calcite has been identified in association which sövite I. It occurs as veinlets containing very fine-grained calcite (several tens of µm in size), slightly enriched in Fe, Mn and Mg (up to 1.2 wt. %FeO, 0.7 wt. % MgO and 0.6 wt. % MnO) and coated by iron oxides.

6. Geochemistry

6.1. Major and trace element composition (Tables 1, 2 and 3)

As expected from the mineralogy, the Matongo carbonatites plot in the sövite and ferrocarbonatite fields of the ternary CaO-MgO-Fe$_2$O$_3$(t)+MnO diagram of Le Maitre (2002) (Fig. 4A). The sövite I samples, which consist essentially of pure calcite, plot close to the CaO apex of the triangle. Their MnO, MgO and Fe$_2$O$_3$(t) concentration is very low: ~0.7 wt. %, ~0.5 wt. % and < 1 wt. % respectively. Their SiO$_2$ and Al$_2$O$_3$ concentration is also very low, < 0.1 wt. %. The sövite II samples are characterized by a wide range of CaO concentrations (25.6-56.9 wt. %) that are inversely correlated with the SiO$_2$ (0.9-28.7 wt. %), Fe$_2$O$_3$ (1.1-16.6 wt. %) and Na$_2$O (0.1-5.4 wt. %) concentrations. The samples define a rough trend extending from the typical sövite to the ferrocarbonatite field. In the Na$_2$O+K$_2$O-MgO+Fe$_2$O$_3$(t)-CaO ternary diagram (Fig. 4B; Le Bas, 1984), the Matongo sövites define an elongated trend that can be related to clinopyroxene and/or amphibole fractional crystallization during carbonatite magma uprise and emplacement. Ferrocarbonatites also display a wide range of CaO concentrations (29.7-50.5 wt. %) that are inversely correlated
with the Fe$_2$O$_3$ and MgO contents (1.2-9.5 wt. % and 0.7-3.2 wt. %, respectively). Fe and Mg enrichments are likely linked to ankerite and dolomite formation. The “late” hydrothermal carbonatite is characterized by geochemical features close to sövites (50.2 wt. % CaO, 2.5 wt. % MgO, 1.2 wt. % Fe$_2$O$_3$ and 0.6 wt. % MnO). The fenites occur quite scattered in the Na$_2$O+K$_2$O-MgO+Fe$_2$O$_3$(t)-CaO ternary diagram (Fig. 4B; Le Bas, 1981, 1984). They show a trend that likely represents a consequence of alkali enrichment of the host country rocks (feldspathoidal syenite and metasediments) during the fenitization processes.

The chondrite-normalized rare-earth element (REE) abundance patterns of the various carbonatite facies are heterogeneous (Fig. 5). The sövite I samples have a rather low total REE abundance (ΣREE: 4-8 ppm) and display flat REE patterns with rather low La$_N$/Yb$_N$ ratios (3.1 to 4). The sövite II samples and the clinopyroxene-apatite cumulates (less commonly amphibole cumulates) are strongly enriched in REE (ΣREE from 442 up to 1550 ppm), with a significant LREE enrichment (La$_N$/Yb$_N$ ranging from 49 to 175) but no significant Eu anomaly (Eu/Eu* >0.8). The ferrocarbonatites are similar to the sövites II (225<ΣREE<1048 ppm, 17<La$_N$/Yb$_N$<64 and 0.8<Eu/Eu*<0.9). The fenites are also largely similar with ΣREE concentrations varying between 134 and 681 ppm, with LREE-enrichment (25<La$_N$/Yb$_N$<46) and no significant Eu anomaly. The “late” hydrothermal carbonatite is also enriched in REE (ΣREE = 397 ppm), but displays a peculiar pattern characterized by LREE depletion (La$_N$/Sm$_N$ = 0.4) and well-marked MREE-hump, with a small Eu negative anomaly (Eu/Eu* = 0.8) and a tetradeffect ((La$_N^*$Sm$_N$)/(Ce$_N^*$Nd$_N$)= 2.3).

Primitive mantle-normalized spidergram patterns (Fig. 6) illustrate that most of the Matongo carbonatite and fenite rocks share common characteristics: (1) an overall enrichment compared to the primitive mantle, except for the sövites I; (2) a general enrichment in large-ion lithophile elements (LILE) relatively to high-field-strength elements (HFSE), in particular
for the fenites; (3) negative anomalies in Ti, Zr, Hf (and K for the sövites and ferrocarbonatites); and (4) variable enrichments in Th, U, Nb and Ta that can be related to the presence of Nb(-Ta)-rich oxides (pyrochlore, magnetite) and U-Th-bearing minerals (pyrochlore). In general, the patterns observed are quite comparable to the “world average carbonatite” (Chakhmouradian, 2006), except for Th, U, Nb and Ta. It should be mentioned that sövite I samples display atypical patterns, with low global enrichment close to the primitive-mantle level, together with positive Sr and Th anomalies and a negative Ti anomaly.

6.2. U-Th-Pb data of the Matongo and Lueshe zircon megacrysts

Zircon megacrysts selected for U-Th-Pb geochronology were 1-6 mm in size, euhedral to subeuhedral (with the prevailing presence of the (101) pyramids; Fransolet and Tack, 1992) and frequently show oscillatory zoning (Fig. 7A to D). The zoning can be related to variations in Th (up to 0.34 and 2.2 wt% ThO$_2$ for Matongo and Lueshe zircon, respectively), U (up to 0.12 and 0.09 wt% UO$_2$, respectively) and Hf (0.36-0.90 and 0.39-1.45 wt%, respectively) contents. The inner zones of the zircons often show darker luminescence colours, whereas in many grains the primary zoning is replaced by cloudy to irregular patchy CL patterns related to alteration. The primary zoning has commonly been obliterated, from inside to outside, probably by a fluid phase entering the grains via small cracks. Sometimes the entire grain is affected. The altered CL dark (low-luminescence) areas are characterized by lower total oxides (ca. 95 wt%), higher U and Th contents, and detectable concentrations of Ti, Al, P, Ca, Mn and Fe (up to 1 wt% each), whereas the alteration domains with bright luminescence patterns differ by having low Th and U concentrations, often below detection limit of the EPMA.
Results of U-Th-Pb isotope analyses on zircon megacrysts from Matongo (sample RGM 9672) and Lueshe (sample RGM 9673) are presented in Figure 7E and F and Table 5. Laser spots were set predominantly on the primary, oscillatory-zoned domains. Altered areas were also analyzed: spots A36-A38 for Matongo and A19-A27 for Lueshe zircon. Within analytical error, the results were, however, in both cases - indistinguishable from those of the primary oscillatory domains, except for the slightly discordant analysis A37.

