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ABSTRACT 

 While subduction of crustal rocks is increasingly accepted as a common scenario 

inherent to convergent processes involving continental plates and micro-continents, its 

occurrence in each particular context, as well as its specific mechanisms and conditions 

are still debated. The presence of UHP terranes is often interpreted as a strong evidence 

for continental subduction (subduction of continental crust) since the latter is seen as 

the most viable mechanism of their burial to UHP depths, yet if one admits nearly 

lithostatic pressure conditions in the subduction channel.  The presumed links of 

continental subduction to exhumation of high- and ultra-high-pressure (HP/UHP) units 

also remain a subject of controversy despite the fact that recent physically consistent 

thermo-mechanical numerical models of convergent processes suggest that subduction 

can create specific mechanisms for UHP exhumation. We hence review and explore 

possible scenarios of subduction  of continental crust, and their relation to exhumation 

of HP and UHP rocks as inferred from last generation of thermo-mechanical numerical 

models accounting for thermo-rheological complexity and structural diversity of the 
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continental lithosphere.  The inferences from these models are matched with the 

petrology data, in particular, with P-T-t paths, allowing for better understanding of 

subtleties of both subduction and burial/exhumation mechanisms.  Numerical models 

suggest that exhumation and continental subduction are widespread but usually 

transient processes that last for less than 5-10 Myr, while long-lasting  (> 10-15 Myr) 

subduction can take place only  in rare cases of fast  convergence of cold strong 

lithospheres (e.g. India). The models also show that tectonic heritage can play a special 

role in subduction/exhumation processes. In particular, when  thicker continental 

terrains are embedded in subducting oceanic plate,  exhumation of UHP terranes  

results in formation of versatile metamorphic belts and domes and in series of slab roll-

back and exhumation events with remarkably   different  P-T-t records. 

Keywords: Continental collision; subduction; rheology; orogeny; numerical modeling;  

metamorphism; HP/UHP exhumation; eclogites.  

 

1. Introduction  

Continental subduction and the mechanisms of formation and exhumation of  

UHP rocks are two enigmatic processes that are closely linked together. From 

geodynamic point of view, the occurrence of HP–UHP rocks raises two types of 

questions related to the mechanisms of their burial, and to those of their return to the 

surface. So far the occurrence of HP-UHP rocks in zones of continental convergence is 

most often interpreted as evidence for subduction  (e.g., Smith, 1984; Kylander et al., 

2012; Hacker and Gerya, 2013). In most cases it is supposedly linked to subduction of 

passive margins and early stages of intercontinental collision associated with subduction 

of  continental lithosphere (Burtman and Molnar, 1993; Burov et al., 2001; Yamato et 

al., 2007). In other cases UHP exhumation is produced at late stages of oceanic 

subduction, during the transition from oceanic subduction to continental collision 

(Yamato et al., 2007; Hacker and Gerya, 2013) or when small thick continental terrains 

(microcontinents) embedded in “normal” lithosphere are forced down together with 

the subducting  plate and exhumed as a consequence of slab roll-back (Brun and 

Faccenna, 2008; Tirel et al., 2013).   More specific mechanisms linked to subduction 
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have been also inferred, yet, for the moment, without quantitative match with in-situ P-

T-paths. These include slab “eduction” (Andersen and Austrheim, 2008; Duretz et al., 

2012), “subduction erosion”  leading to diapiric rise of UHP terranes (von Huenen et al., 

2004; Gerya and Stockhert, 2006),  and foundering of orogenic roots  (Hacker and 

Gerya, 2013). 

 It is worth mentioning that a number of alternative “non-lithostatic“ 

interpretations for the occurrence of UHP terranes (e.g., Mancktelow, 1995; 2008; 

Petrini and Podladchikov, 2000; Schmalholz and Podladchikov, 2013; Schmalholz et al., 

this volume) exists, suggesting that non-lithostatic overpressure of different nature may 

alter pressure levels recorded by the UHP material by up to a factor of 2, so that the 

UHP rocks may be formed at about 50 km depth and hence do not need to be 

transported to those great “subduction” depths (> 100-200 km) inferred from the 

lithostatic hypothesis. It is hence argued that the occurrence of UHP material does not 

present evidence for continental subduction and, by extrapolation, that the latter might 

not exist, or at least is not needed for explanation of the occurrence of the UHP 

terranes. The   overpressure models inherently imply that P-T-t data are of limited use 

as markers of dynamic processes. Indeed, if subduction does not take place, then 

overpressure can be built in the compressed media at levels determined exclusively by 

the local yield strength and loading conditions, which depend on many uncertain factors 

such as rheological properties, fluid content, porous pressure, etc., resulting in almost 

+100% error on depth estimations.  Alternatively, full-scale subduction models (e.g., 

Toussaint et al., 2004a, Li et al., 2010) predict no significant non-lithostatic pressures in 

non-locked subduction channel (< 20% below 50 km depth)  allowing for reliable 

interpretation of P-T/P-T-t data.  

Therefore, elucidation of the mechanisms of formation and exhumation of the 

UHP rocks is of utmost importance both for understanding the mechanisms of 

continental convergence (e.g. subduction versus pure shear or folding) and for 

evaluation of the degree of utility of the petrology data for constraining geodynamic 

processes.  

Indeed, the incidence of “anti-subduction” models of UHP rock formation (e.g., 

Petrini and Podladchikov, 2000; Schmalholz and Podladchikov, this volume)  can be 

explained by quite reasonable doubts in physical plausibility of crustal subduction in 
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continental settings where slow convergence rates and high buoyancy of  continental 

crust are largely unfavorable to subduction processes. Subduction is only one of  four 

possible mechanisms of accommodation of tectonic shortening (Figure 1):   pure-shear 

thickening;   simple shear subduction or underplating;   folding (Burg and Podladchikov, 

2000; Cloetingh et al., 1999), and  gravitational (Raleigh-Taylor (RT)) instabilities in 

thickened, negatively buoyant lithosphere (e.g., Houseman and Molnar, 1997) dubbed 

here “unstable subduction.”  Whereas in oceans subduction is a dominating mode of 

accommodation of tectonic compression,  in continents all of the above scenarios can 

be superimposed at large proportions. For instance, “megabuckles” created by 

lithospheric folding (Burg and Podladchikov, 2000) can in theory localize and evolve into 

mega-thrust zones or result in the development of Rayleigh-Taylor (RT) instabilities.  RT 

and boudinage  instabilities  leading to slab-break-off  may also occur in subducting 

lithosphere leading to interruption of the subduction process  (Pysklywec et al., 2000).  

However, it is not only the presence of UHP material but also a host of structural 

and geo-geomorphological (e.g., Hacker et al., 2006) and geophysical data (e.g., Ford et 

al., 2006; Zhang et al., 2009; Handy et al., 2010; Tetsuzo and Rehman, 2011) that 

provide a support for the idea that continental subduction takes place at some stages of 

continental convergence (e.g., Toussaint et al., 2004a,b). For example, at least  700km 

of Indian continental crust are “missing” from surface since India-Asia collision (e.g., 

DeCelles et al., 2002),  and hence had to be buried in some way at depth.  Physical 

conditions for subduction include (1) presence of sufficient far-field slab-pull/push 

forces,  (2) weak mechanical coupling between the upper and lower plate (i.e.,  weak 

subduction interface) and (3) sufficient mechanical strength of  the lower plate assuring 

preservation of its geometric and mechanical integrity during subduction.  In oceans, 

additional strain localization and plate weakening mechanisms are needed for 

subduction initialization and for downward bending of strong lithosphere when it slides 

below the upper plate (Cloetingh et al., 1982; McAdoo et al., 1985; Watts, 2001). 

Enhanced pre-subduction bending of the lithosphere is possible due to inelastic flexural 

weakening, that is, ductile yielding and “plastic hinging” produced by high flexural 

stresses near the peripheral bulge (McAdoo et al., 1985; Burov and Diament, 1995; 

Burov, 2010a;2011).  Flexural weakening of oceanic lithosphere is amplified  by pressure 

reduction due to pore fluids and rheological softening due to metamorphic reactions, 
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e.g., serpentinization, produced by fluids penetrating in normal faults created by 

tensional flexural strains in the uppermost parts of the peripheral bulge (e.g., Ranero, 

2003; Faccenda et al., 2009a; Hacker et al., 2010; Angiboust et al., 2012; Kylander et al., 

2012). In continental settings, subduction initialization is actually less problematic  since 

the continental lithosphere follows the path open by the preceding oceanic subduction.  

 Since the slab pull/push forces can be directly estimated from gravitational 

force balance, the most uncertain conditions here refer to the mechanisms of 

weakening of the subduction interface and to the preservation of slab strength (and 

integrity) during subduction. The former seem to be influenced by metamorphic 

processes, at least in two aspects: one concerning the role of the metamorphic 

materials  in enabling subduction processes, and the other concerning the capacity of 

the lithosphere to transport crustal rocks -  future high-pressure metamorphic materials 

- to a great depth. As mentioned above, it is generally agreed, based both on models 

and observations,  that oceanic subduction is possible due to lubrication of the 

subduction interface  by serpentinized mantle layer formed along  crust-mantle 

interface,  and due to mechanical weakening resulting from  reactions with free and 

hydrous fluids   released or absorbed during metamorphic phase changes (e.g., Ranero, 

2003; Faccenda et al., 2009a; Hacker et al., 2010; Angiboust et al., 2012; Kylander et al., 

2012).  In continents, the governing weakening mechanisms are not well established but 

the presence of thick, relatively weak and rheologically stratified crust appear to be of 

primary importance (e.g., Burov et al., 2001; Yamato et al., 2008).   Strength reduction 

and density changes due to metamorphic transforms  in LP-HP range and the associated  

partial melting  should also play a certain role (Yamato et al., 2008), but the impact of 

UHP transforms on subduction may be of minor importance (Toussaint et al., 2004a), 

specifically if one remembers that some UHP transforms occur  during  the exhumation 

stage only (Peterman et al. , 2009). Preservation of slab integrity is a major problem for 

continental subduction, since continental convergence occurs at much slower rates than 

in oceans. In the case of oceanic subduction (at rates of 5 – 15 cm.yr-1), the slab has no 

time to heat up due to the thermal diffusion from the surrounding asthenosphere.  As a 

consequence, it loses its strength only at a great depth. In continents, convergence 

rates are much slower, sometimes not exceeding a few mm.yr-1. Under these 
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conditions, the lithosphere may heat up, thermally weaken and drip-off before it 

reaches the UHP depth (e.g., Yamato et al., 2008).  

Oceanic subduction has numerous lines of direct evidence such as   Benioff 

zones, straight kinematic inferences from paleomagnetic data, relatively “sharp” 

tomographic images  and gravity anomalies. For continental subduction, on the other 

hand,  the corresponding observational data  is much more “blurred”, such that 

probably one of the most straightforward evidences for continental subduction refers to 

the presence of  HP and UHP metamorphic material in convergence zones  (e.g., Hacker 

et al., 2006; Guillot et al., 2000;2001;2009; Li Sanzhong et al., 2009; Ernst, 2010; 

Maruyama et al., 2010; Lanari et al., 2012).  The high- to ultrahigh-pressure (HP/UHP) 

metamorphic belts are believed to be witnessing subduction  processes as the exhumed 

continental blocks appear to bear an  overprint of the subduction record as they return 

to surface  (e.g. Ring et al., 2007; Zhang et al., 2009; Hacker et al., 2010; Diez Fernández 

et al., 2012). This evidence is generally preserved in small and disconnected lenses 

(eclogite blocks in blocks in a quartzofeldspathic matrix, see Hacker et al., 2006 for 

review), as mineral relicts within a dominant low- to medium-pressure metamorphic 

matrix (e.g., Guillot et al., 2009), and more rarely as relatively large HP/UHP units (e.g., 

Yamato et al., 2008). If one assumes lithostatic P-T conditions commonly inferred for 

subduction zones, then UHP material should have been buried to depths of 100-170 km 

and brought back to the surface.  Consequently, if the UHP depth estimates are valid 

(e.g., Spear, 1993), the HP/UHP rocks can be regarded as passive markers of continental 

subduction and their P-T-t paths can be used for reconstruction of subduction dynamics 

and of the conditions at the subduction interface.   Under these assumptions, detailed 

studies of HP/UHP rocks can provide constraints on thermo-mechanical processes in 

subduction zones (Coleman, 1971; Ernst, 1973; 2010). These data provide insights on 

exhumation mechanisms as well, since different processes and contexts  potentially 

result in different styles of deformation and, hence, in different exhumation P-T-t paths. 

In particular, based on the analysis of metamorphic data (Ernst, 2010) it has been 

suggested that two main types of continental convergence can be distinguished: fast  

“Pacific underflow” , where continental subduction is preceded by that of thousands of 

km of oceanic lithosphere, and slow  “Alpine closure”  of an intervening oceanic basin 

leading to short-lived continental subduction soon followed by pure shear collision. It 
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has been also pointed out that the exhumed HP–UHP complexes display low-aggregate 

bulk densities (e.g., Ernst, 2010), while the exhumation rates in some cases largely 

exceed the convergence rates (e.g., Yamato et al., 2008), jointly suggesting a buoyancy-

driven ascent mechanism. 

Large-scale nappes stacking and folding, and other complex deformation 

processes occurring at subduction interface largely distort kinematic imprint of 

subduction (e.g. Diez Fernández et al., 2012; Tirel et al., 2013), hence justifying a 

numerical modeling approach for decrypting and matching structural and metamorphic 

observations. For this reason, in  recent approaches, the data from HP and UHP rocks 

are treated in conjunction with synthetic P-T-t paths predicted from thermo-mechanical 

numerical models of convergent processes.  This provides validation of the inferred 

concepts of convergent dynamics and thermo-mechanical properties of oceanic and 

continental subduction zones (e.g., Yamato et al., 2007; 2008; Li and Gerya, 2009). 

However, both, the mechanisms of continental convergence and of exhumation of 

HP/UHP material are still very much in debate,  and  the ideas on the interpretation of 

metamorphic data and on the mechanisms of convergence require further 

investigation. In particular, for each given context it should be demonstrated, in an 

independent way, that: (1) continental subduction is a viable mechanism of 

accommodation of tectonic shortening; (2) it is possible to propose a particular 

mechanism of HP/UHP exhumation compatible both with the P-T-t data and with the 

proposed subduction dynamics.   

 According to observations (e.g., Ernst, 2010; Diez Fernandez et al., 2012) and 

recent modeling results (e.g., Yamato et al., 2008; Burov and Yamato, 2008; Li and 

Gerya, 2009), exhumation and collision mechanisms are versatile and in general poly-

phase.  However, it comes out from regional-scale numerical experiments that 

continental subduction provides a physically most consistent background for  formation 

and exhumation of the HP/UHP material. The numerical models also reproduce the 

observations suggesting that exhumation of the UHP material goes by context-

dependent multi-stage mechanisms. In particular, exhumation of the UHP material from 

depths in excess of typical crustal depths (40-50 km) may occur by Stokes flow 

mechanism  at a high rate controlled by buoyancy and viscosity of the matrix, while,  

when the UHP material reaches 40-50km depth it is more slowly dragged to the surface 
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within the accretionary prism, or by simple shear upward sliding of semi-brittle crustal 

slices and  large multi-kilometer scale segments (Burov et al., 2001; Yamato et al., 

2008).   

Whatever is the mechanism of UHP exhumation,  one can conclude  that in case 

of stable subduction, the subduction interface should be devoid of significant deviations 

from lithostatic pressure conditions (Burov et al., 2001; Burov and Yamato, 2008; Li et 

al., 2010). In case of stable subduction, only small in-channel under-pressures and 

overpressures (20%, or < 0.3 GPa) may be produced at depths below 40-50 km 

(Toussaint et al., 2004n; Burov and Yamato, 2008; Li et al., 2010), even though the 

surrounding lithosphere constituting the upper and lower wall of the channel may 

experience  pressure  deviations of up to  50% of lithostatic level (e.g., Toussaint et al., 

2004a;  Li et al., 2010). The in-wall over- and under pressures are basically  caused by 

bending stress concentrations, yet, these zones belong to the channel walls and do not 

participate in the exhumation turn-over (Burov and Yamato, 2008).  Consequently, all 

studies converge to the point that  if subduction takes place, the UHP P-T-t data can be 

decoded in terms of exhumation depth within 10-20% accuracy using  lithostatic 

pressure gradients.  

By now, a large number of modeling studies have investigated various factors 

influencing subduction processes (e.g., Doin and Henry, 2001; Pysklywec et al., 2000; 

Sobouti and Arkani-Hamed, 2002; Chemenda et al., 1995;1996;  Gerya et al., 2002; 

Yamato et al., 2007,2008; Warren et al., 2008a,b; Li and Gerya, 2009; Li et al., 2010; 

Sizova et al., 2012; Gray  and Pysklywec, 2010; 2012). However, not all of the existing 

models are sufficiently consistent. The analogue models are largely inadequate because 

of impossibility to incorporate phase changes, rheological simplifications, absent or 

poorly controlled thermal coupling (not mentioning that it is practically impossible to 

extract PT paths from these models). The numerical models are often limited by 

simplified visco-plastic rheologies or by the rigid top/”sticky air” upper-boundary 

condition, which is widely used instead of the paramount free-surface boundary 

condition. The use of rigid-top upper-boundary condition forces stable subduction (Doin 

and Henry, 2001; Sobouti and Arkani-Hamed, 2002), attenuates pure shear, cancels 

folding and does not allow for consistent prediction of topography evolution. Many 

models also do not incorporate surface processes which are key forcing factors of 
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continental collision (e.g., Avouac and Burov, 1996; Avouac, 2003; Toussaint et al., 

2004b; Burov and Toussaint, 2007; Burov, 2010b) and an integral part of the final stages 

of exhumation. Some studies also force a specific convergence mode, in particular, 

subduction, via prescription of favoring boundary conditions, for example, by putting an 

additional boundary condition (e.g., “S-point”) inside the model (e.g., Beaumont et al., 

1996; Beaumont et al., 2000). Some other models favor pure shear collision by including 

a weak zone in the plate shortened in the direction opposite to the pre-imposed mantle 

flow (Pysklywec et al., 2002). Some  older codes  operating in deviatoric stress 

formulation (e.g., Navier-Stokes approximation)  had  specific problems with accurate 

evaluation of total pressure needed for tracing of P-T-t conditions and correct account 

for brittle deformation (this problem was fixed in most of the recent codes). Even 

though some earlier modeling studies  (Burov et al., 2001; Toussaint et al., 2004a,b; 

Burg and Gerya, 2005; Gerya et al., 2002) have considered phase changes, fully  coupled 

models with progressive phase changes directly derived from thermodynamic relations 

have emerged only few years ago (Stöckhert and Gerya, 2005; Yamato et al., 2007; 

2008; Li  and  Gerya, 2009; Li et al., 2010;2011; Francois et al., 2014).   

Summarizing the requirements to the new generation of  numerical models of 

collision and exhumation, we therefore can note that they should:  

(1) consider the entire regional context , i.e. encompass lateral spatial scales 

from 1500 km and vertical scales from 400 km;  (2) allow for all modes of deformation, 

(3) account for viscous-elastic-plastic rheology and thermal evolution, (4) be 

thermodynamically coupled, i.e. account for phase changes (and ideally also for fluid 

circulation), (5) account for surface processes and  free-surface boundary condition (or 

at least incorporate “sticky air”  approximation of the free surface), (6) provide an 

accurate solution for total pressure and report P-T paths based on the dynamic total 

pressure, rather than based on depth.  

It is hence evident that a joint approach considering collision processes in direct 

relation to exhumation and formation of HP/UHP material is the most promising one for 

understanding both the mechanisms of continental convergence and of exhumation.  

The goal of this paper is therefore multi-fold: we start from discussing different 

concepts linking continental convergence with formation and exhumation of UHP 

terranes. We then discuss physical and rheological conditions allowing for subduction in 
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continental settings, with a specific focus on the conditions allowing for preservation of 

slab integrity.  We next revise the conditions for HP/UHP exhumation. We finally link all 

processes together attempting to obtain better insights on the mechanisms of 

continental convergence, and, by proxy, of formation and exhumation of the HP/UHP 

material. 

 

2.  Non-lithostatic models of formation and exhumation of UHP rocks during 

continental collision. 

As mentioned, several alternative mechanisms have been   proposed both to 

explain the mechanics of continental convergence, and formation and exhumation of 

HP/UHP material. Their common feature refers to the idea that the UHP material comes 

from shallower depths than is commonly inferred from the assumption of the lithostatic 

pressure gradient. This implies a presence of static or dynamic overpressure during UHP 

rock formation which can be created by different mechanisms most of which are 

incompatible with continental subduction.   The major thrust of this models is therefore 

that (1) continental subduction does not exist or is incapable to bring crust to important 

depth and (2) that P-T/P-T-t data cannot be directly interpreted in terms of depth at 

trajectories of the exhumed units.   

 Some of the suggested mechanisms of convergence are more or less directly 

associated with the mechanisms of exhumation, some not. For example, in the second 

case, Petrini and Podladchikov (2000) suggested tectonic overpressure as the 

mechanism of formation of UHP rocks that,  according to the concept,  originate from 

potentially twice smaller depths (50-75 km) than the usually inferred lithostatic depths  

of 100-170 km. These authors infer, consequently, that continental subduction does not 

take place or at least is not the most probable mechanism for UHP rock formation.  This 

conceptually straightforward and formally mechanically consistent conceptual model 

has, however, a number of narrow places. In particular, it requires that the entire 

lithosphere reaches the yield state, which needs   tectonic forces  on the orders of 

magnitude higher than  estimated slab push/pull forces ( ~1012 N per unit length, 

Turcotte & Schubert, 2002).  Even though the latter limitation may be bypassed by 

assuming only localized stress concentrations in 50-80 km depth interval,  the maximal 

over-pressure values may be still limited in nature  due to the fact that Byerlee’s law is 
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relayed by  “weaker” Peierl’s or GBS creep at mantle lithosphere depths (e.g. Burov, 

2011).  Another drawback of this  concept refers to the fact that it does not provide a 

particular mechanism for burial and exhumation to-and-from the 50-80 km depths 

while  the “common” accretionary prism mechanism  is   limited to 40 km depth (Platt, 

1993) due to the exponential drop of the viscosity of prism material with 

depth/temperature.     

Other workers (e.g., Raimbourg et al., 2007) have chosen another extremity by 

ultimately linking UHP exhumation to the conventional “subduction channel” concept, 

in which rocks are dragged down with plate interface by Couette flow, and returned 

back by Poiseuille flow associated with positive buoyancy of crustal material 

(Mancktelow, 1995). As mentioned, the “Couette” component of this mechanism cannot  

work at depths in extent of 40-50 km due to the  exponentially rapid drop of channel 

viscosity with depth. Therefore it has been suggested (Mancktelow, 1995) that dynamic 

overpressure   builds inside the channel due to a hypothesized decrease of channel 

width with depth. This is supposed to produce dynamic overpressure by “rocket nozzle”  

effect   (Bernulli’s effect)  and  reduce the depth of the UHP rock formation to 40-50 km.  

However,  Bernull’s effect can be persistent only if channel walls are rigid  and remain 

unmovable,  while it is widely observed that the lithosphere and hence the subduction 

channel bends under flexural loads and tectonic forces of less than 1012 N per unit 

length as well as it locally widens when, for example, a seamount subducts at trench 

axis  (Watts, 2001). Indeed, an overpressure of  2GPa (needed to divide the  UHP depth 

by a factor of 2) in a 50 km long channel would yield an expansion force on the order of 

1014 N per unit length acting on channel walls. Such force is sufficient not only to widen 

the channel but simply to break apart the entire lithosphere.  Even if one considers a 

much smaller effective channel  length of  1 km  (assuming small-scale localized 

overpressure anomalies),  the repulsive force (1012 N per unit length ) will be high 

enough to push the colliding plates apart, hence widening the channel and 

automatically cancelling the overpressure. In this relation it is noteworthy that 

metamorphic terranes often exhibit multi-kilometer scales  (Hacker, 2006), which 

means that UHP conditions should be created at multi-kilometer scales as well. Further 

numerical thermo-mechanical models of subduction have confirmed  these arguments 

by showing that pressure-driven channel overpressure concepts cannot  explain UHP 
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burial/exhumation  (Burov et al., 2001; Toussaint et al., 2004a; Yamato et al., 2008; Li et 

al., 2010), even in the oceanic contexts (Yamato et al., 2007; Angiboust et al., 2012). 

According to these models,   underpressure or overspressure in the subduction channel  

produces its “ballooning” , “deflating” or out-of plane flow leading to automatic re-

establishement of pressure balance with the environment. As result, intra-channel 

pressure deviations from lithostatic conditions do not exceed 20% at depths in excess of 

50 km (e.g., Toussaint et al., 2004a; Li et al.; 2010) while significant overpressures (yet 

not exceeding  50% of lithostatic pressure) can be indeed created by flexural stresses 

and fiber forces within the channel walls.    

As a matter of fact, most overpressure models remain at conceptual stage and 

are not really testable against observations. The only exception refers to the work by 

Schmalholz and Podladchikov (2013) and Schmalholz et al. (this volume), who have 

presented a thermo-mechanical overpressure numerical model in tectonic-scale shear 

bands that technically has got all necessary features allowing for prediction of  testable 

PT paths, surface and structural evolution. Yet, this numerically state-of-the-art model is 

still far from being convincing: it is based on local-scale setup and therefore is not tested 

in regional tectonic context; the  model-predicted PT paths are different from those 

typically observed;  the predicted surface uplift rates (hence, probably intraplate forces) 

are far too high, with 5 km of surface uplift in about 2 Myr (Schmalholz et al. , this 

volume).   This model has potential for further development and future will show if it 

can be finally applied within regional context and match the observations at same 

extent as the recent subduction models.  

Despite the shortcomings of the existing overpressure models, one must  agree 

that strong overpressures are possible in some contexts. For example, volumetric 

expansion of mineral inclusions in locally stiff rock matrix can result in important 

overpressures inside the mineral seeds protected by the matrix.  Consequently, small 

and sparse UHP inclusions cannot be considered as evidence for continental subduction.  

 

3.  Preservation of slab integrity as paramount condition of subduction. 

Subduction implies preservation of slab integrity, hence small bulk deformation 

of the lower plate during convergence:  a subducting plate bends without significantly 

changing its length and thickness. The slab should also provide an efficient stress guide 
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for push/pull forces that drive subduction. To meet the above conditions,   the 

lithosphere has to preserve sufficient mechanical strength as it sinks into the 

asthenosphere.  Otherwise it would stretch or thicken,  break-off, stagnate or drip-off 

under the action of the external shear, push-pull forces and  viscous gravitational 

Raleigh-Taylor  instabilities. Preservation of slab integrity (= small internal strain rate) is 

also equivalent to nearly invariable plate-parallel component of plate velocity. Since 

slab push- pull, shear and body forces acting on the opposite ends of the plate are 

largely different, this condition can be  satisfied only if the slab stays strong even at 

great depth.   

Olivine-rich rocks of lithosphere mantle exhibit important ductile deformation at 

temperatures above 500-600°C in oceans (P > 0.4GPa) and at 700-800°C (P > 1.2GPa) in 

continents (e.g., Goetze and Evans, 1979). The higher yield-strength temperature in 

continents is  related to to higher pressure (depth) at equivalent temperature.  Hence, 

to preserve its strength, slab should remain cold, i.e. rapidly descent in the 

asthenosphere and have no  time to heat up  - hence weaken - due to heat diffusion 

from hot environment (> 1330°C). Therefore, one can characterize minimal thermo-

rheological condition for stable subduction by   “subduction Péclet number” Pes: 

    Pes  = u2ts/      (1) 

where ts is a characteristic time scale, u is plate-parallel (horizontal at surface) 

plate velocity and   is thermal diffusivity ( on the order of 10-6 m2s-1). The 

corresponding thermal diffusion length is  ld = (ts )½.  The characteristic time scale  ts  

hence corresponds to the average life span of stable subduction, i.e. to the time interval 

between the onset of subduction and the moment when simple shear is no more  

dominant deformation mode, being progressively suppressed by other modes  such as 

pure shear shortening,  RT instabilities, or folding (Figure 1).  After that, heat advection 

mechanism is no more directly dependent on the convergence rate, and the equation 

(1) does not hold anymore. This condition can be also used to characterize the prograde 

parts of the metamorphic P-T-t paths.  

 For preservation of considerable slab strength for a  time ts,  ld should be 

significantly less than hk, where hk is the apparent thickness of strong , nearly elastic 

mechanical core of the lithosphere when it arrives  at the subduction zone.  Having a 

strong core is a condition for transmission of intra-plate stresses with minimal internal 
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shortening of the lithosphere, which  is equivalent to assuming that heat advection is 

primarily dependent on the convergence rate u, as expressed by the equation  (1). Let 

us assume ld  0.25 hk , that is,  a maximum factor of 2   reduction of the  thermo-

mechanical thickness of the slab by  time ts (slab heats up both from its upper and lower 

interface, (0.25x2)-1 = (0.5)-1).  Hence,  the characteristic time scale of subduction is: 

ts  ld
2 /   0.0625hk

2 /  ,                                             (2) 

and the  minimal condition for stable subduction is: 

Pes  >> Pek  = uhk/                      (3) 

If Pes is smaller than Pek, thermal weakening of the slab, caused by heat 

diffusion, prohibits stable subduction  (Toussaint et al., 2004a).   As also follows from eq. 

2 , if eq. 3 is satisfied, then the characteristic subduction length ds (the length of 

“subductable”  lithosphere) , can  be roughly estimated as: 

ds  uts   0.0625uhk
2 /  ,                                              (4) 

which means that maximal stable subduction depth for lower crustal units (initial 

crustal thickness hc  plus ds  multiplied by tangent of the dip angle)  is (1) linearly 

proportional to subduction rate and (2) quadratically proportional to the mechanical 

thickness of the lithosphere at the surface. Hence, convergence rate is a secondary 

factor compared to the initial mechanical strength of the lithosphere, which is thus of 

major importance for subduction. The above estimations are very approximate. One can 

complement them by evaluating an additional hard limit on the duration of the 

subduction, that is, the maximal time tbmax  of slab break-off, which  will happen no later 

than when the mechanical core of the lithosphere vanishes, i.e. when  (t)½  ~ 0. 5hk .    

    tbmax  <    0.25hk
2 /,                                              (5a) 

with maximal slab-brak-off depth, dsbmax,  

dsbmax <  utbmax    .              (5b) 

This yields tbmax  of  3-7 Myr for lithosphere with initial Te = 20-30 km (e.g., 

Western Alps),  20Myr for lithosphere with initial Te = 50 km (e.g., Zagros),  and up to 

39-64Myr for lithosphere with Te =70-90 km (India – Himalaya collision). Surprisingly, 

these simple estimates match the inferences from observations and thermo-mechanical 

models for the respective regions (e.g., Yamato et al., 2008; Thomas et al., 2012; 

Toussant et al., 2004b; Angiboust et al., 2012). Nevertheless, the Eq. 5 may not hold 

well for slow convergence settings (e.g. u < 2 cm.yr-1) because of strong influence of 
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thermo-mechanical instabilities that may develop at similar time scale.  

The thickness of the mechanical core of the lithosphere hk   can be constrained 

from observations of plate flexure that reveal significant plate strength in zones of 

oceanic subduction and in many zones of continental collision (Watts, 2001). The 

observed equivalent elastic thickness of the lithosphere,  Te ~ hk  , is a direct proxy for 

the long-term integrated strength, B,  of the lithosphere (see Watts, 2001). For example, 

for a single-layer plate of mechanical thickness hm with Te  = Te_ocean : 

0

( , , , )fB x z t dz 


    while  

1
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12 ( )
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
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   

  
 
 

 ; Te_ocean < hm ,       (6) 

where x,z,t,   are horizontal and  vertical  (with respect to local plate 

coordinates) coordinate, time and strain rate, respectively, Zn is the position of the 

neutral fiber within the plate,  f
xx is bending stress and Mx is bending moment (Burov 

and Diament, 1995).  For inelastic rheology and rheologically  stratified lithosphere,  Te, 

is smaller than hm. In this case Te has no geometrical interpretation, and can be 

identified with our definition for  hk  (apparent  mechanical thickness of the 

lithosphere).   Te  varies  spatially due to its dependence on local bending stress that 

leads to localized  plate weakening (called plastic or ductile hinging) in the areas of 

utmost flexure, e.g. near subduction zones (at the peripheral bulge) or below mountains 

and islands. As discussed in previous sections, ductile-plastic hinging is important 

property allowing for subduction.  

 Typical values of Te of the oceanic lithosphere correlate with the depth of 500°-

600°C geotherm and are roughly equal to 30-50 km near subduction zones (e.g., Burov 

and Diament, 1995; Watts, 2001). By analogy with oceanic plates,  we can assume the 

same minimal Te value for subduction of continental lithosphere. Continental plates are 

characterized by Te values varying between 15 to 90 km (e.g., Burov and Diament, 1995; 

Cloetingh and Burov, 1996; Pérez-Gussinyé and Watts, 2005). Hence, only some of them 

are strong enough to develop oceanic-type subduction provided that other conditions 

(e.g., buoyancy versus shear force balance) are also favorable. For example, consider a 

convergence rate u of 1 cm.yr-1. Assuming a value for hk of 50 km we obtain Pek ~ 16.  

Then, from  ld  0.25 hk, one obtains ts     5 Myr.  For ts  greater than 5Myr, Pes is smaller 
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than Pek , suggesting that sustainable long-lasting subduction is improbable 

(characteristic  stable subduction length ~ uts  = 50 km; maximal slab-break-off depth  

utbmax < 200 km)  at  such a slow convergence rate. However, for u = 5 cm.yr-1, Pek ~ 80 

and Pes ~ 400 suggesting that stable subduction (characteristic subduction length uts = 

250 km)  is possible even for  time spans greater than  5Myr.  As extreme example, we 

can consider  India-Asia collision (hk  80-90 km (Watts, 2001), ts  ~ 12-15 Myr, u = 5 

cm.yr-1  ). For these conditions we obtain minimal Pes > 953 and minimal Pek = 127,  

which implies that subduction is dominating mode and that at least 600  750 km   

(=uts) of the Himalayan convergence could have been accommodated in subduction 

regime.  The maximal amount of subduction could be even much more important  

(utbmax > 2500  km), meaning that slab-break off would never happen if the Indian slab 

was sinking at a steep angle  into the  upper mantle (the reality is more complex since 

Indian plate  appears to underplate  the Tibetan plateau). These very rough estimates 

are , however, comparable with interpretations  (500 – 1000 km of subduction, up to 

1500 km of total convergence) of geological and paleomagnetic data  (Patriat et 

Achache, 1984 ; Chen et al., 1993; Patzelt et al., 1996;  Avouac et al., 2003).  

The first-order estimations reasonably comply with the results of recent 

geodynamic thermo-mechanical models. In particular, Yamato et al  (2008) have shown 

that slow (< 1 cm.yr-1) Alpine subduction could have lasted no more than 5-10 Myr 

(between 30 Ma and 35 Ma) and that soon after that the lithosphere had to enter into 

unstable mode or pure shear collision mode. In this case, the slab was no longer  simply 

descending at the convergence rate but also stretching, and an early slab break-off at 

about 200-250 km depth resulted in cessation of continental subduction. Slab stretching  

has actually allowed to bring rocks to 120 km depth.  On the contrary, for the fast (5 

cm.yr-1) convergence such as the  India-Asia collision (Toussaint et al. , 2004a,b;  Burov 

and Yamato, 2008) or past collision between North China and Yangtze  craton  (Li and 

Gerya, 2009; Li et al., 2011), it  has been shown that sustainable subduction could 

continue for a very long period of time absorbing considerable amounts of tectonic 

shortening (e.g., at least 700-800 km for Indian collision).  In such settings, slab break-

off either does not occur or has little effect on the collision mode. In particular, slab-

break-off depth increases with increasing subduction rate and strength of the 

lithosphere, so in cases of fast subduction,   slab-break off, if happens, takes place far 
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deep from the surface (at distance l,  uts <  l  < utbmax) and thus has a limited impact on  

surface evolution (eq. 5).   

One can suggest on the base of this discussion that subduction rates are  linked 

to the initial strength of the mantle lithosphere.   Fast (> 2-3 cm.yr-1) continental 

subduction appears to be only possible in the presence  of  a strong mantle lithosphere.  

 Numerical models have also shown that the rheological properties of the 

continental subduction interface and, therefore, of metamorphic reactions transforming  

host rocks into weaker  phases, are of potentially primary importance for the evolution 

of continental convergence (Warren, 2008a,b; Burov and Yamato, 2008), even though 

the role of the UHP material in this process may be of no importance in some cases 

(e.g., Western Gneiss Region in Norway, Peterman et al., 2009) . It has been 

demonstrated that subduction takes place only when the interface between the 

colliding plates  has a low mechanical strength allowing for sliding of the lower plate 

below the upper plate. Early studies (Hassani et al , 1997) found that the effective 

friction angle of the subduction interface has to be as low as 5° for sustainable 

subduction to occur. Since real rocks have practically invariable internal friction angle 

(~30°), it is evident that lubrication of the subduction interface is produced by non-

brittle  mechanisms such as ductile flow in weak metamorphosed layers, assisted by 

shear heating and fluids. In the case of oceanic lithosphere, the lubrication of the 

subduction interface is provided by very weak serpentine layers that form at the crust-

mantle  interface due to infiltration of fluids through flexurally induced normal faults 

and fractures (Jolivet et al., 2005; Yamato et al., 2007; Faccenda et al., 2009a; Angiboust 

et al., 2012). Hydrated serpentinite layers transport  fluids to great depths along the 

subduction interface; these fluids are then released due to dehydration of serpentinite 

at high pressure/temperature conditions, further weakening  the subduction interface 

and causing  partial melting that leads to weakening of the  subduction wedge and the 

back-arc zone (Gerya  et al., 2008). In the case of continental subduction, the 

lithosphere has less ability to transfer fluids to depth, and metamorphic phases, 

presented such as shists and higher grade facies like eclogites  are mechanically 

stronger than serpentine. Hence, for a given subduction rate, the resistance  of the 

continental subduction interface may be higher than in the case of oceanic subduction. 