Seventeen U-Pb measurements on three zircon megacrysts from Matongo are equivalent and concordant. They yield a concordia age of 705.5 ± 4.5 Ma (Fig. 7E), significantly younger than the Pb-evaporation age of 738 ± 4 Ma (Tack et al., 1995). The 705 Ma age is consistent with the weighted average 206Pb/238U and 208Pb/232Th ages of 705.2 ± 4.6 Ma and of 697.3 ± 5.3 Ma, respectively.

In the case of Lueshe, twenty-two U-Pb analyses on three megacrysts also give equivalent and concordant values with a Concordia age of 798.5 ± 4.9 Ma (Fig. 7F). This is consistent with the corresponding weighted average 206Pb/238U and 208Pb/232Th ages of 801.0 ± 3.9 Ma and of 802.5 ± 4.0 Ma, respectively.

7. Discussion

7.1. Magmatic processes and sources

Petrographic observations and geochemical data illustrate that different magmatic processes took place during the emplacement of the Matongo carbonatite: (i) fractionation of clinopyroxene + apatite during carbonatite emplacement; (ii) ankerite formation during late-stage carbonatite intrusion; and (iii) alkali loss inducing metasomatic fenitisation and the formation of silicocarbonatites. These processes are recorded in the sövites II, the
ferrocarbonatite and the fenite (silicocarbonatite), which share similar geochemical
c characteristics. These rocks show LREE and LILE enrichments and similar Sr and Nd
isotopic compositions. The initial $^{87}\text{Sr}/^{86}\text{Sr}$ varies between 0.7028 and 0.7040 and initial εNd
values between +0.2 and +5.2 (Demaiffe, 2008; Table 6). These values plot in the mantle
array (Fig. 8) and point to a mantle source that is less depleted than the DM (Demaiffe, 2008).
The Matongo isotopic compositions are comparable to those reported for Lueshe sövites,
recalculated to 800 Ma (Kramm et al., 1997). This suggests that a similar source has been
sampled for the two carbonatite magmas, despite a difference in emplacement age of ca.
100 Ma. A long-lived thermal anomaly could thus have persisted in the mantle beneath Central
Africa. The Neoproterozoic Matongo and Lueshe carbonatites differ from the young (< 200
Ma) East African carbonatites (Bell and Tilton, 2001), whose isotopic field is displaced
towards lower εNd values and which show extended range of Sr isotopic compositions. Their
field extends between the HIMU and EMI fields and reflects the heterogeneity of the young
East African carbonatite source. Several interpretations have been proposed to explain this
heterogeneity: (i) The lithospheric mantle itself is heterogeneous and results from enrichment
and/or depletion processes at different times and degrees (Kalt et al., 1997); (ii) Various fluid
or melt incursions influenced the lithosphere, at least since the Proterozoic (Bell and Tilton,
2001); (iii) Upwelling of a mantle cell or plume of HIMU affinities resulted in a recently
metasomatized EMI-type lithosphere (Bell and Simonetti, 1996); (iv) The EMI-HIMU mixing
trend could be due to the signature of a heterogeneous mantle plume carrying these
components from the deep mantle (Bell and Tilton, 2001).

In terms of isotopic compositions, the Proterozoic carbonatites of Matongo, Lueshe
and Deerdepoort (1340 Ma, South Africa; Verwoerd, 1967) constitute a rather homogeneous
group, significantly different from the recent East African carbonatites, in particular for their
higher εNd values. The mantle source sampled during the Proterozoic by carbonatitic magmas is likely a deep-seated homogeneous reservoir, possibly contaminated by lithospheric material rather than a heterogeneous lithosphere as proposed for the African carbonatites by Bell and Tilton (2001), but rather. However, to confirm this statement complementary analyses of different Proterozoic African carbonatites are needed.

7.2. Late hydrothermal processes

The geochemical and isotopic characteristics of the sövite II and the ferrocarbonatites, which represent the largest part of the Matongo carbonatite, are clearly distinct from the sövite I and the “late” hydrothermal carbonatite. The sövite I was sampled in a deformed zone with macroscopic fractures. The “late” carbonatite occurs as thin veins of hydrothermal origin crosscutting the sövite I (Midende, 1984). Both rock types show petro-geochemical evidence of interaction with hydrothermal fluids. They display peculiar REE patterns with LREE fractionation. In addition, the late calcite (sample Gi17) shows intra-REE fractionation with a significant tetrad effect resulting from the interaction with fluids (Bau, 1994). Also, the very low REE content of sövite samples, illustrated by flat patterns (1 to 5 times the chondrites; Fig. 5), is hardly explicable by magmatic processes. Similarly, the Sr and Nd isotope compositions of the “late” calcite (\(^{87}\text{Sr}/^{86}\text{Sr}(i) = 0.71425\) and \(\varepsilon\text{Nd}(i) = -44\); Fig. 8) suggest the hydrothermal introduction of radiogenic Sr and non-radiogenic Nd from the surrounding country rocks. Moreover, the non-radiogenic signature of the Nd isotope composition indicates disturbance of the Sm-Nd system, possibly during interaction with fluids. The particularly low enrichment, if any, of the sövite I in REE and other trace elements indicates that this rock has been altered after the carbonatite emplacement.
Despite the close spatial association of the sövite I and late hydrothermal calcite, the precise relationships between the REE signatures of these facies still remain incomplete. The timing of hydrothermal fluid circulation responsible for the observed alteration is also not well constrained. However, hot fluids could have circulated during a quite long time span after magmatic intrusion, as illustrated by long-lived (10-30 Ma) hydrothermal systems associated with large granites (e.g. Kontak and Clark, 2002; Zhao et al., 2004).

7.3. Geodynamic setting of the carbonatite emplacement

7.3.1. Significance of the zircon megacryst ages

Zircon megacrysts are well-known in carbonatitic systems (e.g. Caruba and Iacconi, 1983; Hoskin and Schaltegger, 2003). In the URAPC, the occurrence of the zircon megacrysts close to the Matongo carbonatite and their ubiquitous primary calcite, magnesian calcite, and nahcolite inclusions (Burke, 1998) obviously argue for the carbonatitic affinity of these minerals, as already proposed by Fransolet and Tack (1992). The latter authors related the crystallization of these zircons to the circulation of alkaline pegmatitic fluids in the URAPC system. Regardless of the exact origin of these zircon grains (magmatic vs. hydrothermal), their crystallization is associated with the carbonatite and, thus, the U-Pb age that we have obtained (705.5 ± 4.5 Ma) provides a robust age of the carbonatite emplacement and rapid cooling. Regarding the discrepancy of 30 to 40 Ma between this age and older ages obtained on the Massif with other techniques, two explanations are suggested: (1) although unlikely because of the size of the URAPC, the possibility of a long time span between the main magmatic building stage of the intrusion and the latest stages of hydrothermal activity around the central Matongo carbonatite remains and (2) previous ages in the range 735 – 750 were
not as accurate as the new La-ICP-MS age obtained in this study. New geochronological work on the magmatic facies would help to constrain this hypothesis.

For Lueshe, regardless of the exact origin of the zircon megacrysts (magmatic vs. hydrothermal), the age obtained here is significantly different from the La-ICP-MS age of the Matongo megacrysts and also from the ages around 735-750 Ma for the URAPC. Therefore, the crystallization age of the Lueshe zircon dates the emplacement of the Lueshe intrusion at ca. 800 Ma, significantly older than the age of the URAPC-Matongo emplacement.

7.3.2. Structural reactivation of the present-day region of the Western Rift and relation to Rodinia breakup

As suggested by several authors (Burke et al., 2003; Hanson, 2003; Kampunzu et al., 1997, 1998; Tack et al., 1984, 1996), most of the Proterozoic ages obtained for the envisaged alkaline complexes and/or carbonatites along the present-day Western Rift seem to reflect uprise of mantle-derived magmas along lithospheric weakness zones in relation with the breakup of Rodinia (Fig. 9). This breakup is recorded at ca. 705 Ma at Matongo by the La-ICP-MS age of the zircon megacrysts and at ca. 798 Ma at Lueshe by the same method.

In addition to alkaline magmatism, Neoproterozoic reactivation of older structures is also illustrated by the formation of intracratonic basins (Fernandez-Alonso et al., 2012; Tack et al., 1992): (1) the Malagarazi basin located across the Burundi-Tanzania border (Fig. 1B). CFB-type rocks (“Kabuye-Gagwe amygdaloidal basalts”), intercalated in the sedimentary succession of the Neoproterozoic Malagarazi – Nyamuri (formerly Bukoba) Supergroup, yielded a crystallization age of 795 ± 7 Ma (Deblond et al., 2001); and (2) the Itombwe syncline (DRC, Fig. 1B). This narrow N-S elongated structure contains a sedimentary
succession (Neoproterozoic Itombwe Supergroup), with a maximum deposition age of ~ 710 Ma (Fernandez-Alonso et al., 2012; Villeneuve, 1987; Walemba and Master, 2005).

The considered ~ 700 - 800 Ma time-period tracing both endogenic and exogenic extensional processes thus records diachronous reactivation and breakup of Rodinia supercontinent in response to differential intraplate stress, in agreement with geodynamic processes invoked by Li et al. (2008), Eyles and Januszczak (2004) and Eyles (2008). In the nearby Congo Craton and at its margin, the diacronicity of the breakup and the succession of extensional regimes have been evidenced in the time frame ~1 Ga - ~500 Ma by the formation of sedimentary basins (e.g. Delpomdor et al., 2013) and alkaline magmatism (e.g. Pedrosa-Soares and Flecha de Alkmim, 2011).

However, the configuration, evolution and even existence of the Rodinia supercontinent remain debated. Even though most of the authors consider that the supercontinent fragmentation and dispersal began about 800-750 Ma (Hoffman, 1999; Pisarevsky et al., 2003) or even 1 Ga ago (Eyles, 2008), others argued that (1) Rodinia breakup occurred between 750 and 600 Ma (Eyles and Januszczak, 2004; Li et al., 2008) or even not before 725 Ma (Powell et al., 1993) and (2) the formation of Gondwana by the reassembly of the dispersed terranes ended at about 550 Ma (Meert and Van der Voo, 1997). It has also been proposed that the early Pan-African tectonic phase began around 725 Ma (Lenoir et al., 1994). In this context, the emplacement of late mylonitic granites along shear zones at 724 ± 6 Ma (U-Pb age on zircon fraction) in the Ubendian belt of SW Tanzania could be the result of a continental collision in the frame of the early Pan-African orogen (Theunissen et al., 1992). On a larger scale, Fritz et al. (2013) have proposed that the consolidation of the East African orogen was achieved during distinct phases between ~850 and 550 Ma, with the accretion of microcontinents during the ~850-620 Ma time range. The
abundance of granitoid magmatism occurring between ~850 and ~650 Ma in the East Africa domain may be related to this continental aggregation leading to the formation of the Gondwana supercontinent (Kröner and Cordani, 2003). If an extensional tectonic setting is considered for that period, what remains debated, the URAPC would represent one of the last episodes of the magmatic activity associated with this event, before the “renewal” of alkaline/carbonatitic activity in the area several hundred millions years later during the Cretaceous (e.g. Chilwa in Malawi; Simonetti and Bell, 1994), in relation with the development of the East African rift system.

7.3.3. Early continental rifting in the Rodinia breakup history: the involvement of a plume?

Many alkaline complexes of Central Africa were emplaced between ~750 and 650 Ma. However, some complexes record significantly older ages, in the range ~830-750 Ma, among which the now dated Lueshe complex, of which the zircon megacrysts have been dated at 798.5 ± 4.9Ma. These old emplacement could also be related to the Rodinia breakup, especially to an earlier step of intraplate continental rifting. This could possibly be associated with the presence of a superplume below Rodinia (Li et al., 2008) that eventually led to the breakup of the supercontinent. In the western branch of the East African Rift, the presence of flood basalts spatially and temporally associated with the alkaline complexes favours the involvement of a superplume (Bell, 2001; Ernst and Buchan, 2003). Tholeiitic fissural flood basalts, like the Kabuye-Gagwe amygdoidal lavas, emplaced in the Malagaraszi basin (De Paepe et al., 1991) at 822 ± 30 Ma (K-Ar ages; Briden et al., 1971 in Deblond et al., 2001; Fig. 9) and between 815 ±14 and 709 ± 2 Ma (Ar-Ar ages; Deblond et al., 2001; Fig. 9). They are also coeval with the shallow-depth Nyaganza dolerites that are intrusive in the Malgarasian Subgroup (815 ± 14 Ma; K-Ar age; Cahen et al., 1984) and with the doleritic
gabbros of Kavumwe, dated at 803 ± 30 Ma, 806 ± 30 Ma (K-Ar method; Briden et al., 1971) and 795 ± 7 Ma (Deblond et al., 2001). However, additional arguments should be found for a proper demonstration of a mantle plume involvement in the URAPC genesis; this hypothesis would be especially challenging if a convergent plate tectonic setting (Pan-African orogeny) is favoured in the future rather than an extensional setting (Rodinia Breakup).