In addition, thick continental crust has a positive buoyancy that creates body forces 
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opposing slab pull/push forces (Figure 2). Therefore, in most cases the duration of 

continental subduction should be limited;  at the beginning it is facilitated by the pull of 

the oceanic slab, which decreases with time, and by initially higher convergence 

velocity.   The latter hypothesis is confirmed for collision zones where paleomagnetic 

and geological records allow for reconstruction of convergence rates   (Patriat and 

Achache, 1984).  Apart of lubrication of the subduction interface and plastic hinging of 

the plate at the peripheral bulge, several other conditions should be satisfied to allow 

for the development of continental subduction (e.g., Afonso et al., 2011). In particular, 

growth rates of the competing modes of deformation (RT instability, folding, pure 

shear) should be small, and the upward drag (eduction force) due to the buoyant crust 

and viscous shear must be smaller than tectonic and slab pull forces. The combined 

effect of these multiple factors can be only assessed through numerical modeling (e.g., 

Toussaint et al., 2004a, 2004b; Burov and Watts, 2006; Faccenda et al., 2008; 2009a,b;  

Sizova et al., 2012, Duretz et al., 2011). These parametric studies have shown that 

continental subduction can occur and remain sustained over tens of million years only if 

the lithosphere is initially cold, and remains cold during subduction, which, in the case 

of continental lithosphere (e.g., Toussaint et al., 2004a, 2004b) implies initial Moho 

temperatures of less than 550°C, and convergence rates higher than 2-3cm.yr-1. It is 

therefore reasonable to assume that after the onset of collision between, for example, 

India and Eurasia, when the convergence rate was about 10 cm.yr-1 (Patriat and 

Achache, 1984), the oceanic subduction turned into subduction of the Indian 

continental lithosphere (Avouac et al., 2003; Toussaint et al., 2004b).  The critical values 

of Moho temperature (550°C)  corresponds to the reference rheology profile (e.g. 

Toussaint et al., 2004b). More dry and more basic crustal compositions will result in 

stronger crust and hence critical “subduction” temperature may be higher in this case 

(600°-650°) also provided that the lithosphere mantle is controlled by strong dry olivine-

dominated rheology). Inversely, wet crustal and mantle rheologies may prohibit crustal 

subduction even for lower Moho temperatures.  

Despite these complexities, geologic and geophysical observations suggest that 

continental subduction took place even under very disfavoring (slow, weak lithosphere) 

settings such as the Alpine collision (e.g., Chopin, 1984), Western Norway orogen (e.g., 

Kylander-Clark et al., 2009; Labrousse et al., 2002)  or Qinling-Dabie orogen (Central 
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Asia, e.g., Hacker et al., 2004) . The key observation here, as well as in many other 

convergent zones,  is the presence of UHP metamorphic rocks (eclogite facies, Figure 

3a,-b) of continental origin regurgitated  to the surface from the depths of 120-180 km 

(assuming lithostatic pressure gradient).    In particular, Western Norway (Kylander-

Clark et al., 2009) and Dabie (Central Asia, e.g., Hacker et al., 2004; Li and Gerya, 2009)  

present a prominent example of fast UHP exhumation in case of hot lithosphere and 

slow subduction (Kylander-Clark et al., 2009).  Some of these orogens (Alps, Yamato et 

al., 2008) have been successfully modelled using self-consistent  thermo-mechanical 

thermo-dynamically coupled models  showing that slow continental subduction of hot 

lithosphere is actually possible for limited intervals of time  and for  specific crustal 

rheological structures. Finally, in some contexts deep exhumation may be also caused 

by diapiric  RT instabilities that can bring a part of the material vertically (Gerya and 

Stöckhert (2006),  resulting in exhumation in the backstop area. 

Hence, understanding the mechanisms of continental subduction requires a  

number of additional considerations. First of all , the negative effect of the positive 

buoyancy of the lithosphere can be neutralized if a part of low-density crust early 

separates from the mantle (Cloos, 1993) or if it soon undergoes metamorphic changes 

and becomes dense and strong (Austrheim, 1991; Le Pichon et al., 1992; Burov et al., 

2001). The second factor allowing for continental subduction should refer to the initially 

higher convergence rates that should favor continental subduction before it is replaced 

by pure shear, folding or RT instabilities as the convergence rate slows down. Such 

initially higher continental subduction rates could be a natural consequence of 

transition from faster oceanic subduction to slower continental collision, which must be 

a progressive process (e.g., in the above mentioned case of India-Asia collision, the 

initial oceanic convergence rates of up to 15 cm/y have been progressively reduced  to 

10 cm/y at the onset of the continental collision stage to the present 4-5 cm/y within 

many ten Myr (Patriat and Achache, 1984)). On later stages, one can expect that 

changing the force balance after the first slab break-off might slow down or cancel 

continental subduction phase.  

 

4. Mechanisms of HP-UHP exhumation and their relation to the mechanisms of  

continental subduction. 
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4.1.  General concepts 

 Apart of the role of metamorphic rocks as of markers of subduction processes, it 

is also expected that metamorphic changes, specifically those leading to the formation 

of weak and/or denser facies such as schists and eclogites,  provide important controls 

on subduction interface dynamics, largely due to their weakening and lubricating effect, 

and also, in case of large quantities, due to their high density.  The UHP rocks are 

considerably denser than the surrounding matrix and hence would not flow up on their 

own. Yet, nearly all UHP terranes are dominated by quartzofeldspathic rock that is 

buoyant under UHP conditions (e.g., Kylander-Clark et al., 2011);  the density of 

eclogite, as long as it is included in a quartzofeldspathic matrix, is unimportant in terms 

of the average density of the exhumed bodies. Thus, the positive net buoyancy  of the 

UHP assemblages is generally regarded as major factor of exhumation in the HP-UHP 

depth interval (e.g., Burov et al., 2001). Yet,  to make buoyancy-driven exhumation 

possible, the matrix viscosity should (1) remain sufficiently high  to allow for passive 

drag of the UHP inclusions back to the surface, and (2) sufficiently low to permit 

detachment of the exhumed bodies from the subducting lithosphere. (3) In addition, 

the viscosity of the intra-channel  embeddings surrounding the ascending bodies should 

be sufficiently low to permit their ascent through the channel. Consequently, 

understanding the mechanisms allowing for the journey of  the crustal rocks  to the UHP 

depths and back to the surface is largely equivalent to elucidation of the convergence  

mechanisms in general. 

 Without assuming such mechanisms it would be difficult to explain the  

exhumation of dense UHP rocks (e.g. eclogite density may exceed by 400-800 kg/m3   

the density of the normal crust and  by 100 kg/m3 that of the mantle) within the 

exhumation models developed for LP and MP rocks, which  can  be roughly sub-divided 

onto: (1) shallow, kinematically driven exhumation models (Figure 3c, see also Platt, 

1986;1993 and Hacker and Gerya, 2013 for review )  such as the accretion prism model 

limited to  exhumation from depths above the 40 km limit (e.g., Platt, 1993), (2) shallow  

overpressure models  that can only work if the “subduction channel” walls are 

undeformable (Mancktellow, 1995,2008, Figure 3c)  or in the absence of a dominant 

simple shear deformation (Petrini and Podladchikov, 2000), and (3) deep basically 
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hydrodynamically and buoyancy driven HP-UHP exhumation models (Figure 3c, 

Chemenda, 1995; Burov et al., 2001; Yamato et al., 2008; Li et al., 2010; Duretz et al., 

2012) .   

Subduction and exhumation of deep crustal material is more and more 

considered as result  of  the competition between the buoyancy of partially 

metamorphosed crust and downward viscous drag exerted on the subduction interface 

(Couette flow).  A simplistic view of this problem is that the buoyancy forces and the 

related inverse pressure gradients return the crustal material to the surface within the 

Poiseuille flow (Figure 3c(c), Platt, 1993), so that the return flow of the exhumed 

material to the surface results from a trade-off  between the downward Couette and 

upward Poiseuille flow (Raimbourg et al., 2007; Beaumont et al., 2009). Yet,  as 

discussed in Section 2, this mechanism should not work in practice since it required  

undeformable subduction channel with rigid walls while physical consideration and  

recent studies show  that “subduction channel”  walls are  deformable so that the 

channel would rather inflate instead of maintaining any significant  over- or under-

pressure (Burov et al., 2001; Burov and Yamato, 2008). Therefore, in case of simple 

shear subduction, is more appropriate to consider near-normal pressure conditions and 

an exhumation mechanism related to Stokes return flow.  

If  one follows the results of full-scale geodynamic models (Toussaint et al. 

2004a; Burov and Yamato  ,2008; Li et al. , 2010) that have confirmed nearly lithostatic 

pressure conditions  inside the subduction channel, then the exhumation depth of HP 

and UHP rocks must exceed 80-120 km. It was demonstrated (e.g., Platt, 1993) that 

kinematically driven circulation in the critical wedge of an accretion prism (Figure 3c (a), 

Davis et al., 1983; Dahlen, 1990; Dahlen and Suppe, 1988)  cannot bring metamorphic 

material to the surface from depths exceeding 40 km. This hard limit is established from 

the fact that the accretion prism mechanism requires, at one side, a relatively high 

viscosity, needed to drag host rocks to depth and bring their metamorphic facies back 

to the surface, but on the other side, the viscosity cannot be higher than 1019 Pa s to 

permit circulation of material and to maintain realistic geometry of the sedimentary 

prism (Emerman and Turcotte, 1983). At temperatures corresponding to the 40 km 

depth, most metamorphic bodies have low viscosity and it becomes impossible to build 

a sufficiently high viscous force to drag such a weak material up. As a result, large part 
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of the material will remain at the bottom of the accretion prism and/or carried down 

with the subducting mantle. However, despite their presumably low viscosity, a part of 

exhumed rocks (Norway, Dabie, e.g. Kylander-Clark et al., 2011) show little deformation, 

which poses additional questions concerning the mechanisms of their exhumation. 

Another classical kinematic exhumation model evokes foreland fold-and-thrust 

mechanisms allowing thrusting (nappe stacking) of one rock unit on top of another 

(Jolivet et al., 1994, Figure 3c(b)). The kinematic thrust-and-fold  and nappes stacking 

models  exploit the possibility of detachment at the base of the accretion prism. In this 

case the lower accreted units may be folded and thrusted on top of the upper units. 

This stacking models appear to be consistent with field observations for LP and MP 

conditions. This mechanism, ultimately linked to simple shear deformation and hence 

subduction, probably can also work at final stages of HP/UHP exhumation  when small 

volumes of  UHP/HP material are included in partly metamorphosed LP/MP matrix. At 

larger scale, a similar mechanism may work in case of subduction of  terrains embedded 

in the “normal” lithosphere (Tirel et al., 2013).   

Finally,  a number of concepts of continental collision  consider mechanical 

alternatives to subduction and propose customized mechanisms of  HP/UHP rocks 

formation and  exhumation. For example, Thompsons’ “tooth paste” model (e.g., 

Thompson et al., 1997) suggests that rocks may be squeezed up to the surface, for 

example as a result of closure of the accretion prism.  The model of Thompson et al. 

(1997) can be discarded since it requires quite uncommon rheological properties for the 

colliding blocks and does not imply realistic structural features.   Burg and Podladchikov 

(2000) have suggested a specific collision model that implies tectonic overpressure (as 

in Petrini and Podladchikov, 2000) and megabuckling of mechanically coupled strong 

colliding plates. In this model, there is no upper and lower plate.  Instead, crustal rocks 

are brought down within a gigantic syncline formed as a result of a compressional 

instability. Due to tectonic overpressure, these rocks are formed at twice smaller depth 

(than usually inferred for HP/UHP material) and then exhumed to the surface by 

denudation processes and possibly by squeezing a bit like in Thompson’s model. The 

possibility of megabuckling or, more general, of “symmetric” collision, has been also 

discussed in a number of studies (e.g., Burov et al. , 1990;  Cloetingh et al. , 1999).  
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However, this kind of scenario might be limited to some very specific places in the world 

such as Himalayan syntaxes or Tien-Shan. 

 

4.2.   Most generally considered mechanisms of UHP exhumation 

Chemenda et al (1995) have suggested a highly elaborated and elegant analogue 

model of continental subduction scenario with a lithostatic UHP mechanism,  in which 

the rigid cold crust is brought down with the subducting mantle because its initial 

viscosity is high allowing for adherence to the mantle lithosphere. Partly 

metamorphosed, therefore still buoyant and sufficiently rigid, large crustal blocks return 

to the surface when they delaminate from the mantle. The delamination is caused by 

reduction of the ductile strength of the crust as its temperature increases with depth. 

The UHP units are brought to the surface in solid state with the buoyant low density 

matrix. Once at the surface, the matrix is eroded exposing less erodible UHP material. 

As can be seen, the key point of this model relates to the net floatability of the 

exhumed crustal blocks that are supposed to be only partly converted into 

metamorphic material. Another condition is that this model requires high erosion rates 

at final stages of the exhumation processes.  The model of Chemenda et al., 1995 has 

been successfully tested mechanically, but by the time it has been published it still 

required validation in terms of the P-T conditions because, as most analogue models, it 

is not thermally coupled and the predicted P-T conditions are out of control. In 

particular, it was important to demonstrate that the crustal blocks can remain 

sufficiently rigid at the moment of their decoupling from the mantle. It should be also 

kept in mind that phase transitions result in reduction of the ductile strength and 

depend on the presence of fluids, which remain to be a poorly constrained factor of the 

subduction process. With these reservations, one can suggest that the “rigid block 

model” may work in particular settings characterized by exhumation of relatively small 

volumes of non-deformed UHP rock. Recent thermally coupled numerical models  

(Sizova et al., 2012 ) have demonstrated that  Chemenda’ model of exhumation is 

physically viable. Yet, the model is still to be validated with a thermo-mechanical model 

on a real-life case such as Himalaya collision (in particular, Dabieshan, Hacker et al., 

2000), for which it was originally designed for.  In particular, it is noteworthy  that nappe 

stacking still occurs under particular conditions in the model by  Sizova et al.  (2012), i.e. 
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in the presence of a rather strong lower crust. So far the only existing thermo-

mechanical model that reproduced UHP exhumation for Dabieshan-Sulu (Li and Gerya, 

2009) infers a mechanism  that is more close to the multi-phase exhumation mechanism 

suggested by Burov et al.  (2001, Figure 3c(e), see below) than the rigid-block 

exhumation mechanism of  Chemenda  et al. (1995).  

In difference from the geological contexts considered in the Chemenda’ model,  

there is number of well-studied collision settings such as the Western Alps (Figure 3c(e); 

Burov et al., 2001;  Agard et al., 2001;2009; Yamato et al., 2007; 2008) where the 

amounts of the exhumed  UHP material are relatively important, even though HP 

volumes of  50 km wide with 200m thick UHP units observed in this area are not 

exceptionally large  (Kylander et al., 2009). To exhume this material, one needs to 

create sufficient space (e.g. via slab roll-back or by applying strong surface erosion, yet 

the latter scenario is not applicable to the Alps). This material is also strongly deformed 

by ductile deformation. These observations reduce the possibility that the metamorphic 

terranes were exhumed as small inclusions within a rigid matrix. For this reason, Burov 

et al. (2001) have suggested an alternative model, in which the subduction interface 

zone  breaks into a shallow (1) and mid-depth (2) accretion prism and (3) a deep zone of  

accumulated crustal material formed near the base of the upper plate (this zone is 

dubbed “crustal pocket”). For each of these three levels there is a specific mechanism of 

exhumation. The two accretion prism zones exhume LP and MP pressure rocks and also 

HP and UHP rocks that penetrate in the prism with return flow in the subduction 

interface zone. This return flow is driven both by up-thrusting of the upper plate and 

small-scale convective movements and gravitational instabilities in the more or less 

metamorphosed and partially molten subducted crust and in the “crustal pocket” that 

sometimes may underplate the overriding plate at the 50-120 km depth. At this depth, 

the weakened subduction interface zone  breaks down onto two parts, the upper and 

the lower one (i.e., “crustal pocket” with potentially partially molten rock), separated 

from each other by a more or less narrow “neck”. Starting from this depth, a large part 

of the upper and adjacent lower crustal material does not subduct anymore, this 

material is accumulated below the upper plate and heats up due to direct contact with 

hot (T=1330°) asthenosphere. Thermal expansion due to heating initiates small-scale 

convection and RT instabilities in the “crustal pocket”. These processes drive the 
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metamorphic material, possibly partially molten (in extreme, but not yet observed cases 

, Little et al., 2011) and mixed up with non-metamorphosed low density crustal units 

back to crustal depths of 40-50km. From these depths, the UHP material is  exhumed to 

the surface in the “normal way”, by the accretion prism mechanism.  Each stage of this 

poly-phase exhumation process has its characteristic exhumation rate. The exhumation 

rate characterizing the convection stage may be much more rapid (10-15 cm.yr-1) than 

the tectonic convergence and uplift rates because the ascent Stokes velocity,  Vs, is 

conditioned by the density contrast and the non-Newtonian viscosity eff  of the rocks 

(Weinberg and Podladchikov, 1994; Burov et al., 2001): 

1 1 2 1 /

02 3 ( )n n n n Q RT

s cV r A T g g e               (7) 

 where r is the approximate half-size of the ascending crustal body, ∆c is 

compositional density contrast , n, A, Q, T are the power law exponent (typically 2÷3), 

material constant, activation enthalpy and temperature of the embeddings, 

respectively, R is the gas constant (8.314 Jmol-1K-1), g is the acceleration due to gravity 

(9.8 m·s-2), 0 is reference mean density (at 0°C),  is thermal expansion coefficient 

(typically 3·10-5 °C-1).  It is noteworthy that the eq. 7 holds for a spherical blob in an 

infinite matrix, and hence provides a maximal estimate for the ascent velocity, because 

in nature the ascent velocity is progressively reduced as the exhumed body approaches 

the surface, or, more exactly,  the depth of brittle-ductile transition   (e.g., Burov et al., 

2003). However, since brittle-ductile transition depth in the subduction channel and 

normal crust is likely to be above 20-30 km (Yamato et al., 2008), a large part of UHP 

exhumation may still occur at velocities described by eq. 7.    

 Let us consider following typical conditions: background temperatures of about 

600°C, ∆ ranging from 20 to 200 kg m-3 and temperature contrasts between the 

ascending material and embeddings ranging from 100°C to 300°C. Whatever the 

embedding  is, quartz-rich crust (n=3, H=190 k Jmol-1, A = 5·10-12 Pa-n s-1, 0=2600 ÷ 

2900 kg m3) or mantle olivine (n=3, H=520 k Jmol-1, A = 7·10-14 Pa-n s-1, =3300 kg m-3) 

(Burov et al., 1999,2001), one can find that these conditions would be largely sufficient 

to drive up a 10-20 km-thick body at 10-20 cm.yr-1  rate. For larger temperature or 

density contrasts the estimated values of vy become very high suggesting the possibility 

of very fast material ascent from great depths, slowing down near the surface due to 
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the decreasing temperature.  These estimates are highly sensitive to the material 

parameters, for example in case of a crustal quartzite-rich body ascending through 

olivine background (∆ = 430 kg m-3), the ascent rate may vary from 1-4 m.yr-1  for 

embedding temperature of 600°C to 1 m.yr-1 for the embedding temperature of 900-

1000°C. In case of much more temperature sensitive quartzite embeddings (hot crust 

material ascends through cold crustal embeddings), the scatter in possible vertical 

velocities becomes important, including a possibility of turbulent flow inside and 

outside the crustal body (Burov et al., 2001). 

The velocity contrast between the exhuming material, mantle and crustal material 

of the upper plate induces formation of a large-scale shear zone, which works as a 

normal fault with a relative upward motion of the footwall. This is quite similar at a first 

glance to what Chemenda et al. (1995;1996) have predicted from analogue laboratory 

experiments. There are, however, some principal differences between the two models. 

In the Chemenda’s model, continental crust is exhumed as a large rigid block, which 

detaches from the mantle and glides up between the downgoing slab and the upper 

plate. This ascent is driven by density contrast between the crust and mantle. In the 

Burov et al. 2001 model, the exhumed body presents a deformed crustal volume  

included between a thrust zone forming along the Moho boundary of the lower plate 

and a normal fault zone forming between the lower and upper plate. In this model the 

exhumed material is not rigid, but ductile due to high temperature. Contrary to that,  

Chemenda’s model is incompatible with long exposure of the subducted crust to high 

temperatures. The second important difference relates to the geometry of the 

downgoing slab. In the Burov et al. 2001 model high buoyancy experiment, the 

downgoing slab has a tendency to rotate upward below the upper plate, due to a 

positive flexural moment created by cumulative effect of remaining low density crustal 

layer and of asthenopsheric upflow  below the overriding plate. The third principal 

difference is that in this model there is no important accumulation of crustal material 

below the upper plate as would be observed in the Chemenda’s model in case of weak 

crustal rheology or hot surroundings. The fourth, less important difference is related to 

the presence of active extension within the upper plate provoked by the upwelling 

asthenosphere.  

The equation for Stokes velocity of exhumation of buoyant crust does not directly 
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consider its capacity to drag heavier metamorphic facies that under some condition can 

still sink in opposite direction. This additional condition can be roughly defined by 

“internal” Stokes velocity Vi  of these metamorphosed facies within the exhumed 

crustal body:  

               Vi   ∆’ g l
2/3eff_c       (8) 

where ∆’ is the density contrast between the metamorphosed part of the exhuming 

crustal volume and the crust, l is the characteristic size of the metamorphic inclusions 

and eff_c   is the effective viscosity of the crust. Logically, exhumation of metamorphic 

inclusions within  lighter crustal units is possible under condition that  

  | Vs  |  -  a|Vi | - | Vsuv |   > 0      (9) 

where a  ze/sb is the ratio of the exhumation depth ze  to the characteristic 

vertical dimension of the body, sb, and  Vsuv  is the vertical component of the subduction 

rate. As long as l is sufficiently small (l < 0.25 r ÷ 0.5r) the above ratio is positive meaning 

that large crustal volumes can effectively drag upward smaller metamorphic inclusions. 

These analytical considerations are largely oversimplified neglecting, for example, the 

non-linear downward drag due to subduction, which justifies a fully numerical 

approach. Burov et al (2001) suggest that their mechanism can work for a limited 

amount of time during the initial stages of continental subduction, but do not preclude 

the possibility of delayed exhumation of the eventually partially molten UHP material 

from the “crustal pocket” that underlies the overriding plate in their model. This model 

has received further development in the models Yamato et al. (2007; 2008) and Li  and  

Gerya (2009), which account for thermo-dynamically consistent metamorphic phase 

changes, and allow for tracing  metamorphic P-T-t paths used for validation of the 

model-predicted collision dynamics. These models, discussed in full detail in the next 

sections, belong to the latest generation of thermodynamically coupled 

collision/subduction models (see also Sizova et al., 2012 )  where material properties are 

dynamically adjusted in full consistency with thermodynamic conditions. 

Recent numerically inspired oceanic and continental UHP exhumation concepts 

by (Gerya and Stöeckhert, 2006;  Stöeckhert and Gerya, 2005; Li and Gerya, 2009; 

Beaumont et al., 2009; Duretz et al., 2011; Sizova et al., 2012; Li et al., 2013) added new 

elements to our understanding of  exhumation mechanisms, reinforcing, for example, 

the role of  Rayleigh-Taylor instabilities both in the subduction interface zone and the 
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hydrated mantle wedge. Rayleigh-Taylor instabilities may develop in the subduction 

interface zone   due to partial hydration and melting and even propel low density "cold 

plumes" ascending towards the surface (Gerya and Yuen, 2003); back-arc or back-stop 

exhumation may be partly explained by the formation of rotating rigid “wheels” trapped 

into the weakened material in the subduction channel (Gorczyk et al., 2006), or by 

partial melting in the above discussed deep crustal pockets forming as a result of partial 

underplating  (Burov et al., 2001; Li and Gerya, 2009).  

The “hot channel” model  of continental collision (Gerya et al., 2008) 

complements the poly-phase model of Burov et al. (2001) by emphasizing the role of  

the internal heating-weakening mechanism, in which the subducting crustal material 

may be over-heated by viscous shear heating and radiogenic elements. In this model, 

heating is also associated with flow of aqueous fluids relieved by rapid dehydration 

(deserpentinization) of the overriding mantle lithosphere that has been hydrated during 

previous subduction stages. The channel can penetrate along the plate interface down 

to the bottom of the lithosphere of the overriding plate (150-200 km) and is 

characterized by temperatures reaching 700 to 900°C. The low effective viscosity of 

rocks caused by increased temperature, partial melting and fluid infiltration permits 

profound mixing of hydrated mantle and crustal rocks. The hot channel exists during the 

early stage of collision only, but rapidly produces large amounts of ultrahigh-pressure, 

high temperature rocks. Further collision closes the channel through squeezing 

rheologically weak, partially molten, buoyant rocks between the strong lithospheric 

mantles of the two colliding plates.  

The role of tectonic heritage has been studied by  Tirel et al. (2013) , who have 

suggested, in application to Aegean subduction, that deep stacking of continental  

terrains inherited from the previous tectonic history can explain deep  burial and 

exhumation in appropriate contexts. In the intensively studied Aegean back-arc domain, 

HP belts represent small continental blocks buried and exhumed back during subduction 

and slab roll-back of the African lithospheric plate. Numerical models integrating multi-

disciplinary observations show that slab buoyancy variations resulting from successive 

subduction of continental blocks can be responsible for episodic rollback-exhumation 

cycles. The model of Tirel et al. (2013) succeeds in reproducing major structural patterns 

and pressure-temperature-time (P-T-t) paths of the HP rocks in the Eastern 
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Mediterranean and as such exemplifies a new concept for exhumation of deeply buried 

continental crust. 

The specific features of Burov et al. (2001) and (Gerya et al., 2008; Burg and 

Gerya, 2005; Yamato et al., 2008; Li and Gerya, 2009) models refer to the presence of 

several stages or levels of exhumation, with different exhumation rates (and 

mechanisms) at each stage/level. These models predict high exhumation rates at depth 

that may be several times higher than the horizontal convergence rates or denudation 

rates at surface. The predicted rates reach, for example, 10-15 cm.yr-1 in the Alpine 

context, where the convergence rates (currently almost negligible) were in average less 

than 1 cm.yr-1, with initial values not higher than 3-5 cm.yr-1  (Burov et al., 2001; Yamato 

et al., 2008).  

 

5. Successful numerical models of continental subduction and HP/UHP exhumation 

We next discuss the lower and upper bounds on the parameters controlling 

continental subduction and thus UHP-HP exhumation.  We asses various factors 

controlling continental collision/subduction by using state-of-the art numerical thermo-

mechanical models coupled with thermodynamic processes. In these models, density 

and other physical properties of the material are computed by minimization of free 

Gibbs energy as function of P-T conditions (e.g., Connolly, 2005) and re-iterated back to 

the thermo-mechanical part  of the model (see Appendix ).  

 

5.1.  Common modelling approach 

We here discuss the general methodology of subduction/collision models using  

as representative examples   recent  modeling studies  based  on the FLAMAR code  

(Appendix). This code, originating from Parovoz-FLAC algorithm (Fast Langrangian 

Analysis of Continua,  Cundall ,1989; Polyakov et al., 1993;  Appendix), has all major 

features that are present in consistent models of continental collision. It implements 

explicit time-marching, large-strain Lagrangian algorithm to locally solve Newtonian 

equations of motion in continuum mechanics approximation. This code is viscous-

elastic-plastic and written in full stress formulation, which allows for accurate 

computation of total pressure, P, as a trace of the full stress tensor. Solution of motion 

equations is coupled with constitutive equations, heat-transfer, fluid circulation, surface 
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transport and thermodynamic equations. The algorithm also handles explicit free-

surface boundary condition.  The metamorphic phase changes are treated using free 

energy minimization algorithms (De Capitani, 1994; Conolly, 2005).  The surface 

processes (erosion and sedimentation) are incorporated using linear and non-linear 

diffusion formulation (Avouac and Burov, 1996). The fluid transport algorithm is based 

on an enhanced variant of Darcy’s flow  with strain-rate dependent permeability 

(Angiboust et al., 2012). The Lagrangian grid is supplemented by a denser particle-in-cell 

sub-grid  (9 to 30 particles, or passive markers, per grid element), which allows for 

diffusion-free interpolation of grid quantities between remeshings, as well as for tracing 

trajectories of selected particles, allowing, for example, for  construction of synthetic P-

T-t paths.  

 

5.2.  Numerical setup 

5.2.1. Initial configuration 

To achieve continental subduction phase in “natural” way, without prescribing it 

from the beginning, recent models of continental collision start from the oceanic phase 

of subduction (Figure 4; Yamato et al, 2008). Oceanic subduction “prepares” conditions 

for the continental phase by creating a weak subduction interface and providing initial 

slab pull on the continental lithosphere. The oceanic accretion prism also provides weak 

material to start-up lubrication of the continental subduction interface (Figures 4,5). 

Further lubrication of the subduction interface is provided by the weak rheology of 

metamorphic and crustal rocks including the supply of sedimentary material produced 

by erosion of the uplifting topography. 

 

5.2.2. Mechanical and thermal boundary and initial conditions 

 The most appropriate upper boundary condition for geotectonic modeling is a 

free surface. This condition is explicitly implemented in Flamar, which uses Lagrangian 

framework.  It is noteworthy that many Euleran codes based on Stokes flow formulation  

use surrogate “sticky air” approximation of the free surface (Sizova et al., 2012).  If the 

required topography precision is not high, the “sticky air” approximation is quite 

acceptable provided the viscosity of the "air" is sufficiently low and the thickness of the 

"air" layer is sufficiently large.  However,  the absolute precision of nodal vertical and 
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horizontal  displacements  in implicit Eulerian Stokes flow codes is typically on the order 

of half element  size (e.g. 0.5  km for 1 x 1 km element size) because they are obtained 

indirectly, from interpolation of positions of passive markers.  In the Lagrangean codes 

like Flamar, the practical accuracy of nodal positions is about two orders of magnitude 

better (e.g. 0.01 km for 1 x 1 km element size),   because the nodes move with the 

velocity field (e.g., Francois et al., 2014) and their coordinates are updated directly 

without interpolation.  

In all existing models the lateral boundary conditions are kinematic (horizontal 

velocities). The Winkler’s hydrostatic pliable bottom is often used as the bottom 

boundary condition. This semi-free condition allows for reduction of the vertical size of 

the model by up to 25% compared to the fixed-bottom configuration, allowing the slab 

to deflect the lower boundary of the model when it approaches the bottom.  In 

subduction zones, the downward translation of a cold slab material produces complex 

thermal structures (Royden, 1993; Davies, 1999). To account for this complexity, the 

initial thermal structure (see Appendix)  relies on the oceanic plate cooling model for 

the oceanic part of the model, while the continental part is based on the continental 

plate cooling model (Parsons and Sclater, 1977; Appendix) with a thermo-tectonic age 

of 160 Ma. The corresponding thermal boundary conditions include zero flux in lateral 

direction, and fixed temperatures at the upper surface and the bottom of the model. 

For the entire computational domain, the initial thermal distribution is computed 

through a combination of  plate cooling models (oceanic or continental) for the upper 

lithospheric part with the adiabatic thermal gradient for the underlying mantle. One 

first solves the plate cooling problem assuming T=0°C at the surface and T=1330°C at 

the bottom of the lithosphere (Appendix). Then the initial adiabatic temperature 

gradient in the underlying mantle is computed by equalizing the temperature at its top 

with the temperature at the bottom of the lithosphere (1330°C) and by adjustment the 

mantle heat flux in a way that the temperature at the bottom of the upper mantle (650 

km depth) fits 1700100°C (e.g., Turcotte and Schubert, 2002). We re-adjust the initial 

thermal thickness and, if necessary, the thermotectonic age of the plate to satisfy heat 

fluxes at the mantle-lithosphere boundary. We control both the values of the surface 

and mantle heat flux to ensure that they fall in the expected range (30-80 mW m-2 at 

the surface and 10-30 mW m-2  in the mantle depending on plate age and thickness). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The bottom and surface temperatures and zero lateral heat flow are fixed during all 

computations. There is a  particular difficulty of thermal computations in the accretion 

prism that refers to the fact that thermal conductivity of sedimentary materials varies 

from 1 to 5 W.m-1.K-1, with low values for shales and sandstones (~1,2-4,2 W.m-1.K-1) 

and higher values for limestones and dolomites (2-5 W.m-1.K-1) (Turcotte and Schubert, 

2002). The value used in reference simulation is 2 W.m-1.K-1, but a twice higher thermal 

conductivity was also tested.  

 

5.2.3. Intermediate conditions for continental subduction  

In the models, continental subduction, or, eventually other collision modes, 

follows the oceanic subduction. For this reason, the initial continental convergence rate 

equals the rate of the oceanic subduction (for example, two-sided initial closing rate of 

2 × 1.5÷3 cm.yr-1  during the first 5 – 10 My). The values tested in this study do not 

exceed the present-day continental collision rates, which are at maximum 3÷6 cm.yr-1. 

These rates are on the order of smallest present-day oceanic subduction rates, and are 

also smaller than the past continental convergence rates for some particularly  active 

continental collisions such as the India-Asia collision (2 × 4 to 2 × 5 cm.yr-1  during the 

first 10 m.yr. (Patriat and Achache, 1984).  

 

5.2.4. Rheological structure 

For continental and oceanic collision models, we assume commonly inferred 

crustal structure and rheology parameters derived from rock mechanics (Table 1). As in 

nature,   topography growth is strongly affected by surface erosion, which is modeled 

using diffusion erosion with a  diffusion coefficient varied from 50  m2 yr-1 to 11000 m2 

yr-1  (the practical range is 100  m2 yr-1 to 3000 m2 yr-1 , Avoauc and Burov, 1996; Burov 

et al., 2001). For continental collision, as for the case of the upper plate in the 

experiments on oceanic subduction, the initial geotherm is derived from the half-space 

cooling model modified to take into account internal heat production and structure of 

the continental lithosphere (e.g., Parsons and Sclater, 1977; Burov and Diament, 1995; 

Yamato et al., 2008; Appendix). 

 

5.2.5. Variable model parameters 
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One of the universal controlling variable parameters of all experiments is the 

initial geotherm, which is defined by the thermotectonic age (Burov and Diament, 1995; 

Toussant et al, 2004a,b) and is largely characterized by the Moho temperature Tm 

(Figure 5). The geotherm controls the major mechanical properties of the system 

through its strong impact on the rheological strength profile. By varying the geotherm, 

one can account for the whole possible range of lithospheres, from very old, cold, and 

strong plates to very young, hot, and weak ones. The second variable parameter for 

continental models is the composition of the lower crust, which, together with the 

geotherm, controls the degree of crust-mantle coupling. We generally considered both 

weak (quartz dominated) and strong (diabase) lower-crustal rheology and also strong 

and weak (dry versus wet olivine) mantle rheologies (Table 1). In high resolution 

experiments, intermediate crust has been also included in the models (Yamato et al., 

2008).  

As discussed in the previous sections, for a given thermo-rheological strength 

profile, the convergence rate is the main factor defining the mode of continental 

collision via its impact on the critical Peclet number of the system. In nature, there is a 

correlation between the convergence rate, the mechanical strength and thermal state 

of the subducting lithosphere (Mouthreau et al., 2013) such that all major controlling 

parameters are inter-dependent. We here consider 3 representative cases: (1) very slow 

collision of weak lithosphere (Alps), (2) intermediate-rate collision (Zagros) of middle-

strong lithosphere and (3) fast subduction of very strong Indian lithosphere (Himalaya). 

The tested convergence velocities  vary from  2× 3 mm.yr-1  to 2 × 3 cm.yr-1 . We then 

test the influence of most important metamorphic changes such as serpentinisation, 

schisting and eclogitization (at P > 1.5 GPa and T > 550 °C, see Table 1). 

 

5.3. Results and Discussion 

Figure 6 provides a representative example of continental collision experiments 

(Francois et al., 2012;2014) in a Zagros collision context that occurs at intermediate 

convergence rates.  The experiments start  from an oceanic subduction phase (Figures 

4,5) and, after several slab break-off episodes arrive  at the stage of continental 

subduction that occurs progressively, as a result of subduction of the continental margin 

pulled by the oceanic plate. The repetitive character of slab-break off process in case of 
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intermediate convergence rates (2 cm.yr-1 
on both sides) is an important feature 

potentially explaining the possibility of repetitive changes in deformation styles, 

topography evolution and exhumation events observed at the surface.  We will later 

discuss the results of these experiments in full detail, but at this stage Zagros collision 

experiments were used as a representative example demonstrating the importance of 

the oceanic subduction phase in continental collision models.   

 

5.3.1. Stage I: Pre-continental (oceanic) subduction phase (slow convergence)   

As mentioned, the oceanic subduction phase plays an important role in the 

development of continental collision, specifically in case of slow convergence rates.  We 

hence start detailed discussion of collision/exhumation models from description of the 

oceanic phase for particularly slow Alpine convergence settings.   Figures 7-9 show 

experiments on the oceanic phase of Alpine convergence implemented by Yamato et al, 

2007 as initial phase of their continental collision model (Yamato et al., 2008, Figure 7). 

In this model the oceanic plate subducts at a rate of 6 cm.yr-1  below the overriding 

continental plate. These experiments target  the Alpine collision and are aimed, in 

particular, to test the idea of the possibility of continental subduction as follow-up of 

the oceanic subduction in slow convergence settings. In these experiments, the thermo-

mechanical model was coupled with a thermo-dynamic model using the thermodynamic 

algorithm THERIAK (de Capitani et al., 1994, see Appendix) that predicts mineralogical 

phases and their density by minimizing free Gibbs energy for P-T conditions computed 

within the thermo-mechanical part of the model.  The experiment successfully 

reproduces the burial and exhumation in a subduction wedge (Figure 8), in terms of 

correspondence  between the predicted synthetic and observed P-T-t trajectories and 

the structural and exhumation patterns. The model is tested and parameterized on the 

well constrained Schistes Lustrés complex (SL; Western Alps), which is thought to 

represent the fossil accretionary wedge of the Liguro-Piemontese ocean. For 

convergence rates comparable to the oceanic phase of the Alpine subduction  (~3 

cm.yr-1), the best fitting results are obtained for high viscosity, low density wedge 

sediments and/or a strong lower continental crust. After a short  transition period of 3-5 

My, the modeled accretionary wedges reach a steady state which lasts over 20 My. 