7.3.4. Panafrican overprint

In the present-day Western Rift region, discrete Panafrican tectonic overprint with a climax at ~550 Ma is considered a far-field effect of the distant East African Orogen facilitated by the palaeogeography of the Archean Tanzania Craton, which plays as an indentor squeezing the Proterozoic rocks (De Waele et al., 2008; Fernandez-Alonso et al., 2012; Dewaele et al., 2011). Due to the easy diffusion of radiogenic 87Sr and 40Ar and the high mobility of K, Rb and Sr, this Panafrican overprint resulted in disturbance and partial resetting of the K-Ar, Ar-Ar and Rb-Sr isotopic systems with a huge scatter of apparent ages as documented in Fig. 9, explaining some if not most of the younger 580-450 Ma ages for several alkaline complexes (Fig. 9). It is particularly obvious for the Kirumba complex (RDC), where the Rb-Sr and K-Ar ages are situated between 800 and 240 Ma (Bellon and Poulet, 1980; Cahen et al., 1979; Cahen and Snelling, 1966; Kampunzu et al., 1998). This could also be the case for Lueshe, where most of the previously obtained ages (see Geological context) are significantly younger than the new LA-ICP-MS age on zircon megacrysts (798.5 ± 4.9 Ma). This may not be the case for the URAPC for which the U-Pb age on zircon megacryst at 705 Ma is indistinguishable from the Rb-Sr whole rocks age (699 Ma).
8. Conclusion

Petrographic observation and geochemical data (major and trace element analyses) show that different magmatic processes occurred at the scale of the Matongo carbonatite: fractionation of clinopyroxene (and apatite) during carbonatite emplacement, ankeritisation, and alkali loss inducing fenitisation. “Late” hydrothermal processes developed after carbonatite emplacement and affected the primary facies of the carbonatite.

In the hypothesis of an extensional setting, the ~800 and ~705 Ma ages obtained on carbonatite-related zircon crystals from Lueshe (DRC) and Matongo (Burundi) could confirm the relationship between carbonatite emplacement and Rodinia breakup, either during an early stage of the fragmentation (at ~800 Ma, for the Lueshe complex) or at a later stage (at ~705 Ma for the Matongo carbonatite). The ages of the alkaline complexes would also illustrate the reactivation of Palaeoproterozoic lithospheric weakness zones during extension. Other expressions of the continental rifting process at that time could be found in the formation of Neoproterozoic intracratonic basins documented in the KAB (Fernandez-Alonso et al., 2012; Tack et al., 1992). Consequently, the major lithospheric weaknesses remain the “key factor” controlling the emplacement/location of the carbonatites and alkaline complexes in the East African Rift system.

The Panafrican event (660-550 Ma) induced deformation in the KAB, which could be responsible for the disturbance and partial resetting of some isotopic systems. In the area of the western branch of the East African rift, the URAPC could correspond to one of the last episodes of the magmatic activity associated with Rodinia breakup, before the “renewal” of alkaline/carbonatitic activity during the Cretaceous in Central Africa.

Acknowledgments
This study is a contribution to the GECO project, funded by the Belgian Federal Public Service for Foreign Affairs. Andy Moore and Stefano Salvi are warmly thanked for their helpful comments that contributed to a nice amelioration of this paper. The authors are also grateful to Jean-Paul Liégeois for his constructive comments and editorial handling of the paper.

References

extensional intracratonic basin development punctuated by two short-lived far-field compressional
events. Precambrian Research 216, 63-86.

géologique de Belgique 115, 113-118.

C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stem, R.J., Viola, G., 2013. Orogen styles

Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons:
Comparison with SHRIMP and new constraints for the provenance and age of an Armorican

Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration – new insights from combined U-Pb and
Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from

(Eds.), Proterozoic East Gondwana: Supercontinent assembly and breakup, Geological Society,

Reviews in Mineralogy and Geochemistry 53, 27-62.

complexes from the interlake region of eastern Zaire and Burundi – An example of anorogenic

Pedrosa-Soares, A.C., Flecha de Alkmim, 2011. How many rifting events preceded the development of the Araçuai-West Congo orogen? Geonomos 19, 244-251.

Figures and tables captions

Fig. 1. (A) Carbonatite and alkaline massif occurrences in Africa (redrawn from Woolley, 2001), (B) Alkaline magmatism along the western branch of the East African Rift system (redrawn from Tack et al., 1984 and Kampunzu and Mohr, 1991). The Itombwe “syncline” and Malagarazi basin consist of Neoproterozoic rocks; the Malagarazi Supergroup (Burundi) – formerly known in Tanzania as Bukoba Supergroup – has been renamed Nyamuri Supergroup (Geology and Mineral map of Tanzania, 1:2.000.000, 2008).

Fig. 2. Geological sketch map of the studied area (modified and redrawn from Tack et al., 1984, and after Fernandez-Alonso et al., 2012), with location of the showings/deposits mentioned in the text. The insert illustrates the location of the drill holes.

Fig. 3. Photomacrophographs of the various Matongo carbonatite facies: (A) coarse-grained sövite I, cut by a vein of “late” hydrothermal calcite (calcite finely admixed with Fe oxides) (sample LT-SI-1), (B) fine-grained sövite II with biotite (sample LT-SII-1), (C) euhedral crystals of aegirine in a sövite II (sample RG 140.280A), (D) richterite needles within a sövite II (sample RG 140.280B), (E) association of ankerite (dark grey on the picture), calcite and iron-stained silica (red on the picture) (sample RG 140.272), (F) fenite comprizing K-feldspar and biotite (sample S1/183.5-184.25) and (G) fenite almost exclusively made up of biotite (sample RG 140.279). Scale bars are in cm.
Fig. 4. The Matongo carbonatites in classification/discrimination ternary diagrams: (A) CaO-Fe$_2$O$_3$(t)+MnO-MgO (based on Le Maitre et al., 2002) and (B) Na$_2$O+K$_2$O-CaO-MgO+Fe$_2$O$_3$ (Le Bas, 1981, 1984).

Fig. 5. Chondrite-normalized REE abundance patterns of the Matongo carbonatite facies. (A) sövite I, (B) sövite II and associated cumulates (comprising clinopyroxene, apatite and amphibole), (C) ferrocarbonatite and “late” hydrothermal calcite, and (D) fenites-silicocarbonatites. Normalization values to the chondrites from Sun (1982) and McDonough (1990).

Fig. 6. Spidergrams of the Matongo carbonatite facies. (A) sövite I, (B) sövite II and associated cumulates (comprising clinopyroxene, apatite and amphibole), (C) ferrocarbonatite and “late” hydrothermal calcite, and (D) fenites-silicocarbonatites. Normalization values to the primitive mantle from McDonough et al. (1992).

Fig. 7. Pictures of the Matongo (A and C) and Lueshe (B and D) zircon megacrysts (A and B: backscattered electron images, C and D: cathodoluminescence images): red and white dots represent electron microprobe and LA-MC-ICP-MS analyses, respectively. E and F: concordia plots of LA-MC-ICP-MS U-Pb data, with data point error ellipses at 2σ.