Over this time span, a significant part (~35%) of sediments entering the wedge 
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undergoes P-T conditions typical of the SL complex (~15-20 kbar; 350-450°C) with 

similar P-T loops. Computed exhumation rates (< 6 mm.yr-1) are in the agreement with 

observations (1-5 mm.yr-1) hence validating the choices of thermo-rheological 

parameters and conforming the viability of accretion prism concept of LP/MP 

exhumation. The model confirms the crucial importance of the mechanical weakening 

due to metamorphic reactions in the subduction interface zone by showing that in 

presence of a serpentinite layer below the oceanic crust, exhumation of oceanic 

material takes place at realistic rates approaching 3 mm.yr-1. The importance of 

metamorphic reactions was well demonstrated in later follow-up of this study by 

Angiboust et al (2012) who have developed a two-phase flow model in the oceanic 

subduction context by coupling the Alpine subduction model with porous-matrix fluid 

transport equations (Figure 9).  In this model, dehydration of serpentinite layers 

provokes fluid release forming a hydration front in the mantle around the subduction 

interface. As a result, the mantle wedge is strongly weakened (e.g., Guillot et al., 2000; 

2001) allowing for more efficient uncoupling between the lower and overriding plate. A 

fluid migration algorithm is coupled with thermo-mechanical counterpart so that the 

fluids are free to migrate through a permeable matrix, driven by rock fluid 

concentrations, non-lithostatic pressure gradients and deformation. These  experiments 

show that deformation is accommodated along the subduction interface by  a low-

strength shear zone parallel to the wall of the subduction thrust interface, and 

characterized by a weak (10-25% of serpentinite) and relatively narrow (5-10km) 

serpentinized front. Dehydration associated with eclogitization of the oceanic crust (60-

75km depth) and serpentinite breakdown (110-130km depth) significantly decreases 

the mechanical strength of the mantle at these depths, thereby favoring the 

detachment of large slices of oceanic crust along the plate interface. In these 

experiments, the resulting morphologies are in good agreement with reconstructions 

derived from structural field observations from the Alpine eclogite-facies ophiolitic belt 

(corresponding to, i.e., coherent fragments of oceanic crust detached at ~80km depth in 

the Alpine subduction zone and exhumed along the subduction interface). It can be 

suggested that overall weakening of the plate contact-zone during oceanic subduction 

creates necessary conditions for the continental subduction at later stages. 
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5.3.2. Stage II: Subduction of a weak lithosphere (Te < 30 km) at slow convergence rate 

(< 1.5 cm.yr-1) showing strong dependence on crustal and lithosphere mantle  

rheology   

The second phase of Alpine convergence corresponds to continental subduction 

occurring at slow convergence rate and hence at near critical Peclet numbers. Slow 

convergence settings present a particularly important framework for studying 

continental convergence due to the extreme dependence, in this case, of the collision 

mode on thermo-rheological assumptions (Yamato et al., 2008). The well-studied Alps 

are an excellent example for this that is  characterized by both very small convergence 

rates and by a weak lithosphere , as attested by Te data (Watts, 2001). In the study by 

Yamato et al.  (2008), various crustal compositions have been tested, starting from an 

“all-granite”  (very weak) crust  and ending by “all-diabase” (very strong) crust (Table 1). 

It is difficult to constrain the range of the convergence rates in the Alpine orogeny at the 

eve of the collision stage, that is, back to 30 myr. The present day  convergence rates 

are at the limit of accuracy of geodetic measurements (< 0.5 mm.yr-1);  while the 

average amount of shortening estimated from structural  paleoreconstructions,  divided 

by the duration of the convergence,  also yields very small values on the order of 0.8 

mm.yr-1.   Exhumation of UHP rocks of continental origin within the first  5 Myr of 

collision from depths in excess of 100-120 km, suggests, however, that at this stage the 

convergence rate had to be much faster, on the order of 2x (0.75  1) cm.yr-1. The UHP 

exhumation data hence is practically the only observation allowing us to constrain the 

dynamics of the collision zone during the first 5-15Myr. The most reasonable idea is 

hence to suggest that during the initial several Myr the continental subduction 

continued at rates that were comparable to those of the preceding oceanic subduction. 

This reinforces the idea that the oceanic slab pull is an important component of the 

initial force balance at the onset of the continental collision phase. It can be also argued 

that the initial subduction rates were even higher than the estimates obtained from 

dating exhumed rocks versus the exhumation depth. In particular, some part of UHP 

rock could be buried deeper without being exhumed (which is probably the case of fast 

collision zones such as Himalaya).  At the agnostic side, we cannot also exclude that the 

exhumed rocks are not representative of the bulk circulation of the metamorphic 

material in the subduction wedge. It is however unlikely that the exhumed UHP material 
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is formed as a result of local stress concentrations and/or overpressure since the UHP 

facies are present at a large scale,  in vast continuous volumes (Yamato et al., 2008).  

The experiments shown in Supplementary Figure 1 illustrate the historically first 

numerical model of Alpine collision that has been successful in reproducing continental 

subduction and UHP exhumation in the Alpine context (Burov et al., 2001). This model 

has been enhanced by (Yamato et al., 2008) who have coupled it with thermodynamic 

processes while significantly increasing the numerical resolution (Figure 10,11). This 

model, accounting for multilayered rheological structure of the continental crust, shows 

that UHP exhumation may occur due to mechanical decoupling of the subducted  lower 

or middle crustal layer from both mantle lithosphere and the upper crustal  layer.  A 

large part of the layer tip tears off and flows up at the rear of the accretion wedge, 

between the subducting and overriding plates, in agreement with the field observations 

for the Western Alps. The predicted bi-phase exhumation rate and P-T trends match 

well the observational data thus justifying the model (Figure 11).  This high resolution 

model was first used to parameterize the rheological choices by  exploring the impact of 

the convergence rate and rheology in case of the relatively weak Alpine lithosphere 

(Figure 12).  These experiments demonstrate extremely high sensitivity of the models to 

the rheological parameters thus allowing for robust elimination of those thermo-

rheological profiles that are mechanically incompatible with the considered 

convergence scenario. Surprisingly, the models have demonstrated that some rather 

“classical” rheological choices such as that of all-quartz-rich crust are entirely 

incompatible with the dynamics of the Alpine collision (Figure 12) , hence  opening a 

new way of linking the laboratory derived rheology laws to geological scales.  Figures 

13,14 also show the impact of convergence velocity for the case of best fitting 

rheological structure derived for the Alps on the base of the experiments shown in 

Figure 12. It can be seen that very slow rates (< 3 mm.yr-1) result in Rayleigh-Taylor 

instabilities and slab-breakoff, while very high velocities, in case of weak lithosphere, 

(2x3 cm.yr-1) lead to development of unusual double-sided symmetric subduction. Also, 

the predicted exhumation rates are directly comparable with the observations thus 

allowing for elimination of incompatibly high convergence rates. The other remarkable 

results refer to the prediction that higher convergence rates result in slower UHP 

exhumation just until its complete disappearance at rates exceeding 30 mm.yr-1. This 
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result provides some elements for explanation why UHP rocks of continental origin are 

rare or absent in faster convergence settings such as Zagros or Himalaya. It can be thus 

once again concluded that the convergence rates and the integrated strength of the 

lithosphere are interlinked, probably because that higher convergence rate requires 

higher slab pull/push forces while such forces can be only exerted on the lithosphere if 

the latter is strong enough to sustain them.  

 

5.3.3. Intermediate (1.5  3 cm/myr) to fast convergence rates (>  3 cm/myr), 

intermediately strong (Te ~ 50 km) to strong  (Te > 70 km) lithosphere. Impact of 

convergence rate partitioning.   

We here discuss the inferences from the experiments (Supplementary Figure 2)  

studying the amount of continental subduction as function of convergence rate 

assuming strong cold lithosphere with Te values on the order of 70 km (e.g., Indian 

craton, Watts, 2001). Even for such a strong lithosphere, the experiments show 

significant dependence of the amount of subduction on the convergence rate, for 

equivalent amounts of tectonic shortening. In the experiments, the amount of 

subduction is characterized by “subduction number” S which is the ratio of the 

subduction length l  to the total amount of shortening x (S = l /x). l is measured as a 

plate-parallel displacement of a virtual vertical passive marker line (Supplementary 

Figure 2),  initially placed in the lower plate at some distance from the major thrust. 

That is, when S = 1, all of the tectonic shortening is accommodated by   subduction (in 

some cases S > 1 due to the additional stretching of the slab).  If  S < 1,  then some part 

of shortening is accommodated in pure shear or by folding of the lower plate.   As 

demonstrated by these experiments, S number approaches 1 (100% subduction) only 

for convergence rates > 3 cm.yr-1   (subduction Peclet number > 10).  At smaller rates, an 

essential amount of shortening is accommodated by pure shear thickening and partly by 

folding.  The physical reason for that is that at higher convergence rates, heat diffusion 

cannot affect  plate viscosity (and hence plate strength and buoyancy)  before the plate 

reaches an important depth.  At smaller rates heat diffusion results in plate weakening 

and buoyancy rise, which hampers the possibility of subduction.  

Francois et al. (2014)  have also studied the conditions of the intermediate rate 

Zagros collision (Figures 4-6,15,16), which some workers  regard as a “mini-Himalayan 
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collision” (Hatzfeld  and Molnar, 2010 )  due to  the fact that in both cases an old strong  

cratonic  plate slides below a younger  weaker overriding plate resulting in rise of an 

elevated plateau.  However, the similarities between these two collision zones probably 

do not go much further. In particular, the Iranian plateau is much shorter and lower 

than the Tibetan plateau,  has a pronounced elevation trend, even though it is subject, 

as Tibetan plateau, to significant extension in the direction normal to convergence 

(England and  Houseman, 1989); the Zagros mountain belt is also much lower than 

Himalaya, and it has been also suggested that relatively early slab break-off could have 

affected Zagros collision whereas in the Himalayan case slab break-off event did not 

probably take place (Toussaint et al., 2004a,b). The respective integrated strength of the 

Arabean plate (Te ~ 50 km) is also much smaller than that of the Indian plate (Te ~ 70÷90 

km), but both plates are much stronger than the Alpine lithosphere. Last but not least, 

the convergence rate in Zagros is about 2 times smaller than in Himalaya.   

Figure 15a-b  shows zooms to the subduction interface zone for the major stages 

of the evolution of the “Zagros collision” experiments from Figure 4 .  As  in Burov et al 

(2001)  this model shows formation of a crustal UHP “pocket” (Figure 3(e))  at 100-150 

km depth from which the rock can be eventually exhumed to the surface at rates largely 

controlled by local viscosity and density contrast (eq 7). Similar crustal “pocket 

exhumation mechanism” has been reproduced in a number of recent studies, for 

example by Li et al. (2009, Figure 15c) for HP-UHP Sulu terrain in eastern China.   As can 

be seen from Figure 15a, quite contrary to common expectations, several consequent 

slab-break-offs may occur before the exhumation of HP/UHP continental crust without 

producing major topographic response at the surface. It is also remarkable that oceanic 

HP/UHP material  is exhumed only at the onset of the continental collision, when it is 

pushed/dragged up by low buoyancy continental crustal rocks. Similarly, exhumation of 

small amounts of HP/UHP material occurs during the initial stages of collision (at 25Myr 

of model time).  Interestingly, the majority of exhuming HP/UHP rocks get stacked a few 

km below the surface. This explains the practical absence of UHP material in Zagros.  It 

can be also concluded that even if the presence of UHP material at surface can serve as 

indicator of subduction processes, its absence, on the contrary, does not prove the 

absence of such. Furthermore, it follows from these and previously shown experiments 

that only limited parts of possible P-T paths arrive at the surface, appealing for a 
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thorough study of their representativity for the bulk exhumation and collision 

mechanisms. 

 Francois et al (2014) have found that for intermediate and high convergence 

rates,  collision style is highly dependent not only on the total value of the convergence 

rate but also on the partitioning of the convergence rates between the overriding and  

subducting plate. The explicit presence of absolute advection velocity terms  (eq. 1; 

Appendix A) in the heat transfer equation explains the sensitivity of the  behavior of the 

thermo-mechanical system to the partitioning of the convergence rates between the 

two sides of the model. For example, applying total velocity at the border of the 

subducting plate enhances the amount of subduction and increases plate dip, while 

doing so at the opposite side of the model has an opposite effect. In these particular 

experiments, the difference between dip angles reached almost 40° at 20Myr (37%), 

from nearly 80° in case of convergence from the side of the subducting plate to about 

45° in case of convergence from the opposite side, with an intermediate value for 

double-sided convergence. This effect is contra-intuitive, since simple mechanical non-

inertial inertial system should be indifferent to distribution of absolute velocities at the 

borders (as in case of analog models). Yet, thermo-mechanical coupling changes this 

rule, since absolute velocities imposed at the borders define horizontal and vertical 

thermal advection rates, which, in their turn, affect the mechanical properties, thermal 

buoyancy and phase changes.  As a result, absolute velocity distribution matters, 

specifically because in nature  many collision zones are converging only from one side, 

e.g. the Himalayas. In some cases the absolute velocities are not as certain and hence 

evaluation of absolute tectonic movements represents a great challenge for the future.    

  

5.3.4. Strong lithosphere, various convergence rates 

Studies of fast continental collision (> 3 cm.yr-1; Toussaint et al., 2004a,b) of 

strong lithosphere have shown that for rapid convergence rates  and strong lower 

plates,    continental subduction, once initialized, may continue for  a very  long  period 

of time, i.e., practically for the entire life span of  convergence. However, in this case 

the impact of convergence rate cannot be treated separately from that of surface 

denudation/erosion/sedimentation processes. In fast collision zones, there should be a 

strong feedback between surface processes and tectonic forcing.  For pure-shear 
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collision settings this has been demonstrated by Avouac and Burov (1996) who have 

shown that stable growth of orogenic topography requires a strong feedback between 

the erosion rate and the tectonic convergence rate. If that feedback is not present, the 

orogenic topography tends to collapse. An even stronger impact  of surface processes is  

expected for continental subduction (Lavier and Steckler, 1997; Toussaint et al., 2004; 

Burov and Toussaint, 2007, Figure 17, Supplementary figures 3 and 4),  since 

sedimentary loading and erosional unloading have a primary effect on the force balance 

and integrated strength of the lithosphere (flexural yielding/unyielding, thermal 

blanketing etc) in the collision zone. In particular, excessive topography , if not timely 

removed, exerts closing pressure on the subduction interface, increasing plate coupling 

and  hence preventing  subduction (e.g., case S=0.8 and S=1.0, Figure 17). More 

surprisingly, very fast erosion (e.g., cases S=0.1, 0.21, 0.33,0.42, 0.5, Figure 17) also 

reduce the amount of subduction by producing dynamic unloading and hence elastic 

unbending of the subducting plate causing lock-up of the subduction interface. The 

experiments show that pure shear thickening or folding occur instead of simple shear 

subduction when erosion is either too strong (e.g., k>3000 m2.yr-1
 for convergence rates < 

2 x 2 cm.yr-1) , in that case any topographic irregularity is  “too”  rapidly erased by surface 

processes (Figure 17), or when erosion is too weak (k<50 m2yr-1). In case of slow 

erosion, surface elevations are unrealistically high (Figure 17,Supplementary figure 4) 

which leads to vertical over-loading causing flexural yielding of the lithosphere and 

growth of the frictional force along the major thrust fault. As a consequence, the major 

thrust fault is locked leading to coupling between the upper and lower plate; this results 

in overall buckling or folding of the region whereas the crustal root below the range 

starts to spread out laterally with formation of a high flat "pancake-shaped" 

topographies. On the contrary, in the case of a dynamic balance between surface and 

subsurface processes (e.g., k=2000-3000 m2.yr-1, for convergence rates > 2 x 2 cm.yr-1  or  

k=500-1000 m2.yr-1  for convergence rates < 3 cm.yr-1 ) erosion/sedimentation results in 

long-term localization of the major thrust fault that keeps working  during 10 My. It is 

noteworthy that in the experiments with k = 500 – 1000 m2.yr-1 (moderate feedback 

between surface and subsurface processes), the major thrust fault and topography 

were almost stationary (Supplementary Figure 4). In case of a stronger feedback (k = 

2000 – 5000 m2.yr-1) the mountain range and the thrust fault migrated horizontally in 
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the direction of the subducting plate (“India”). This generally happened when both the 

mountain range and the foreland basin reached some critical size. In this case, the 

“initial” mountain range and major thrust fault were abandoned after about 500 km of 

subduction, and a new thrust fault, foreland basin and range were formed “to the 

south” (i.e. towards the subducting plate) of the initial location. The numerical 

experiments confirm the previous ideas that intercontinental orogenies could arise from 

coupling between surface/climatic and tectonic processes, without involvement of 

special mechanisms of strain localization (Burov and Avouac, 1996). Last but not least, 

the experiments shown in Figures 17-18 also test the influence of eclogite UHP facies 

and the possibility of their exhumation as a function of erosion and convergence rate 

(assuming 100% transformation of crustal material to eclogites at corresponding P-T 

conditions. The experiments suggest that this transformations occurs at much deeper 

depths in case of fast convergence settings so that subducting  crust remains too cold  

(for UHP  phase transition) even at important depth, thus leaving less chance for  

exhumation of the UHP rocks. Yet, exhumation does take place in cases when the 

subduction interface zone thickens and becomes large allowing for great volumes of 

light crustal material to delaminate from the mantle and flow back to the surface 

dragging up  UHP material  (e.g., case S=1.1., Figure 17). It has to be also stated that 

eclogitization has little effect on the development of subduction. 

 

5.4. Fast convergence, influence of the thermo-rheological structure 

We here summarize the results of numerous experiments (Figures 18-19) that 

tested the influence of rheological structure on the amount of subduction and collision 

style in most favoring fast convergence settings (2 × 1.5 cm.yr-1 ). These experiments 

reveal several  types of collision scenarios as a function of the thermotectonic age 

(geotherm, also characterized by temperature at Moho depth, Tm) and rheology profile: 

 

5.4.1. Cold geotherm (Tm < 450 °C, “jelly sandwich” rheology) 

An initially cold geotherm allows the collision to evolve into stable, oceanic-type 

subduction (Figure 18a, thermo-rheological profile “C1”, Figure 17 case S=1.1, 

Supplementary Figure 3 ). Almost all shortening is accommodated by subduction both of 

the continental lower crust and mantle. Because of low Moho temperatures, the lower 
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crust is highly resistant to decoupling and remains “welded” to the lithospheric mantle. 

It can be dragged to as deep as 250 km depth in spite of its positive buoyancy. However, 

the mechanical resistance of the major part of the upper crust remains lower than the 

buoyancy-induced stresses. It separates from the lower crust and remains at surface or 

mid crustal depth at an early stage, only small amounts of the upper crust are dragged 

to larger  depth. In these experiments, crustal material is brought down to significant 

depths (>> 120 – 150 km), allowing   UHP and HP metamorphism to develop in the 

conditions devoid of significant over-pressure (Figure 18b). These experiments closely 

resemble those from (Toussaint et al., 2004b) that modeled India-Asia collision. 

Supplementary Figure 3 shows the formation of large-scale thrust-and-fold structures 

that result from crust-mantle decoupling and resemble those typically observed in the 

field. This process explains the eventual complexity of the P-T-t paths, with a limited 

amount of UHP material exhumed at the beginning of subduction. 

 

5.4.2. Intermediate geotherm (Tm = 450–600 °C, “jelly sandwich” rheology) 

Stable subduction of the lithospheric mantle results in decoupling of  the lower 

crust  from the mantle (Figure 18a, thermo-rheological profile “C”). For intermediate 

geotherms, shortening is still largely accommodated by subduction, but positively 

buoyant lower crust separates from negatively buoyant lithospheric mantle and 

stagnates at some intermediate level (between 100 and 200 km depth), sometimes 

forming a double crustal zone (a possible analogy are the Northern Apennines, Ponziani 

et al., 1995). The crustal part of the subduction interface is divided into an accretion 

prism and a lower crustal “pocket” (Burov et al., 2001).  The geometry of the downgoing 

lithospheric mantle is affected by the ascent of the buoyant lower crust: the slab adopts 

a very low angle of subduction. As a consequence, the oceanic slab  detaches early and 

sinks into the mantle. Small-amplitude (1000 m) long-wavelength (350–400 km) 

lithospheric folding also accommodates some part of the shortening, specifically in the 

upper plate. The crustal material is brought down to 100 – 120 km depth allowing for 

UHP and HP metamorphism. 

 

5.4.3. Hot geotherm (Tm = 600–700 °C, “jelly sandwich” rheology) 
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 Subduction and pure-shear thickening (Figure 18a, thermo-rheological profile 

“C-1”) are the results of collision under the conditions of a hot geotherm. At a Moho 

temperature of 650°C, pure-shear thickening and moderate-amplitude (1500 m) 

lithospheric folding (wavelength 200–250 km) accommodate a significant part of 

shortening. This behavior is a result of thermal weakening of the lithosphere, which 

makes volumetric thickening mechanically easy. The base of the overriding lithospheric 

plate is also weakened and can be dragged downward with the sinking lower plate. The 

crustal material basically does not arrive to depths larger than 60-80 km, except for very 

early stage of subduction (first 5 Myr). Hence, formation and exhumation of HP/UHP is 

possible only at the very beginning of subduction.   

 

5.4.4. Very hot geotherm (“jelly sandwich” rheology) or weak mantle (“crème brulée” 

rheology, Tm > 750 °C for weak lower crust and dry olivine mantle, or Tm > 600 °C for 

wet or dry diabase lower crust and wet olivine mantle) 

 Pure-shear thickening and RT instabilities (Figure 18a, thermo-rheological 

profiles “D” and “B” dubbed “crème brulée” (Burov and Watts, 2006) result from very 

hot geotherms. For such a hot, weak lithosphere, stable subduction (hence HP/UHP 

exhumation) and lithospheric folding are impossible:  convergence at the borders is 

entirely accommodated by pure-shear thickening and RT instabilities. Because of high 

temperatures, the effective viscosity at the base of the lithosphere is reduced compares 

to clder modelss, whereas its density is still higher than that of the asthenosphere; 

these two factors promote rapid (in <1 m.y.) development of RT instabilities. The slab 

thins in a “chewing gum” fashion, and a “cold spot” forms (possible natural examples: 

Vrancia body in the Romanian Carpathians, e.g., Wenzel, 2002; Cloetingh et al., 2004). 

The rate of “subduction” in this case is not controlled by the convergence rate but by 

the internal growth rate of the RT instability. We dubb this style of deformation  

“unstable subduction.” In the conditions of these experiments, the crust is not brought 

down to depths  below 40 km . Hence, HP/UHP metamorphism is impossible in this 

case. 
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5.5. Case of strong lower crustal rheology 

The experiments of the previous section (shown in Figure 18a) were repeated 

assuming strong dry diabase rheology (Table 1b) for the lower crust. The resulting end-

member scenarios (stable subduction vs. unstable subduction) are roughly the same as 

in the previous experiments. Yet, there are some noticeable differences in the 

intermediate cases. 

 

5.5.1. Cold lithosphere  

For experiments with very cold lithospheres (Tm < 450 °C), the convergence 

produces stable subduction. However, the results of these experiments differ in many 

ways from homologue experiments with “weak” (undried granulite) lower crust. In 

particular, subduction involves the entire continental crust, including the upper crust 

and its sedimentary rocks. The lithosphere also has a much higher tendency for folding 

while the predicted topography is 20-30% higher than in the experiments with weak 

lower crust. 

 

5.5.2. Intermediate thermal gradients in the lithosphere 

For higher Moho temperatures (Tm = 450–750°C), stable subduction is 

progressively replaced by pure-shear thickening and by large-scale lithospheric folding. 

Folding is favored by a stronger rheology of the lower crust, which ensures its 

mechanical coupling with the lithospheric mantle and has a positive effect on the 

growthrate of folding istability. Note that for the same temperature range, but for a 

weak lower crust, subduction was a dominant mechanism of deformation. 

 

5.5.3. Very hot lithosphere 

The results of very “warm” experiments (Tm > 750 °C, case D, Figure 18a) are 

similar to the corresponding experiments with weak lower crust (case B, Figure 18a) 

from the previous section (no subduction), despite the fact that the integrated strength 

of the lithosphere in this case is the same in case C-1  from Figure 18a. Therefore, it can 

be concluded that strong mantle lithosphere is a paramount condition for continental 

subduction and, consequently, for formation and exhumation of HP/UHP rocks. These 

results showing that strong crust cannot “replace” strong mantle in subduction 
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mechanics  can be easily interpreted:  different than the  mantle lithosphere, the lower 

crust is positively  buoyant. It cannot subduct by its own, without being dragged by a 

negatively buoyant strong mantle. If such strong mantle layer is absent, the crust will 

not subduct.  

 

 

 

5.6. Summary of the results concerning the role of LP/MP/HP metamorphic phase 

changes and fluids in subduction processes 

Metamorphic phase transformation have potentially weakening impact on 

crustal rheology (e.g., Wassmann and Stoeckhert, 2013) and, hence, on subduction 

evolution reducing mechanical coupling between the subducting and the overriding 

plate (Gerya et al., 2008; Angiboust et al., 2012). The role of low or medium grade 

metamorphism is essential for weakening of the subduction interface by creating or 

propagating weak shear zones at lithospheric scale. The low-grade facies have very low 

rheological strength, which lubricates  the subduction interface controlled by the 

formation of the localized shear zones. In oceans, serpentinite layers forming at crust-

mantle interface and fluid release due to its dehydration at depth play a major role in 

weakening of the subduction channel allowing for stable subduction (Faccenda et al., 

2009a).  

The major effect of UHP metamorphic changes (eclogitisation) is that it   better 

decouples the subducting and the overriding plate and results in a steeper subduction 

angle of the continental slab. The experiments suggest that eclogite phase changes do 

not significantly improve the chances for “normal” subduction: when the Moho 

temperature exceeds 550-600 °C (temperature of onset of UHP metamorphism), 

subduction is not a dominant mechanism, whatever the degree of eclogite 

metamorphism is. This statement is valid for the commonly used assumption that 

eclogite has a weak rheology (about the same as quartz rheology) , which was used in 

most experiments. Any assumptions on the badly constrained eclogite rheology may be 

questioned while the degree of eclogitization may also vary in a wide range. Additional 

experiments hint that the assumption of strong  eclogite rheology (such as that of dry 

granulites) would be equivalent, in terms of the mechanical behavior, to additional slab 
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pull, improving the chances for continental subduction with an effect that is equivalent 

to the assumption of a colder denser plate with Moho temperature of about 150-200°C  

lower  than in the reference case.  

 

5.7. Exhumation of metamorphic terranes and their impact on subduction cycle 

In the previous sections, we have considered a general scenario  in which 

continental crust subducts as a part of large-scale continental collision. However,  a 

number of situations exist in which continental crust can be buried with the oceanic 

lithosphere. This refers to subduction of relatively small continental terrains embedded 

within oceanic plate, which further exhumation gives birth to formation of the 

impressive high-pressure (HP) metamorphic belts that comprise rocks   regurgitated to 

the Earth’s surface from depths of up to 150 km (Tirel et al., 2013 and references 

therein). In the intensively studied Aegean back-arc domain in the Mediterranean 

(Figure 20), the origin of diverse HP belts appear to be  related to the continuous 

subduction of the same African lithospheric plate, which indicates that their exhumation 

is a transient and recurrent process (Tirel et al., 2013 and references therein). Here we 

discus    thermo-mechanical numerical experiments that test  this idea and show  that 

successive subduction of multiple continental blocks—and the associated variations in 

slab buoyancy and rollback rate may be  responsible for the episodic rollback-

exhumation cycles. In these experiments, a  single self-consistent model reproduces the 

major structural patterns and pressure-temperature-time (P-T-t) paths of the HP rocks 

in different parts of the Aegean and elucidates a new fundamental mechanism of HP 

exhumation. 

Structural complexity of subducting oceanic plates, in particular the presence of 

small continental blocks within them, influenced the Tertiary evolution and rate of 

retreat of the subduction zones in the Mediterranean; it must also have had an effect 

on the HP rock burial and exhumation cycles  (Figure  20). The Aegean’s three main 

continental blocks—Adria, Pelagonia and Rhodopia—were once separated by the 

Pindus and Vardar Oceans, their closure recorded in the Pindus and Vardar Suture 

Zones (Figures 20a and 20b). Following the Vardar Ocean closure, Pelagonia subducted 

below Rhodopia, with the thrusting ending at 60-55 Ma. In the middle Eocene, after the 

Vardar suturing was complete, Pelagonia and the oceanic blueschists of the Cyclades 
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began to exhume. With the Pindus Ocean now subducting, Pelagonia and Rhodopia 

underwent extension since 45 Ma, and high-temperature (HT) core complexes 

developed in northern Greece and southern Bulgaria.  

The eclogites and blueschists in the northernmost Cyclades Islands derived from 

Pindus oceanic material and were exhumed in two stages, first from the mantle to lower 

crustal depths (at 45-37 Ma) and then up to the upper crustal depths (30-14 Ma) (Fig. 

20c). The blueschists atop Adria’s granitic basement were subducted below Pelagonia 

up to the middle Eocene in the Cyclades and up to the Oligocene in Peloponnese and 

Crete, where they recorded pressures of up to 17 kb around 26 Ma and reached upper 

crustal depths around 12-10 Ma (Fig. 20d). 

Upon the second, late-Oligocene stage of their exhumation—during the 

subduction of the Mediterranean oceanic lithosphere—the HP rocks of the Cyclades, 

Peloponnese and Crete formed a flat-lying domain of HP metamorphic rocks, over 250 

km in width (Fig. 20b). Since 15 Ma, the entire Aegean domain was affected by 

distributed extension, with deposition of sedimentary basins. 

P-wave tomography  shows that the docking and subduction of continental 

blocks in the Aegean are related to the subduction of a single lithospheric slab. We thus 

assume an initial geometry with an already initiated oceanic subduction and with two 

blocks of continental crust located on the subducting plate, each destined to be 

accreted to the overriding plate in the course of the experiment (Figure 21).  In this 

model,  subduction is unforced, i.e. driven  by the slab pull force while the opposite 

sides of the plates are attached to the model walls. This assumption is realistic because 

both European and African  lithosphere represent  very large continental blocks,  which 

far field dynamics would not be affected by a small subduction zone. 

Figure 22a shows the step-by-step evolution of the model at the upper-mantle 

scale. Two continental blocks are subducted and then exhumed one after the other 

during the continuous retreat of the subduction zone. It is noteworthy that the 

subduction of a continental block induces an increase in the slab dip angle and a 

decrease in the subduction velocity, due to the change in slab buoyancy. The slab, 

heated by the hotter ambient mantle, breaks at its weakest points, the former location 

of the continental blocks (such slab break-off is not seen in the tomography at this 

location3, but it has little effect on HP exhumation).  
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Structural development associated with the two subduction-exhumation cycles 

is summarized in the key snapshots in Figure 22b. Pressure-temperature (PT) paths 

through time (t) of material points within the block 2 are illustrated using coloured 

markers (Figures 22b, 22c). At the onset (6.1 Ma), the subducting slab drags down the 

tip of the overriding plate, inducing asthenospheric ascent below the extending 

overriding continental lithosphere. Extension is driven by slab rollback, caused by the 

negative buoyancy of the slab. The subducting continental block reaches HP-UHP 

metamorphic conditions and is progressively delaminated from the mantle lithosphere, 

as it is thrust beneath the accretionary wedge. Despite the deep burial, continental-

crust rocks remain cold, partially insulated from the warm asthenosphere by the 

lithospheric-mantle material of the upper plate that is being dragged down. The 

delaminated rear part of the subducting block then moves back to the surface along an 

extensional detachment that reactivates the suture zone, while the front part continues 

to move downward (12.3 Myr), to be exhumed later. When back to the surface, the 

crustal block is delaminated completely from the underlying lithospheric mantle, and 

the asthenosphere flows into the wedge that opens (36.6 Myr). During the exhumation 

process (6.1– 36.6 Myr), the block-scale deformation mimics one step of a caterpillar 

walk, with the block’s tail slipping along a basal décollement, approaching the head and 

making a large buckle, which then unrolls as soon as the entire block is delaminated. 

This caterpillar walk process is accommodated structurally, first, by stacking of thrust 

slices at the rear of the block and, then, by extensional detachment at the rear when 

the thrusting reaches the front of the block. When exhumed completely, the block 

undergoes extension almost along its entire length.  It is noteworthy that small slices of 

oceanic lithosphere that are thrust on top of the continental-block rear are then 

exhumed together with the continental block. These oceanic slices correspond to 

ophiolites that undergo HP-UHP metamorphism prior to their thrust emplacement atop 

continental crust at the surface.  

When block 2 enters the subduction zone, it undergoes subduction and 

exhumation as block 1 before it (36.6-70.4 Myr). The ascent of the asthenosphere due 

to the slab-dip increase causes strong heating and thermal weakening of the first, 

exhumed continental block. Consequently, the exhumed block 1 undergoes extension 

during the exhumation of block 2, with extensional reactivation of thrust faults and 
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development of high-temperature (HT) metamorphic core complexes (MCC). The yellow 

marker (Figure 22) shows that this isobaric heating can reach 700°C beginning at about 

10 kbars. Pervasive flow in the middle and lower crust accommodates considerable 

stretching, with the Moho remaining flat. 

The modelled deformation sequence during the subduction-exhumation cycle of 

a continental block (Figures 22 and 23) shows remarkable similarity to the evolution of 

the blueschists and eclogites of the Adria block (Figure 20): i) thrust emplacement of HP 

ophiolites on top of continental crust at the block rear is observed in the northwest 

Cyclades; ii) the stacking of thrust slices starting at the block rear and propagating 

frontward directly corresponds to the thrusting in the middle Eocene in the Cyclades, 

ending in the Oligocene in the external Hellenides; iii) block exhumation accommodated 

by the extensional reactivation of the suture zone—coeval with the last stages of the 

thrusting at the block front4 —is illustrated by the reactivation of the Vardar suture 

zone at the front (relative to its entrance in subduction) of the Adria block (Figure 20); 

iv) partial melting and HT core-complex development in the exhumed block is observed, 

for example, in Naxos, central Cyclades, pervasive flow in the lower crust associated 

with the MCC development in the Cyclades is evidenced by seismic anisotropy; vi) 

distributed extension of the exhumed block is seen in the widespread development of 

sedimentary basins across the Aegean since the late Miocene; vii) the modelled PTt 

paths closely match those observed in the northern Cyclades (including the isobaric 

increase of temperature at the Adria block front; Figure 20c) and in Peloponnese (Adria 

block rear; Figure 20d).  

These numerical experiments show that the subduction of small continental 

blocks, as documented in the Mediterranean, is followed by  rapid exhumation of HP 

metamorphic belts, driven, fundamentally, by slab rollback. Because it is the space 

created by the trench retreat that allows the block to reach the surface, the rate of the 

exhumation of the block depends on the velocity of the trench retreat. During the entire 

process, the block delamination (by thrusting) and exhumation are driven by the 

buoyancy of the crust. Tectonically, exhumation promoted by slab rollback invokes 

extensional reactivation of a suture zone and accounts for the emplacement at the 

surface of HP rock units with a horizontal envelope at regional scale that keep their 

lithological-stratigraphical continuity over long distances (several hundred kilometres) 
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along the direction of trench retreat. Our results also cast doubt on the view that HP 

rock exhumation must occur during continental collision. Subduction of a small 

continental block that rapidly returns to the surface as subduction continues does not 

indicate, strictly speaking, a collisional setting. This may have been difficult to establish, 

until now, due to the fact that HP units exhumed in this way are often squeezed, 

subsequently, in a continental collision zone. 

 

5.8.    3D configuration of plate boudnaries and UHP exhumation 

Deviations from  2D cylindrical geometry may result in sometimes strong spatial 

variations of the subduction and UHP exhumation conditions. One of the evident 

examples refers to the Himalayan syntaxes (Chemenda et al., 1995) where deep 

structures and geodynamic conditions are very different from those in the Central 

Himalayas. Few models have investigated so far the effect  of 3D geometry on 

continental subduction (e.g., Li et al. 2013, Figure 24) to show, in particular,  the 

possibility of lateral propagation  of  the  tearing of the  slab   leading to spatially  

progressive along-strike exhumation of the subducted continental crust. The 3D effects 

can also include along-strike corrugations of the subduction interface and hence to 

spatially periodic or punctual UHP exhumation.  

 

6. Discussion and Conclusions 

 

(1). The numerical experiments discussed here show that subduction processes 

can result in the formation and exhumation of HP/UHP terranes for physically 

reasonable parameter ranges.  When subduction takes place, the UHP P-T-t data can be 

decoded in terms of the exhumation depths within 10-20% accuracy from lithostatic 

pressure gradients. Yet, the presence of UHP rocks can be regarded as solid evidence for 

subduction only in association with subduction-compatible PT/PTt data and structural 

evolution, and under condition that the UHP assemblages are statistically 

representative for the targeted area. In this study we have discussed application of 

subduction models to the Alps, Zagros and Himalaya. A lot of observational work on the 

UHP rocks has been done in a number of other orogens such as in Dabie (e.g., Hacker et 

al., 2004), Norway (e.g., Kylander-Clark et al., 2009), Kokchetav (Hacker et al., 2003), 
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where the presence of UHP terranes and mechanisms of their exhumation may 

eventually receive a different interpretation, even though, at a first glance, all these 

areas can be treated in the framework of the subduction hypothesis.  It cannot be 

excluded that at some stages of collision evolution, various (tectonic or local) 

overpressure mechanisms can affect formation of the UHP rocks.  However, the all 

overpressure hypotheses need  to be tested through complete regional modelling 

approach, so that the adequate models should  reproduce all stages of   burial and 

exhumation of the UHP material while generating realistic  PT/PTt paths, surface and 

geotectonic evolution.  