Fig. 8. Initial εNd-εSr isotopic diagrams for the various Matongo carbonatites (7 samples; Demaiffe, 2008). For comparison, are reported the fields for the sövites from the Lueshe Neoproterozoic carbonatite (DR Congo; Kramm et al., 1997) and for the East African carbonatites (dated between 200 and 0 Ma; Bell and Tilton, 2001). The positions of the main oceanic mantle reservoirs identified by Zindler and Hart (1986) are shown: DM = depleted mantle, BSE = bulk silicate earth, EMI and EMII = enriched mantle I and II, HIMU = high U/Pb domain. Outline of the mantle array (dashed line) is drawn after Stracke et al. (2003) and Bizimis et al. (2003).

Fig. 9. Schematic diagram comparing the isotopic ages obtained on carbonatites and alkaline complexes (located in Fig. 1B) and the new Matongo and Lueshe zircon U-Pb ages. All these ages are considered together and reinterpreted in the regional geodynamic context. Reference numbering is as follow: (1) This paper; (2) Kramm et al. 1997; (3) Bellon and Poulet, 1980; (4) Cahen and Snelling, 1966; (5) Kampunzu et al., 1998; (6) Cahen et al., 1979; (7) Tack et al., 1984; (8) Vellutini et al., 1981; (9) Cahen et al., 1975; (10) Demaiffe, 2008; (11) Stendal et al., 2004; (12) Brock, 1968; (13) Mbede et al., 2004; (14) Ray, 1974; (15) Snelling et al., 1964; (16) Vrana et al., 2004; (17) Van Overbeke, 1996; (18) Van den Haute, 1986; (19) Tack et al., 1995.
Table 1. Major element contents (in wt. %) of samples from the Matongo carbonatites.

Table 2. REE contents (ppm) La_N/Yb_N ratios, ΣREE and tetrad effect of samples from the Matongo carbonatites.

Table 3. Trace elements (in ppm) of samples from the Matongo carbonatite.

Table 4. Representative electron probe microanalyses of zircon megacrysts from Lueshe and Matongo.

Table 5. Representative U-Th-Pb analyses of zircon megacrysts from Lueshe and Matongo.

Table 6. Sr and Nd isotopic data of samples from the Matongo carbonatites (Demaiffe, 2008).

Supplementary data. Representative microprobe analyses (elements in wt. %) of carbonates (A), clinopyroxenes, amphiboles (B), feldspars and phyllosilicates (C) from the Matongo carbonatites.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Si 0₁</th>
<th>Al₂ O₃</th>
<th>Fe₂O₃</th>
<th>Mn O</th>
<th>Mg O</th>
<th>Ca O</th>
<th>Na O</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>LOI</th>
<th>Su m</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT-SI-1</td>
<td>sövite I</td>
<td>0.8</td>
<td>4.8</td>
<td>0.2</td>
<td>4.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>38.9</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>RG410.276-S7/62-63m</td>
<td>Sövite I</td>
<td>0.8</td>
<td>1.14</td>
<td>5.9</td>
<td>7.2</td>
<td>8.3</td>
<td>5.1</td>
<td>0.1</td>
<td>1.2</td>
<td>6.1</td>
<td>16.6</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Gi3-ITS4/84-87m</td>
<td>sövite II</td>
<td>2.4</td>
<td>0.7</td>
<td>1.33</td>
<td>3.4</td>
<td>4.7</td>
<td>2.9</td>
<td>1.4</td>
<td>2.6</td>
<td>6.4</td>
<td>6.4</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>LT-SII-1</td>
<td>sövite II</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>2.2</td>
<td>1.4</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>RG 140.273</td>
<td>sövite II</td>
<td>3.6</td>
<td>2.21</td>
<td>21.1</td>
<td>92</td>
<td>8.5</td>
<td>5.0</td>
<td>1.1</td>
<td>12</td>
<td>2.3</td>
<td>3.3</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Gi2-S3/147</td>
<td>süvite II</td>
<td>10.9</td>
<td>0.1</td>
<td>2.2</td>
<td>4.2</td>
<td>1.4</td>
<td>0.4</td>
<td>0.3</td>
<td>3.7</td>
<td>22</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi12-S5/121.5m</td>
<td>süvite II with apatite</td>
<td>1.3</td>
<td>0.2</td>
<td>0.7</td>
<td>4.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10</td>
<td>36.9</td>
<td>99.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT-cum-1</td>
<td>süvite II with apatite</td>
<td>2.8</td>
<td>1.3</td>
<td>0.0</td>
<td>2.4</td>
<td>2.5</td>
<td>0.2</td>
<td>0.3</td>
<td>10</td>
<td>9.0</td>
<td>98.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG 140.280A-S5/121-121.60m</td>
<td>süvite II with apatite and px</td>
<td>28.5</td>
<td>16.65</td>
<td>88.4</td>
<td>57.7</td>
<td>9.3</td>
<td>39.3</td>
<td>9.3</td>
<td>8</td>
<td></td>
<td>97.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi1-S2/171-172m</td>
<td>süvite II with apatite</td>
<td>6.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.6</td>
<td>42.0</td>
<td>0.2</td>
<td>0.4</td>
<td>1.3</td>
<td>3.3</td>
<td>40.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi10-S6/155-156m</td>
<td>süvite II with apatite</td>
<td>6.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.6</td>
<td>42.0</td>
<td>0.5</td>
<td>0.3</td>
<td>1.3</td>
<td>4.7</td>
<td>38.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi11-S8/S56m</td>
<td>süvite II with apatite</td>
<td>21.3</td>
<td>4.4</td>
<td>8.6</td>
<td>7.4</td>
<td>9.4</td>
<td>1.1</td>
<td>9</td>
<td>30</td>
<td>3</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG 140.280B-S5/121-121.60m</td>
<td>süvite II with apatite and px</td>
<td>48.2</td>
<td>10.40</td>
<td>9.4</td>
<td>4.8</td>
<td>1.6</td>
<td>6</td>
<td>63</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi16-S3/121.5m</td>
<td>ferrocarbonatite</td>
<td>7.7</td>
<td>2.2</td>
<td>0.2</td>
<td>3.1</td>
<td>29.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>9.9</td>
<td>98.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT-CJ-1</td>
<td>ferrocarbonatite</td>
<td>2.3</td>
<td>1.2</td>
<td>0.2</td>
<td>0.6</td>
<td>50.0</td>
<td>0.0</td>
<td>0.3</td>
<td>3.9</td>
<td>28.3</td>
<td>83.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG 140.272-ITS5/60m</td>
<td>ferrocarbonatite</td>
<td>9.3</td>
<td>2.8</td>
<td>1.0</td>
<td>2.4</td>
<td>44.6</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
<td>38.6</td>
<td>85.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi17-S7/91-95</td>
<td>"late" hydrothermal</td>
<td>0.9</td>
<td>0.2</td>
<td>0.6</td>
<td>2.4</td>
<td>50.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi5-ITS3/291</td>
<td>kfs-fenite</td>
<td>51.1</td>
<td>14.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.7</td>
<td>0.12</td>
<td>0.0</td>
<td>0.1</td>
<td>1.6</td>
<td>99.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi14-ITS4/150</td>
<td>kfs-fenite</td>
<td>32.5</td>
<td>9.3</td>
<td>0.4</td>
<td>0.3</td>
<td>25.9</td>
<td>7.1</td>
<td>0.0</td>
<td>0.1</td>
<td>13.8</td>
<td>89.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi15-S5/104-106</td>
<td>bt-fenite</td>
<td>35.1</td>
<td>16.0</td>
<td>0.0</td>
<td>4.6</td>
<td>13.8</td>
<td>4.4</td>
<td>1.5</td>
<td>1.9</td>
<td>6.5</td>
<td>85.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1/183.5-184.25</td>
<td>Kfs-bt-fenite</td>
<td>55.1</td>
<td>16.0</td>
<td>0.1</td>
<td>4.6</td>
<td>6.0</td>
<td>0.9</td>
<td>12.1</td>
<td>0.1</td>
<td>0.6</td>
<td>98.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Su m indicates the sum of all elements in the sample.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>L</th>
<th>C</th>
<th>P</th>
<th>N</th>
<th>S</th>
<th>E</th>
<th>G</th>
<th>T</th>
<th>D</th>
<th>H</th>
<th>E</th>
<th>Y</th>
<th>L</th>
<th>LaN/YbN</th>
<th>Eu/Eu*</th>
<th>Su</th>
<th>mR</th>
<th>mR/EE</th>
<th>Tetrad effect (LaN°SmN°)(CeN°NdN°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT-SI-1</td>
<td>sövite I</td>
<td>0.1</td>
<td>6.0</td>
<td>0.7</td>
<td>3.88</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG140.2</td>
<td>Sövite I</td>
<td>0.1</td>
<td>3.1</td>
<td>0.6</td>
<td>8.39</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G31-87</td>
<td>sövite II</td>
<td>0.1</td>
<td>67.1</td>
<td>1.4</td>
<td>539</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT-SII-1</td>
<td>sövite II</td>
<td>0.1</td>
<td>55.0</td>
<td>0.8</td>
<td>552</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>Sövite II</td>
<td>0.1</td>
<td>58.9</td>
<td>0.8</td>
<td>461</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12-141</td>
<td>sövite II</td>
<td>0.1</td>
<td>89.0</td>
<td>0.9</td>
<td>907</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1/183.5</td>
<td>Kfs-bt-fenite</td>
<td>0.1</td>
<td>36.0</td>
<td>0.9</td>
<td>234</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normalization values used