(2). The possibility and duration of the subduction phase  is mainly conditioned 

by the convergence rate and thermo-rheological structure of the crust and lithosphere 

(e.g., Figures 12-13 and 18-19) that have major control both on the possibility of 

subduction and exhumation. The experiments suggest a wide variety of collision 

scenarios. Sustainable continental subduction and  HP-UHP exhumation is possible only 

in the case of a relatively strong mantle lithosphere (Moho temperatures below Tm < 

550-600°C) and relatively fast initial convergence rates (> 1-3  cm.yr-1  < 10 cm.yr-1). Yet, 

only a small portion of UHP material probably exhumes to the surface, while large UHP 

volumes can be formed at depth.  For hot  (Tm > 650°C) or slow convergence settings (< 

1 cm.yr-1) continental subduction is possible as follow-up of the oceanic subduction 

stage and  represents a transient process that lasts less than 5-10 Myr. It probably ends 

after the slab break-off (Yamato et al., 2008).    

(3). It can be overall concluded that the convergence rates and the integrated 

strength of the lithosphere are interlinked (Figure 19), since higher convergence rates 

require higher slab pull/push forces while such forces can only be exerted if the 

lithosphere is sufficiently strong to sustain them.   

(4). A rather counter-intuitive finding refers to the dependence of the 

convergence style (slab dip, time of slab break-off, eventually amount of subduction) on 

the partitioning of the absolute convergence velocities at the borders of the convergent 

zone (Figure 16).  These results emphasize the importance of elucidation of absolute 

plate tectonic movements and sub-lithospheric mantle flow directions. 

(5).  The exhumation of HP/UHP material might be most favoured during the  

initial stages of continental subduction and is eased by slow convergence settings  (< 2 
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cm.yr-1) , which is rather in the lower limit of the convergence rate range favoring 

subduction.  There is, hence,  a trade-off between the range of convergence rates 

favoring subduction and the range of the convergence rates favoring maximal amounts 

of exhumation. It can be therefore also proposed that exhumation of the oceanic UHP 

rocks occurs during the transition from the oceanic to continental subduction phase, 

when the subduction slows down (eq. 9)  and the UHP rocks can be effectively dragged 

to the surface by positively buoyant delaminated continental crustal units. 

 (6).  The exhumation of UHP units is a poly-phase process driven by  different physical 

mechanisms occurring at the subduction interface zone: (1) the LP and MP rocks are  

exhumed by a  classical accretion prism mechanism and erosion; the final stages (above 

40 km depth) of HP/UHP exhumation also take the same path; (2) within the HP/UHP 

depth interval,  small-to-middle sized HP and UHP terranes can be  largely exhumed by 

buoyancy,  within partly metamorphosed low-density crustal units, slices  or melanges, 

as a result of RT instabilities and small-scale convection and viscous drag in the deep 

“crustal pockets” created due to separation of the subducting crust from the mantle 

below  80-120 km depth. Large UHP terranes can be exhumed by buoyancy,   within 

large multi-decakilometer blocks of intermediate or lower crust that delaminate from 

the mantle lithosphere and are additionally pushed to the surface by tectonic forces 

(e.g., Figure 10, Yamato et al., 2008). One can suggest that deep exhumation is  mainly 

conditioned by viscosity  and buoyancy within and around the metamorphic bodies.  

Since  metamorphic reactions are activated by fluids, which presence is not always 

granted during  the burial path, some UHP material may form only during exhumation.   

 (7). UHP exhumation may occur in slab-roll back context when oceanic 

lithosphere embeds one or more continental terrains (Tirel et al., 2013).  Successive 

subduction of continental terrains  results  in  pulsating regime, with periodical roll-

backs and episodes of exhumation. Sliding of the blocks one below the other may 

results  in  versatile metamorphic evolution , for example,  simultaneous exhumation of 

cold and hot rocks.  

(8). 3D geometries of plate boundaries  may have strong  impact on timing and 

localization of exhumation of UHP terranes.    
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FIGURE CAPTIONS 

Figure 1. Possible collision scenarios: (A) unstable (Rayleigh-Taylor) pure or simple shear 

instability;  (B) pure shear in  stable mode and (C) unstable mode (folding); (D) simple 

shear in stable mode (subduction).  Related large-scale parameters characterising 

collision style, lithospheric strength and rheology: Te,, F, , u, De, m, h, L, , Te is 

equivalent elastic thickness. F, , u are respectively the horizontal force, stress and 

convergence/extension velocity, that are linked to the lithospheric strength and 

possible deformation styles. De and  mare respectively Deborah number and relaxation 

time related to viscosity contrasts in the lithosphere. is the characteristic wavelength 

of unstable deformation related to the thickness of the competent layers in the 

lithosphere. h, L are respectively the vertical and horizontal scale for process–induced 

topography supported by lithospheric strength, Argand number Ar = ghL/F.  is 

subduction or major thrust fault angle that is indicative of the brittle properties and of 

the overall plate strength.  

 

Figure 2. Oceanic subduction versus continental subduction.  Oceanic subduction is 

favoured by several factors such as fast convergence rate, negative buoyancy, high bulk 

plate strength, flexural plastic hinging (yielding) , serpentinisation of the crust-mantle 

interface,  hydration of the mantle wedge and shear heating. Many of these factors are 

absent in case of continental subduction which is disfavoured by  overall positive 

buoyancy of the lithosphere, slow convergence (leading to additional thermal buoyancy, 

mechanical weakening and rapid slab break-off) and the lack of lubrication of the 

subduction interface. One of the frequently evoked (possibly important) factors 

favouring continental subduction refers to metamorphic (LP/MP/HP) reactions leading 

to weakening of the subduction interface and the UHP eclogitisation of the crust 

(leading to negative buoyancy) and low ductile strength of the intermediate and lower  

crust. 

 

Figure 3a. Global distribution of UHP terranes recognized in continental subduction 

zones (coesite or diamond bearing). Modified from Zheng (2012) and Liou et al. (2009). 
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Figure 3b. Pressure–temperature paths of UHP terranes (after Kyalander et al., 2012). 

Large (Big), slowly formed terranes in red/orange define a region (pink) with higher 

overall temperatures than the small (Small), slowly formed terranes (blue and green). 

The Kokchetav terranes is not associated with a group and shown in grey.  The numbers 

in legend correspond to the references in Kyalander et al. (2012). 

 

Figure 3c. Various exhumation/collision concepts  linked to different ideas on collision 

mechanics: (A) classical accretion prism mechanisms for LP-LT to MP-MT conditions 

(Davis et al., 1983; Dahlen, 1990; Dahlen and Suppe, 1988); (B) Thrusting model, 

superimposed here onto accretion prism mechanism (LP-LT to MP-MT conditions, e.g., 

Jolivet et al., 1994); (C) Mancktelow’s (1995) “rocket nozzle” dynamic overpressure 

model (LP to UHP conditions, Mancktelow, 1995); (D) rigid block UHP exhumation 

model (Chemenda et al., 1995); (E) multi-stage soft crust exhumation model (LP to UHP 

conditions, high or low degree of metamorphism, or high or low density of the 

metamorphic grades, Burov et al., 2001) that may be combined with the hot channel 

mechanism suggested  by  Gerya et al. (2008); (G) “eduction” model, in which the 

subductiong plate  rebounds after  slab break-off  bringing crustal volumes back to the 

surface (Duretz et al., 2012).  

 

Figure 4. Representative model setup (e.g., Francois et al., 2012; 2013). The experiment 

starts from the oceanic subduction that transforms into continental collision / 

subduction. The upper boundary condition is a free surface combined with surface 

erosion and sedimentation in case of continental lithosphere. The bottom boundary 

condition is pliable Winkler basement. The lateral boundary conditions are velocities. 

The brittle-elastic-ductile rheology is different for the upper crust, lower crust, mantle 

lithosphere, slab, sediments, asthenosphere and deep mantle (Table 1, Figure 5). The 

model eclogites have the same (weak) rheology as the upper crust,  but  higher density 

(up to 3400 kg/m3).   The crustal lithological and rheology profile  that assumes mafic 

lower crust is consistent with seismic and gravity data. This assumption may not be 

generally valid, however (Hacker et al. 2011). 
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Figure 5. Representative thermal and rheology profiles for continental lithosphere as 

function of thermo-tectonic age. EET = Te is Equivalent Elastic Thickness, directly 

measurable proxy (from isostatic observations) to the integrated strength of the 

lithosphere. Initial geotherms (left) and associated rheological strength profiles (middle 

and right) are computed for lithosphere with a 40-km-thick crust, deforming at a strain 

rate of 10–15 s. Middle (1): Weak lower crust. Right (2):  Strong lower crust. Black line: 

cold lithosphere (thermotectonic age = 450 m.y., TMoho = 400 - 450 °C); black dashed 

lines: intermediate lithosphere (150 m.y., 550 °C); gray line: hot lithosphere (75 m.y., 

650-700 °C); gray dashed line: very hot lithosphere (25 m.y., 1000 °C). Note also that the 

maximal strength of the mantle lithosphere is limited by Peierls flow law when the 

predicted dislocation or brittle strength is higher than Peierls strength. 

 

Figure 6a.  Example of implementation of a numerical collision model (see Figure 4) that 

starts from the oceanic subduction phase with progressive transition to continental 

subduction (Zagros collision settings) after slab-break off (Francois et al., 2012). The 

figure shows finite strain distributions during the oceanic subduction phase 

demonstrating extreme strain localization around the slab and at the LAB.  The model 

lithosphere is shortening with a rate of 4 cm/y on both sides. 

 

Figure 6b.  Progressive transition from oceanic to continental subduction  in the 

experiment similar to the one shown in  Figure 6a, with same total convergence rate of 

4 cm/yr. Note earlier slab break-off at 6.5 Myr.  Shown are the logarithm of the effective 

viscosity (ratio of shear stress to strain rate) and surface topography. The star symbol 

corresponds to the slab break-off zone, and the number near the star – to the number 

of break-off event  (there are three consecutive slab break-offs in this experiment).   

 

Figure 7. Oceanic phase of Alpine convergence: example of self-consistent  subduction 

experiments (Yamato et al., 2006), for the case of an oceanic plate subducting below a 

160 Myr old continental lithosphere. This experiment implements thermo-dynamically 

consistent phase changes. Densities for all material phases are computed using the 

algorithm THERIAK (de Capitani, 1994; Table 1, Appendix). Squared zones show the 

position of zoom area shown in Figure 8. Shown at the bottom are the assumed 
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rheological profiles, for the continental (left) and oceanic plate (right). The profiles were 

derived for the mentioned thermotectonic age under assumption of quartz-rich upper 

continental crust, diabase lower crust, and olivine mantle (Table 1). Olivine is used for 

the entire oceanic lithosphere.  

 

Figure 8. Zoom to the oceanic subduction interface, for the experiments shown in 

Figure 7. Marker field at 5 Myr  traces the movements of the particles, which allows us 

to trace P-T-t paths at each moment of time (bottom). In this model, exhumation of HP 

rocks was achieved at 10 – 13 Myr under assumption of low viscosity of the serpentinite 

layer. All markers used for the construction of the P-T-t paths were initially located in 

the normal (un-subducted) oceanic sediments  (the uppermost 2 km layer of the crust).  

The lower panel shows pressure distribution in the subduction channel compared to 

theoretically admissible upper and lower bounds (double lithostatic and half-lithostatic). 

Note less than 20% deviations from the lithostatic gradient. 

 

Figure 9. Example of two-phase flow version of the Alpine subduction (oceanic phase) 

experiments shown in figures 7-8 (Angiboust et al., 2012),  in which thermo-mechanical  

and themodynamic model is coupled with porous flow model (top) where  permebiality 

and viscosity are functions of strain rate, pressure and temperature. As can be seen, 

hydration/dehydration reactions result in strong changes of fluid content in the oceanic 

subduction interface zone. A  1-2% fluid content variation is sufficient to drop viscous 

strength by a factor of 10 . As result, the interface zone and the mantle wedge are 

essentially weakened allowing for stable subduction. This weak interface zone is re-used 

by the arriving continental lithosphere at the initial stages of the continental 

subduction. 

 

Figure 10. Thermo-dynamically coupled high-resolution model of continental phase of 

Alpine collision (Yamato et al. 2008) revealing fine details of subduction and exhumation 

mechanics in slow convergent context.  Marker regions of blue and grey colour 

correspond to initial sediments  (grey markers are those totally eroded after the 20 Myr 

of experiment). Red and orange markers correspond, respectively, to the upper crust 

and the lower crust. Green markers represent lithospheric mantle and black ones the 
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oceanic crust. Abbreviations: CC, continental crust; SL, accretionary wedge sediments of 

the “Schistes Lustrés”. The position of the “F point” in the sedimentary accretionary 

wedge is virtually stable as well as that of two other characteristic points (UCDP and 

LCDP, Upper and Lower Crustal Decoupling Points, respectively).   Note that within the 

pre-existing subjacent sedimentary accretionary wedge, sediments form a “rigid block”, 

which stays non-deformed and moves, by rotation, around the stable point F. This 

mechanism can explain why “Schistes Lustrés” found at this place in the Western Alps 

are dated from the oceanic subduction. The markers shown with  stars (CC1,CC2,CC3)  

correspond, respectively,  to the units of Dora Maira, Gran Paradiso, and to formerly 

surface unit currently buried at great depth. CC1 and CC2 are exhumed at surface at the 

end of the experiment (25 Ma) after traveling to a more than a 100 km depth (CC1). 

 

Figure 11. P–T–t paths of particles (passive markers) coming from the upper continental 

crust and comparison with the observed P–T paths of the Western Alps (experiment of  

Figure 10). Color and symbols as for GP: Gran Paradiso; DM: Dora Maira. See caption to 

Figure 10 for other notations. The experiments predict P-T trends that are very similar 

to nature, assuring that the models realistically reproduce subduction/collision 

dynamics.  Temperature shift of 100-150°C can be explained by underestimated 

contribution of shear heating.   

 

Figure 12. Influence of crustal rheology on the collision style in case of slow (6mm.yr-1) 

Alpine-type collision (weak lithosphere).  The general setup of experiments corresponds 

to that of Figure 10. Shown are morphologies for the models at 20 Myr for different 

crustal strength profiles. QD: quartz–diabase double-layer crustal structure  (upper and 

lower crust, respectively). QQ:   quartz–quartz double-layer crustal structure; DD: strong 

single-layer structure simulated by diabase.  Color code:  blue – mantle, orange – lower 

crust, yellow – upper crust, grey – asthenosphere and sub-lithosphere mantle. 

 

Figure 13. Morphologies of the Alpine (weak lithosphere with Te ~ 30 km)  collision 

models for different convergence rates. The general setup of the experiments 

corresponds to that of Figure 10 (shortening with a constant rate at both sides, the 

rheology profile corresponds to the top experiment “QD” – “QD” of Figure 12 ); colors 
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correspond to definitions of Figure 12.  Left: configuration after 5% of shortening 

(compared to the initial width of the box). Right: configuration at 20 Ma since onset of 

convergence.  As can be seen, high convergence rate promotes  sustainable subduction 

while at slow rate slab break-off and RT instabilities shorten the duration of the 

subduction stage. Color code: see caption to  Figure 12.  

 

Figure 14. UHP exhumation rates  for the experiments shown in Figure 13. Note that   

high convergence rates reduce exhumation rates until fully prohibiting UHP 

exhumation.  

 

Figure 15a.   Continental subduction experiments testing the case of  intermediate 

convergence rate of 2cm.yr-1 (Zagros collision model, Francois et al., 2012).  Shown are 

zooms to the subduction interface zone for the major stages of the evolution of the 

experiments from Figures 4-6.   Note formation of a “crustal pocket” at depth of 100-

150 that may eventually serve  as a source for HP or UHP exhumation. Color code:  

same is in Figure 4. See also (Figures 4-6).  SBO means “Slab break-off”. (There 

consequent slab-break-offs occur before the first exhumation of HP/UHP continental 

crust). Red arrows show the area of initial exhumation of metamorphosed HP/UHP 

oceanic material. Purple (violet) arrow shows the area of the first exhumation of 

HP/UHP continental crustal material. Note that oceanic HP/UHP materials exhumes at 

the onset of the continental collision, when it is pushed/dragged up by low buoyancy 

continental crustal rocks. It is noteworthy that most exhuming HP/UHP rocks get 

blocked just few km below the surface. Shown is material field (1 pixel – one grid 

element). 

 

Figure 15b.   Exhumation of the oceanic crust as  a result of the onset of continental 

subduction (top panels). The bottom panel shows corresponding PT-paths. See caption 

to Figure 15a for further details. 

 

Figure 15c.   Similar exhumation mechanism reproduced in the study by Li et al (2009) 

applied to Sulu terranes in eastern China. The authors    used   the term “sub-

lithosphere plume” for what Burov et al. (2001) have called “crustal pocket” – a deep 
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area of crustal underplating that serves as a source for eventually fast periodic HP/UHP 

exhumation (see also Figure 3(e)). Bottom panel – predicted PT paths. Shown is passive 

marker field (1 pixel – 1 marker, there are tens of  markers per grid element. The real 

grid resolution is coarser).  Color squares in the bottom panel correspond to the 

representative marker domains shown by the same symbols in the upper and middle 

panel.  

 

Figure 16. Importance of the boundary velocity partitioning (Zagros collision model, 

Francois et al., 2012).  The models inspired by Zagros collision settings (Figures 4-6,15) 

test the model sensitivity to the choice of partitioning of convergence velocities 

between the borders of the model. It is commonly assumed that distribution of 

velocities between the borders is of no importance in case of non-inertial systems. 

However, thermal coupling results in appearance of explicit advective terms in the 

energy equations describing the thermo-mechanical problem (Appendix). In additions, 

slab interaction with mantle wind may be also dependent on absolute slab velocity. 

Hence, the way how the velocities are distributed between the opposite borders of the 

model becomes highly important, specifically because the ductile properties are 

exponential function of temperature. As can be seen, applying  shortening velocity at 

one side of the model or at both sides changes the final amount of subduction and slab 

dip (hence also affecting the amount of slab roll-back and back-arc extension and the 

timing of slab-break off). These experiments illustrate the importance of exact 

knowledge of the absolute plate tectonic velocities in nature (absolute plate tectonics 

versus relative plate tectonics).  Color code:  blue – mantle, orange – lower crust, yellow 

– upper crust, red – oceanic crust, grey – initial material of oceanic subduction interface, 

purple – sediments. 

 

Figure 17. Interaction between surface erosion rate and tectonic convergence rate in 

fast collision settings (Burov and Toussaint, 2008), strong lithosphere (“Indian craton” 

type, the initial rheology profile is equivalent to that used for the experiments of 

Supplementary Figure 2). Green color indicates the eclogitized crust produced at the 

beginning of the experiment but later metamorphic changes are not shown with specific 

colors. Other colors are explained in caption to Figure 12. Surface erosion/deposition 
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rate has a major impact on the collision style and amount of subduction, specifically for 

high convergence rates u (up to 100% variation of the total amount of subduction). 

Summary of the results of the numerical experiments show the dependence of the 

“subduction number” S (S = amount of subduction to the total amount of shortening) on 

the erosion coefficient, k, for different values of the convergence rate (values are given 

for each side of the model,   k = 50, 100, 500, 1000, 3000, 6000 and 11000 m2.yr-1  ) . 

Note local maximum on the S-k –u for u > 1.75 cm.yr-1   and k > 1000 m2.yr-1. Numbers 

below the subducting plate correspond to the maximal number of subduction achieved 

in the corresponding experiment. As can be seen, the amount of subduction strongly 

depends on the degree of feedback between the tectonic forcing and surface processes, 

with more than factor of 2 difference between the cases of strong balance between the 

tectonic input and surface reaction and those characterized by strong misbalance. It can 

be seen that exhumation of initially buried UHP material is quite rare, as well as the 

later buried material also returns to the surface only in a few cases.   

 

Figure 18a. Summary of continental collision/subduction  styles predicted by numerical 

experiments, as function of rheology profile (Toussaint et al., 2004a,b; Burov and 

Yamato, 2008).  The tested rheology profiles incorporate either weak lower crust  

(experiments “C”),  or strong lower crust (“D” and “B”). Snapshots at 5.5 My, 

convergence rate 2 × 3 cm.yr-1. Moho temperatures are, respectively, 450 °C, 600 °C, 

650 °C (profiles C1, C, C-1), and 600 °C (profiles D and B). Profiles C correspond to dry 

olivine mantle, wet quartz-rich upper crust and wet diabase lower crust. Profile D 

corresponds to the thermo-rheological hypothesis of  Mackwell et al. (1998) that 

combines common wet quartz rheology for the upper crust with strong dry diabase 

rheology for the lower crust and a weak wet olivine rheology for the mantle. The profile 

C1 was used in Toussaint et al. (2004b) to model the initial stages of India-Asia collision 

(see also Figure 17). The length of arrows is proportional to material velocity. The insert 

shows the effective strain distribution for the central part of the “Indian” experiment C1 

superimposed with a ‘marker grid’  - a grid connecting markers initially placed at the 

nodes of the starting regular Lagrangian grid. Distortion of the “marker grid” illustrates 

relative displacement of different units and deformation in the subduction channel. 
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Figure 18b. Non-lithostatic pressure distributions for experiment C1  of Toussaint et al 

(2004a) shown in Figure 18a (left upper panel) at various amounts of subduction, dx 

(from 85 km to 460 km). Shown are horizontal total pressure profiles at depth of 50 km, 

which corresponds to the strong core of the lithosphere mantle everywhere outside the 

subduction channel. This depth is chosen as it represents targeted depth of 

overpressure models for UHP rocks (e.g. Petrini and Podladchikov, 2001). Overpressure 

(up to +50%) occurs in the upper crustal and mantle layer outside the subduction 

channel, which  undergoes only small  underpressures and overpressures at 50 km 

depth  (< 20% or 0.3GPa). It is noteworthy that this experiment presents an extreme 

case (very fast convergence), so the predicted deviations from the lithostatic pressure 

correspond to upper-bound values. The values of overpressure may be overestimated 

because of the use of the Byerlee’s law and kinematic boundary conditions and due to 

the neglect by shear heating (in these experiments). The subduction channel remains +-

20% lithostatic during almost 500 km of subduction, while its walls are exposed to 

moderate overpressures and under-pressures produced by flexural stresses  in the 

upper and lower plate.   

 

Figure 19. Graph showing dependence of the amount of subduction (before the slab 

break-off) on the convergence rate and the integrated strength (Te)  of the lithosphere 

according to the results of the experiments shown in Figures 13-18 , and those from  

(Yamato et al., 2008; Burov and Yamato, 2008; Yamato et al., 2009;  Sizova et al., 2012).  

 

Figure 20. Tectonic set-up of the Aegean and P-T-t paths of HP rocks  (after Tirel et al., 

2013). The three main continental blocks and other major features of the Aegean are 

shown in map view (a) and in cross-section (b), KD, VSZ, PSZ, NCD, NAF, TB are Kerdylion 

Detachment, Vardar Suture Zone, Pindos Suture Zone, North Cycladic Detachment, 

North Anatolian Fault and Thrace Basin, respectively. P-T-t paths are from northwest 

Cyclades, Tinos (point T) (c) and from Peloponnese (point P) (d). 
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Figure 21.  Setup for the model studying the impact of subduction of  continental  

terrains embedded in the oceanic lithosphere. In this experiment,  two continental 

terrains are considered (Tirel et al., 2013). Pliable Winkler hydrostatic basement  allows 

to  accommodate vertical flow associated with subduction. 

Figure 22. Step-by-step development of the subduction-exhumation cycles (after Tirel et 

al., 2013). (a), The evolution at the lithosphere-upper mantle scale (grey colour: 

subducting lithosphere mantle). Dashed line shows the retreat of the trench. (b), Zooms 

to block deformation during the subduction-exhumation cycle (here lithosphere mantle 

is marked with grey colour). Interpreted shear zones are plotted with white lines. (c), P-

T-t paths of the colour-coded markers shown in (b).  

Figure 23. Summary of the revealed relationship between the continental-block 

subduction and caterpillar walk exhumation, slab dip changes and crustal deformation 

(after Tirel et al., 2013). Numbers “1,2,3” indicate turning buckles in the caterpillar walk 

of the exhuming crustal blocks 

Figure 24.   3-D numerical model for the collision of continental corner with 

progressively decreasing convergence velocity (modified from Li et al., 2013). The slow-

down of the convergence results in slab-retreat followed by slab break-off and 

exhumation of continental crustal material.  (a,b) View from the oceanic subduction 

side. (c,d) View from the continental collision side. 
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APPENDIX.  Numerical algorithm 

1. Thermo-mechanical module 

The mixed finite-element volume/finite difference code FLAMAR (outgrowth of 

Paravoz by Poliakov et al., 1993) is based on the FLAC algorithm (Cundall, 1989). It 

solves simultaneously Newtonian dynamic equations of motion (A1), in a Lagrangian 

formulation, coupled with visco-elasto-plastic constitutive equations (A2), heat 

transport equations (A3) and state equation (A4) (see Appendix A, (Burov et al., 2001; 

2003; Burov and Yamato, 2008; Le Pourhiet et al., 2004) for details concerning 

numerical implementation).  

 

iji
i

j

Du
g

Dt x


 


      (A1) 

( , , , ,... ...)
D

F T
Dt


 u v v     (A2)

 

Cp (T/t + uT) – (kT) - Hr - Ha- fracIIII/t = 0  (A3)

 

 

   = f(P,T)     (A4) 

Here u, , g, k are the respective terms for velocity, stress, acceleration due to 

body forces and thermal conductivity. The terms t, , Cp, T, Hr, Ha , , fracIIII/t 

designate respectively time, density, specific heat, temperature, internal heat 

production, adiabatic heating/cooling term, thermal expansion coefficient and shear 

heating term moderated by experimentally defined frac multiplier (frac is set to 

conservative value of 0.1 in most experiments. It is noteworthy that some studies 

advocate for stronger efficiency of shear heating, advancing frac values on the order of  

0.9 (Thielman and Kaus, 2012).  However, in the absence of direct observational data we 

decided to keep frac at relatively low level). The terms /t, D/Dt, F are a time 

derivative, an objective (Jaumann) stress time derivative and a functional, respectively. 

In the Lagrangian framework, the incremental displacements are added to the grid 

coordinates allowing the mesh to move and deform with the material. This enables 

solution of large-strain problems locally using small-strain formulation: on each time 

step the solution is obtained in local coordinates, which are then updated in the large 

strain mode. Volume / density changes due to phase transitions are accounted via 

application of equivalent stresses to affected material elements. It is noteworthy that 
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the inertial term (first parameter in the equation A1) is negligible for geodynamic 

applications. It is retained here because the FLAC method is written in fully dynamic 

formulation. While modelling geodynamic processes this term is still present, yet for 

numerical reasons since FLAC then employs an artificial inertial dampening density 

allowing to slow-down the elastic waves and hence advance with much larger time 

steps (Cundall, 1989) than would be required in a fully inertial mode. 

Solution of (A1) provides velocities at mesh points used for computation of 

element strains and of heat advection uT. These strains are used in (A2) to calculate 

element stresses, and the equivalent forces are used to compute velocities for the next 

time step.  

All rheological terms are implemented explicitly. The rheology model is serial 

viscous-elastic-plastic (Table 1). The plastic term is given by explicit Mohr-Coulomb 

plasticity (non-associative with zero dilatency) assuming linear Navier-Coulomb criterion. 

We imply internal friction angle  of 30° , maximal cohesion S  of 20 Mpa, and  dilatation 

angle  of 0°, which fit best the experimental Byerlee’s law of rock failure (Byerlee, 

1978): 

 = S + n tg            (A5) 

where  is the shear stress and n  is the normal stress that accounts both for rock and 

fluid pressure. Linear cohesion softening is used for better localization of plastic 

deformation p (S(p)= S0 min (0, 1 - p/p0) where p0 is 0.01). Specific properties are 

applied to soft serpentinised rock (Hassani et al., 1997). 

 The ductile-viscous term is represented by non-linear power law with three sets 

of material parameters (Table 1) that correspond to the properties of four lithological 

layers: upper crust (quartz), middle-lower crust (quartz-diorite), mantle and 

asthenosphere (olivine):  

eff = 

(1-n)/n 

II

d

t

 
 
 

(A*)-1/n exp (H /nRT )   (A6) 
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d

t
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II
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IIInv
t

   
        

  is the effective strain rate and A*  =  ½A·3(n+1)/2 is the 

material constant, H is the activation enthalpy, H = Q + PV where Q is activation energy 

and V is molar volume, R is the gas constant, n is the power law exponent (Table 2). The 
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elastic parameters (Table 1) correspond to commonly inferred values from Turcotte and 

Schubert (2002).  

The surface processes are taken into account by diffusing (A7) the topographic 

elevation h of the free surface along x using conventional Culling erosion model (Culling, 

1960) with a diffusion coefficient kero. 

2 2

ero2 2

h h
k

t x

 


 
     (A7) 

This simple model is well suited to simulate fan deltas, which can be taken as a 

reasonably good analogue of typical foreland basin deposits. This model is not well 

adapted to model slope dependent long-range sedimentation, yet, it accounts for some 

most important properties of surface processes such as dependency of the 

erosion/sedimentation rate on the roughness of the relief (surface curvature).  

The fluid transport algorithm is based on an enhanced variant of Darcy’s flow 

approximation with strain-rate dependent permeability  (Angiboust et al., 2012). In this 

algorithm it is assumed that the fluid flux qf  is driven by fluid pressure gradient through 

a medium with dynamic permeability K, as follows:  

*

f flq K P    ,                                              (A8) 

where fluid pressure P*
fl is related to the non-lithostatic pressure δP through a 

fluid “saturation factor”  [H2O]/ [H2O]sat  as follows: 

* 2

2

[ ]

[ ]
fl

sat

H O
P P

H O
  ,       (A9) 

where [H2O] is the current water content (in wt.%) in the material for each element of 

the numerical grid and [H2O]sat is the maximum water content thermodynamically 

calculated for the same material  as a function of P-T conditions. The dynamic 

permeability K is defined as a function of the intrinsic permeability k, normalized strain 

rate and inversed viscosity of the fluid (Angiboust et al., 2012): 

0f

k
K



 
        (A10) 

where 

247.8

5 1402.414 10 10T
f

     and 14 1

0 10 s    are respectively 

temperature dependent experimentally defined fluid viscosity and reference strain rate.  

FLAMAR allows for large displacements and strains in particular owing to an 
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automatic remeshing procedure, which is implemented each time the mesh becomes 

too destorted to produce accurate results. The remeshing criterion is imposed by a  

critical angle of grid elements. This angle is set to 10° to reduce frequency of remeshing 

and thus limit the associated numerical diffusion. The numerical diffusion was 

effectively constrained by implementation of the passive marker algorithm.  This 

algorithm traces passively moving particles that are evenly distributed in the initial grid. 

This allows for accurate recovering of stress, phase and other parameter fields after 

each remeshing.  FLAMAR has been already tested on a number of geodynamical 

problems for subduction/collision context (Burov et al., 2001; Toussaint et al., 2004a, 

2004b).  

 

2. Thermodynamic coupling 

Buoyancy (and, eventually, rheology changes) is an important component of the 

force balance at subduction zone (Bousquet et al., 1997; Burov et al., 2001; Doin and 

Henry, 2001). For this reason, the thermodynamic THERIAK (de Capitani, 1994) and 

PERPLE_X (Conolly, 2005) algorithms have been incorporated to introduce progressive 

density changes during evolution. Both algorithms (THERIAK is used for sedimentary 

rocks, PERPLE_X -  for the rest) minimize free Gibbs energy for a given chemical 

composition to calculate an equilibrium mineralogical assemblage for given P-T 

conditions (de Capitani, 1994).  

1

n

i i

i

G N


      (A11) 

where  i is the chemical potential and Ni the moles number for each component i 

constitutive of the assemblage. Given the mineralogical composition, the computation 

of the density is then straightforward.  

Mineralogical composition and hence density, is re-evaluated every 104 time 

steps ( ~200 kyr) according to the current P-T conditions. Equivalent stresses are applied 

to the elements to account for volume-density changes associated with the 

metamorphic transitions. Unfortunately, changes in rheological properties of the 

metamorphic facies cannot be implemented in the same way as the density changes, 

due to the lack of the appropriate experimental data. We took into account rheology 

changes only for key facies such as serpentinite and eclogite.  
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3. Initial thermal structure. 

To compute the initial continental geotherm Tcont, one can use the equation 

(A12) taking into account, in Tstd, the stationary part of the geotherm and contribution 

due to the radiogenic heat production Hs in the crust, and correction T(age) due to 

transient cooling of the lithpshere that depends on its age. 

   



Tcont (z,age,Hs) Tstd (z,Hs)T(age)   (A12) 

 Radiogenic contribution Tr in the crust depends of the thickness of the crust hc, 

density c, radiogenic production Hs, radiogenic production decay depth hr, and thermal 

conductivity coefficient kc (A10): 

   
2

1
c

r

h

hc s r
r

c

H h
T e

k

   
   

 
 

        (A13) 

Temperature Tm at Moho depth, hc , is used for the calculation of the temperature for 

depths below the  Moho and  is given by : 

   



Tm  T0 
qm

kc
 hc  Tr     (A14) 

where T0 and qm correspond, respectively, to the temperature at the surface and the 

heat flux calculated at the Moho. This heat flux is given by: 

   



qm 
Thl T0 Tr
hc
kc


hl  hc
km

    (A15) 

where Thl is temperature at the thermal base of lithosphere (of a thickness hl) and km is 

coefficient of thermal conductivity for the mantle. 

Temperature at a depth z can thus be calculated as: 

- If 



z  hc :  



Tstd (z)  T0 
qm

kc
 z  Tr    (A16) 

- If 



z hc :  



Tstd (z)  Tm  qm 
(z  hc )

km
   (A17) 

This obtained temperature is then corrected for transient cooling that depends on 

thermotectonic  age (age) of the lithosphere using  formulation from Parsons and 

Sclater (1974) adapted for the continental lithosphere. 

    0

2
( ) ( )

lhT age T T TT age


        (A18) 
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where  



TT(age) 
1 

n1

n
 exp

km  
2  age n2

m Cm  hl
2











n1



  sin
n    z

hl









  (A19) 

with Cm and m are respectively the specific heat capacity and the density for the 

mantle. Values for the parameters used for the initial geotherm are given in Table 1.  
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Table 1a. Summary of thermal and mechanical parameters used in model calculations 

(Turcotte and Schubert, 2002; Ranalli, 1995; Burov, 2010;2011) 

Type    Definition Units 

Thermal Surface temperature (0 km depth) 0°C 

 Temperature at the base of thermal lithosphere 1330°C 

 Temperature at the base of upper mantle (650 

km) 

1700° 100°C 

 Thermal conductivity of crust 2.5 Wm-1 °C-1 

 Thermal conductivity of mantle 3.5 Wm-1 °C-1 

 Thermal diffusivity of mantle 10-6 m².s-1 

 Radiogenic heat production at surface 9.510-10 W kg-1 

 Radiogenic heat production decay length 10 km 

 Thermo-tectonic age of the lithosphere 50 to 600 Myr 

Mechanical Density of the upper crust* 2700 kg m-3 

 Density of lower crust* 2900 kg m-3 

 Density of oceanic crust* 2900 kg m-3 

 Density of sediment* 2600 kg m-3 

 Density of undepleted mantle* 3330 kg m-3 

 Density of asthenosphere* 3310 kg m-3 

 Lamé elastic constants  , G (Here,  = G) 30 GPa 

 Byerlee’s law – Friction angle 30° 

 Byerlee’s law – Cohesion 20 MPa 

* We here provide average densities, in thermo-dynamically coupled models densities 
are  derived directly from the assumed mineralogical composition as function of 

pressure and temperature conditions 
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Table 1b. Example of ductile flow parameters assumed in model calculations. 

Compilation of Mackwell et al. (1998), who used data from  Gleason and Tullis (1995), 

Wilks and Carter(1990), Hirth and Kohlstedt (1996), Chopra and Patterson (1981). More  

recent data (see compilation in Bürgmann and  Dresen, 2008) predict slightly different 

values for ductile flow parameters. However, in practice these differences are negated 

by adjusting geotherms or thicknesses of the rheological layers in way that the integral 

strength of the lithosphere matches the observed Te values.  

 

 

 

Layer 

 

 

Composition 

Pre-

exponential 

stress 

constant 

A 

MPa-n s-1 

 

Power law 

exponent 

n 

 

Activation energy, 

Q 

KJ mol-1 

Upper Crust Wet Quartzite 1.1  10-4 4 223 

Lower 

Crust 

Dry Maryland 

Diabase 

84 4.70.6 48530 

 Undried 

Pikwitonei 

granulite 

1.4  104 4.2 445 

Mantle or 

Oceanic  

lithosphere 

Dry Olivine 4.85  104 3.5 535 

 Wet Olivine 417 4.48 498 

 Diffusion  

creep                                

 1.9210 -

4 

1 3.010 5 

 Peierls law 10
7.810 -12  Peierls 

stress=  

5GPa 

5.3510 5 
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Figure 1 
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Figure 2 
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Figure 3a 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Figure 3b 
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Figure 4 
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Figure 5 
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Figure 6a 
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Figure 6b 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Figure 7 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Figure 8 
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Figure 9  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Figure 10 
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Figure 11 
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Figure 12 
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Figure 14 
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Figure 15a 
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Figure 15b 
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Figure 15c 
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Figure 16 
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Figure 17 
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Figure 18a 
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Figure 18b 
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Figure 23 
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Highlights 

 We study continental subduction and UHP exhumation using 
advanced numerical models.  

 Continental subduction is mainly a transient process requiring 
strong mantle lithosphere rheology 

 During convergence, UHP exhumation occurs at subduction 
phase.  

 UHP exhumation is a poly-phase process driven by viscous 
buoyancy drag. 

 UHP exhumation is favored in slow convergence settings. 

 