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<table>
<thead>
<tr>
<th>Chondrite Concentrations of Sun (1982) and McDonough (1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE diagrams - chondrite concentrations of Sun (1982) and McDonough (1990)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Normalized values used in spidergram

| GI17-S7/91-95 | 1 | 7 | 2 | 0 | 4 | 1 | 0 | 0 | 3 | 7 | 3 | 1 | 2 | 6 | 3 | 0 | 5 | 1 | 0 | 7 | 1 | 3 | 9 | 3 | 6 | 5 | 0 | 8 | | |
| GI5-ITS3/291 | 2 | 1 | 1 | 4 | 5 | 7 | 3 | 6 | 6 | 1 | 2 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 1 | 1 |
| GI14-ITS4/150 | 1 | 1 | 4 | 1 | 4 | 1 | 3 | 3 | 3 | 4 | 9 | 7 | 2 | 0 | 1 | 4 | 0 | 1 | 8 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| GI15-S5/10-4-106 | 1 | 1 | 3 | 1 | 0 | 5 | 7 | 2 | 5 | 1 | 1 | 2 | 5 | 2 | 4 | 8 | 2 | 0 | 5 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| S1/18-3.5-184.2-5 | 2 | 2 | 7 | 7 | 5 | 1 | 7 | 5 | 1 | 1 | 6 | 4 | 0 | 2 | 1 | 0 | 6 | 6 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |

| Normalization values | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | | |
|Normalized | 6 | 9 | 0 | 0 | 7 | 0 | 3 | 6 | 7 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 5 | 0 | 6 | 1 | 4 | 4 | 0 | 3 | 8 | 2 | 1 | 4 | 0 |
| Concentrations | 3 | 8 | 8 | 2 | 1 | 4 | 0 | 8 | 7 | 8 | 7 | 1 | 6 | 1 | 5 | 2 | 9 | 4 | 4 | 7 | 4 | 9 | 4 | 5 | 9 | 8 | 3 | 8 |

Note: The values represent normalized concentrations used in spidergrams as described by McDonagh et al. (1992).
<table>
<thead>
<tr>
<th>Cations per formula units</th>
<th>Matongo (RGM 9672)</th>
<th>Lueshe (RGM 9673)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL brightness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>18.8</td>
<td>5.1 79.12</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>6.5</td>
<td>1.0 65.65</td>
</tr>
<tr>
<td>HfO₂</td>
<td>3.67</td>
<td>40.62 8 1.5 43</td>
</tr>
<tr>
<td>ThO₂</td>
<td>37.80</td>
<td>1.10.51 98.65.3</td>
</tr>
<tr>
<td>UO₂</td>
<td>59.8</td>
<td>1.10.51 98.65.3</td>
</tr>
<tr>
<td>PbO</td>
<td>1.8</td>
<td>0.1 0.9 1.3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.0</td>
<td>0.1 0.9 1.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.45</td>
<td>1.52 22.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.56</td>
<td>1.54 11.1</td>
</tr>
<tr>
<td>CaO</td>
<td>1.39</td>
<td>7.62 40.1</td>
</tr>
<tr>
<td>MnO</td>
<td>1.33</td>
<td>9.87 4.68</td>
</tr>
<tr>
<td>FeO</td>
<td>1.15</td>
<td>4.68 61.1</td>
</tr>
<tr>
<td>total</td>
<td>9.35 8.8 9.9 31 8.4</td>
<td>4.20 2.0 32.4 4.5 2.58</td>
</tr>
</tbody>
</table>

The table above lists the analysis results for Cations per formula units for Matongo (RGM 9672) and Lueshe (RGM 9673).
<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>19</th>
<th>00</th>
<th>50</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fe</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>total</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

*, metamict area
<table>
<thead>
<tr>
<th></th>
<th>207</th>
<th>206</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>U</td>
<td>P</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Pb</td>
<td>2</td>
<td>Pb</td>
</tr>
<tr>
<td>s</td>
<td>Pb</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>Ta</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(c</td>
<td>p</td>
<td>%</td>
</tr>
<tr>
<td>ps</td>
<td>m</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A0</td>
<td>60</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A0</td>
<td>00</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A0</td>
<td>46</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>A0</td>
<td>16</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A0</td>
<td>32</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>A1</td>
<td>55</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>56</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>A1</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1</td>
<td>82</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>05</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>82</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>93</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>A1</td>
<td>66</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>A1</td>
<td>68</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lueshe</td>
<td>51</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(RGM</td>
<td>A1</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9673)</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>AS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>59</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>34</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matong

<table>
<thead>
<tr>
<th></th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
2 0 0. 3 0. 3 0. 11 1 1. 2 0. 1 06 1 0. 7 7 7 7 7 1
A4 65 3 2 0. 59 0. 00 0. 03 29. 8 0 1 0 1 0 1 0 2 0
0 8 3 5 6 3 0 0 9 6 1 53 7 5 0 9 7 3 7 1 2 2 7 1 0
0 0 0 0 0
6 2 0 0. 3 0. 2 06 2 0. 6 6 7 6 6 7
A4 58 4 6 0 0. 41. 99 0. 03 34. 6 9 1 0 1 9 1 2 5 9
1 76 0 8 6 26 0 9 7 7 1 51 5 2 5 1 6 3 3 6 8 7 2 2 6
0 0. 0. 0. 0
11 2 7 11 2 1. 2 0. 1 06 0 0. 7 7 7 7 7
A4 34 4 7 0. 60 0. 00 0. 03 30. 9 0 1 0 1 1 1 1 9
2 17 2 3 1 09 0 0 9 1 60 7 9 9 1 8 3 8 1 4 2 1 9 9
0 0. 0. 0. 0
40 2 1 11 1 0. 2 0. 2 06 1 0. 7 7 7 6 7
A4 01 5 3 0. 52 99. 0. 03 28. 8 0 1 0 1 9 1 0 2 0
3 2 1 3 1 08 0 7 83 0 48 0 5 1 4 3 1 3 0 1 4 3 3 0
0 0. 0. 0. 0
41 6 0 11 1 0. 2 0. 1 06 1 6 6 7 7 7
A4 16 4 8 0. 32 98 0. 03 30 0 8 9 1 9 1 0 1 2 9
4 4 5 1 8 09 0 6 4 0 52 6 7 1 2 1 6 0 0 1 1 4 7
0 0. 0. 0. 0
11 2 6 11 2 0. 2 0. 1 06 0 0. 7 7 7 6 7
A4 21 9 8 0. 50 99 0. 03 29 9 0 0 1 8 1 0 1 9
5 29 3 3 5 06 0 0 8 2 46 8 5 8 3 2 4 3 1 7 2 7 7 9
0 0. 0. 0. 0
57 1 4 11 1 0. 3 0. 1 06 3 6 7 6 7
A4 57 1 2 1. 45 99 0. 03 25 4 9 1 0 2 9 1 0 7 9
6 9 7 7 6 56 0 9 35 9 49 9 4 9 9 9 3 1 0 3 3 6 3 9
0 0. 0. 0. 0
19 1 1 11 1 1. 2 0. 1 06 1 0. 7 7 7 6 1
A4 58 5 2 0. 65 0. 00 0. 03 27 7 1 1 0 1 0 1 9 3 0
7 5 8 1 0 14 0 9 8 4 56 8 4 5 9 0 2 8 2 7 3 9 1 2
0 0. 0. 0. 0
27 2 1 11 1 1. 2 0. 1 06 1 0. 7 7 6 7 1
A4 06 2 3 0. 69 01. 0. 03 28 8 1 1 1 1 9 1 0 2 0
8 7 4 2 3 14 0 8 9 2 49 8 6 3 1 3 2 0 1 4 2 4 8 1
0 0. 0. 0. 0
36 0 11 2 0. 2 0. 1 06 1 0. 6 7 7 7
A4 54 7 5 0. 44 99 0. 03 30 8 9 1 0 1 1 1 2 9
9 0 1 7 6 04 0 0 0 51 2 61 9 7 1 8 8 3 1 1 7 3 1 2 8
0 0. 0. 0. 0
Ple 63 6 . 05 1 0. 2 0. 3 05 1 0. 3 3 3 3 3 1
sov 69 2 3 1 0. 32 . 38 01. 26 8 3 3 3 1 1 2 0
ice 2 9 2 4 10 8 7 66 0 69 6 3 0 7 5 6 2 6 9 2 3 2 7
0 0. 0. 0. 0
Ple 61 6 . 05 1 0. 2 0. 3 05 1 0. 3 3 3 3 3 1
sov 54 4 3 1 0. 40 . 39 01. 30 8 3 3 3 1 3 2 0
ice 6 8 3 3 23 3 7 54 0 66 3 7 2 1 9 5 8 6 2 1 2 7 2
0 0. 0. 0. 0
Ple 58 6 . 05 1 0. 2 0. 3 05 1 0. 3 3 3 3 3 1
sov 12 3 3 1 0. 37 . 39 01. 27 8 3 3 3 1 1 2 0
ice 8 6 2 5 12 0 8 05 1 68 0 3 1 4 7 6 5 6 6 0 7 6 6
0 0. 1. 0. 0
76 1 1 14 05 2 0. 6 0. 0 05 6 3 3 3 3 1
IR 40 7 1 . 5 64 . 41 . 01 . 39 . 4 5 1 5 2 5 3 6 4 9
P 2 4 6 3 1 6 9 98 9 75 3 3 3 3 2 4 0 6 1 0 6 8 2 6
0 0. 0. 0. 0
80 1 0 18 05 2 0. 7 0. 0 05 6 3 3 3 3 1
IR 59 5 1 . 2 74 . 42 . 01 . 40 . 3 6 1 6 2 6 2 7 5 9
P 9 3 4 8 1 1 8 81 3 80 5 9 7 8 0 0 2 2 1 3 5 2 6

Spot size = 28 μm; depth of crater ~20μm. U error is the quadratic additions of the within run precision (2 SE) and the external reproducibility (2 SD) of the reference zircon, Pb error propagation (Pb signal dependent) following Gerdes & Zeh (2009). Pb/U uncertainty.
U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon.

*percentage of the common Pb on the ^{206}Pb.

b.d. = below detection limit.

*corrected for background, within-run Pb/U fractionation (in case of $^{206}\text{Pb}/^{238}\text{U}$) and common Pb using Stacy and Kramers (1975) model Pb composition and subsequently normalised to GJ-1 (ID-TIMS value/measured value); $^{206}\text{Pb}/^{238}\text{U}$ calculated using $^{207}\text{Pb}/^{206}\text{Pb}/(^{238}\text{U}/^{206}\text{Pb})*1/137.88$

rho is the $^{206}\text{Pb}/^{207}\text{U}/^{207}\text{Pb}/^{235}\text{U}$ error correlation coefficient.

*degree of concordance = $^{206}\text{Pb}/^{238}\text{U}$ age / $^{207}\text{Pb}/^{206}\text{Pb}$ age x 100

*Accuracy and reproducibility was checked by analyses of Plesovice zircon and Ice River perovskite.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>87Rb/86Rb</th>
<th>87Sr/86Sr (i)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd d(i)</th>
<th>εNd(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi3-ITS4/84-87m</td>
<td>sövite II</td>
<td>0.0016</td>
<td>0.70314</td>
<td>0.0784</td>
<td>0.512273</td>
<td>0.511913</td>
</tr>
<tr>
<td>Gi2-S3/147</td>
<td>sövite II</td>
<td>0.0134</td>
<td>0.70311</td>
<td>0.0802</td>
<td>0.512233</td>
<td>0.511865</td>
</tr>
<tr>
<td>Gi12-S5/121.5m</td>
<td>sövite II with apatite and px</td>
<td>0.0001</td>
<td>0.70306</td>
<td>#N.A.</td>
<td>#N.A.</td>
<td>#N.A.</td>
</tr>
<tr>
<td>Gi1-S2/171-172m</td>
<td>sövite II with apatite and px</td>
<td>0.0071</td>
<td>0.70294</td>
<td>0.0725</td>
<td>0.512273</td>
<td>0.511940</td>
</tr>
<tr>
<td>Gi10-S6/155-156m</td>
<td>sövite II with apatite and px</td>
<td>0.0024</td>
<td>0.70357</td>
<td>#N.A.</td>
<td>#N.A.</td>
<td>#N.A.</td>
</tr>
<tr>
<td>Gi11-S8/56m</td>
<td>px and apatite cumulate</td>
<td>0.0061</td>
<td>0.70344</td>
<td>0.0733</td>
<td>0.512052</td>
<td>0.511716</td>
</tr>
<tr>
<td>Gi16-S3/121m</td>
<td>ferrocarbonatite</td>
<td>0.0066</td>
<td>0.70321</td>
<td>0.0790</td>
<td>0.512205</td>
<td>0.511843</td>
</tr>
<tr>
<td>Gi17-S7/91-95</td>
<td>"late" hydrothermal carbonate</td>
<td>0.0268</td>
<td>0.71425</td>
<td>0.8398</td>
<td>0.513487</td>
<td>0.509634</td>
</tr>
<tr>
<td>Gi5-ITS3/291</td>
<td>kfs-fenite</td>
<td>0.4031</td>
<td>0.70280</td>
<td>#N.A.</td>
<td>#N.A.</td>
<td>#N.A.</td>
</tr>
<tr>
<td>Gi14-ITS4/150</td>
<td>kfs-fenite</td>
<td>0.0938</td>
<td>0.70350</td>
<td>#N.A.</td>
<td>#N.A.</td>
<td>#N.A.</td>
</tr>
<tr>
<td>Gi15-S5/104-106</td>
<td>bt-fenite</td>
<td>0.2747</td>
<td>0.70400</td>
<td>0.0032</td>
<td>0.512303</td>
<td>0.511875</td>
</tr>
</tbody>
</table>
Alkaline massifs

1. Mbadio
2. Bingo - Mont Home
3. Lueshe
4. Kirumba
5. Bishusha
6. Rusongati
7. Numbi
8. Kahuzi
9. Biega
10. Miki
11. Kalolo-Lusaka
12. Upper Ruvubu-Matongo
13. Lugusu
14. Sangu-Ikola
15. Mbozi
16. Nachendezwaya Hill
17. Songwe-Ilomba Hill
18. Nkombwa Hill
19. Mivula
MgO

Mg-carbonatite

Ferrocarbonatite

Sövite

CaO

Na₂O + K₂O

CaO

MgO + Fe₂O₃

Fe₂O₃(T) + MnO

Sövite I

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Orthoclase

Alkali gain by fenitization

Sövite

Fractional crystallization

A

B
Sövites I

Sövites II and cumulates

Ferrocarbonatites and «late» hydrothermal calcite

Fenites
Lueshe sövites
(Kramm et al., 1997)

East African carbonatites
(Bell and Tilton, 2001)

Deerdeport carbonatite
(South Africa; Hamer, 1999)

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite

Matongo carbonatites
(Demaiffe, 2008)

Sövite II

Sövite II with apatite and pyroxene

Ferrocarbonatite

“Late” calcite

Fenite
Major geodynamic events

- Rodinia amalgamation (Eyles, 2008)
- Early intraplate continental rifting (related to superplume) (Li et al., 2008)
- Compression and Gondwana amalgamation (Fritz et al., 2013)
- Orogenic peak in the KAB (De Waele et al., 2008; Fernandez-Alonso et al., 2012)
- Pan-African deformation in the Western Rift (Cahen et al., 1984)
- Postorogenic cooling

Diagnostic exogene processes/events

- Mafic magmatism in the Malagarazi basin (Burundi and Tanzania)
- Intracontinental flood basalts
- Nyaganza dolerites
- Kavumwe doleritic gabbros
- Tardi-mylonitic granite in the Ubendian Belt (Theunissen et al. 1992)

Alkaline complexes and carbonatites

Lueshe (DRC)
- Zircon megacrysts

Kirumba (DRC)
- Zircon megacrysts

Numbi (DRC)
- Zircon megacrysts

Kahuzi (DRC)
- Zircon megacrysts

Biega (DRC)
- Zircon megacrysts

Upper Ruvubu - Matongo (Bu)
- Zircon megacrysts

Sangu-Ikola (Tz)
- Carbonatite

Mbozi (Tz)
- Carbonatite

Songwe-Ikola (Mw)
- Carbonatite

Nkombwa Hill (Zm)
- Carbonatite

Kalolo-Lusaka (DRC)

- K-Ar
- Ar-Ar
- Rb-Sr
- Pb-Pb isochron
- Fission tracks on sphene
- U-Pb
- U-Pb LA-ICP-MS
- Pb-evaporation
- Zircon
This study focuses on a Neoproterozoic carbonatite in Burundi, Central Africa. Petrographic and geochemical data allow determining several carbonatite facies. LA-ICP-MS U-Pb ages have been performed on zircons from the carbonatitic system. These ages could suggest that the carbonatite emplacement related to the Rodinia breakup.