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Abstract The South Atlantic region displays (1) a topographic gradient across the basin, with Africa
elevated relative to South America, (2) a bimodal spreading history with fast spreading rates in Late
Cretaceous and Eo-Oligocene, and (3) episodic regional uplift events in the adjacent continents
concentrated in Late Cretaceous and Oligocene. Here we show that these observations can be linked by
dynamic processes within Earth’s mantle, through temporal changes in asthenosphere flow beneath the
region. The topographic gradient implies westward, pressure-driven mantle flow beneath the basin, while
the rapid spreading rate changes, on order 10 million years, require significant decoupling of regional plate
motion from the large-scale mantle buoyancy distribution through a mechanically weak asthenosphere.
Andean topographic growth in late Miocene can explain the most recent South Atlantic spreading velocity
reduction, arising from increased plate boundary forcing associated with the newly elevated topography.
But this mechanism is unlikely to explain the Late Cretaceous/Tertiary spreading variations, as changes in
Andean paleoelevation at the time are small. We propose an unsteady pressure-driven flow component in
the asthenosphere beneath the South Atlantic region to explain the Late Cretaceous/Tertiary spreading rate
variations. Temporal changes in mantle flow due to temporal changes in regional mantle pressure gradients
imply a correlation of horizontal and vertical motions: we find that this prediction from our models agrees
with geologic and geophysical observations of the South Atlantic region, including episodes of passive
margin uplift, regional basin reactivation, and magmatic activity.

1. Introduction

The South Atlantic holds a prominent place in the history of plate tectonics since Bullard et al.’s [1965] fit of
South America and Africa showed how both continents were once joined. The region preserves an excep-
tional archive of past plate motion (Figure 1a) so its spreading history is well known [Cande et al., 1988;
Nürnberg and Müller, 1991].

Figure 1b shows spreading half rates of the South Atlantic by Müller et al. [2008] based on marine mag-
netic anomaly identifications, following the techniques outlined by Müller et al. [1997]. The compilation
reveals rapid changes over periods of a few million years (Myr). While it is accepted that buoyancy forces
associated with subduction of cold, dense lithosphere provide significant driving forces for plate motion
[Lithgow-Bertelloni and Richards, 1995], the short duration of the South Atlantic spreading rate changes
makes it difficult to attribute them to variations of the large-scale mantle buoyancy distribution, which
should evolve on longer timescales on the order of 50 to 100 Myr as suggested by mantle circulation
modeling [Bunge et al., 1998].

Some South Atlantic spreading rate changes likely reflect temporal variations in plate boundary forcing, in
particular along the western margin of South America. The most significant tectonic change there over the
past 25 Myr is the growth of the high Andes, especially the rise of the Altiplano and Puna Plateaus some
10 Myr ago [Charrier, 2007; Garzione et al., 2006; Oncken et al., 2006]. Estimated tectonic forces associated
with the current Andean topography amount to ≈ 8×1012 N/m on average, comparable to the driving forces
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Figure 1. (a) Age-area distribution and (b) half-spreading rates of ocean floor in the South Atlantic region from Müller et
al. [2008]. (c) Residual basement depth computed by calculating difference between predicted and sediment unloaded
basement depth. Predicted basement depth obtained by applying Crosby et al. ’s [2006] North Pacific thermal boundary
layer model to age-area distribution from Müller et al. [2008]. (d) Topographic map of the South Atlantic region from
the global relief model ETOPO1 [Amante and Eakins, 2009], annotated with major structural elements. Craton names
are boldface, while stars denote prominent hot spots (Ga: Galapagos; F: Fernando de Noronha; As: Ascension; SH: Saint
Helena; TM: Trinidade and Martim Vaz; Tr: Tristan da Cunha; G: Gough Island; and B: Bouvet Island).

in plate tectonics [Husson and Ricard, 2004; Iaffaldano et al., 2006]. The temporal correlation between recent
Andean uplift and plate kinematic changes around South America supports the notion that the load of this
newly elevated topography affects plate motions. For instance, the 30% convergence reduction across the
Nazca/South America margin in the late Miocene, commonly attributed to growth of the high Andes [e.g.,
Norabuena et al., 1999], has been linked to a corresponding reduction of South Atlantic spreading rates in
a global model of the coupled mantle/lithosphere system [Iaffaldano and Bunge, 2009]. Far-field effects are
thus an important influence on South Atlantic spreading. Husson et al. [2012], moreover, attributed the most
recent South Atlantic spreading rate reduction to the formation of an optimal aspect ratio mantle circulation
cell beneath the South Atlantic.

The South Atlantic is also an area of anomalous topography [Winterbourne et al., 2009] with a pronounced
bathymetric asymmetry (Figure 1c). The mantle beneath Africa has long been shielded from subduction by
the former supercontinent Pangea [Anderson, 1982] and harbors a major low seismic velocity body near
the base of the mantle [e.g., Grand, 2002; Ritsema et al., 2011; Romanowicz and Gung, 2002; Simmons et al.,
2007]. Much of the low seismic velocity is due to elevated temperature [Davies et al., 2012; Schuberth et al.,
2012, 2009a, 2009b]. Thermal upwellings may thus play a prominent role in the South Atlantic, consistent
with observations of numerous plume-related volcanic centers (Figure 1d), elevated heat flow in the mobile
belts of Southern Africa [Nyblade and Robinson, 1994], and inferences that Africa experienced greater uplift
than other continents in the Tertiary [e.g., Bond, 1978; Burke and Gunnell, 2008]. This view is supported by
geodynamic studies suggesting that active thermal upwellings in the mantle general circulation account
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for as much as 30% (10 TW) of the mantle heat loss [e.g., Bunge et al., 2001; Bunge, 2005; Labrosse, 2002;
Mittelstaedt and Tackley, 2006; Zhong and Leng, 2006].

Rapid spreading rate changes imply some decoupling of plate motion from the large-scale mantle buoy-
ancy distribution, as noted before, presumably through a mechanically weak asthenosphere [Barrell, 1914].
An asthenosphere was advocated early on in the history of plate tectonics to lubricate plate motion [Chase,
1979] and is supported by rock mechanics arguments [Karato and Wu, 1993; Weertman and Weertman,
1975]. Evidence for an asthenosphere comes from various observations, including global [e.g., Richards and
Hager, 1984] and regional [Harig et al., 2010] geoid studies, glacial rebound [e.g., Mitrovica, 1996], oceanic
intraplate seismicity [Wiens and Stein, 1985], ocean ridge bathymetry [Buck et al., 2009], seismic anisotropy
[e.g., Debayle et al., 2005], and electromagnetic sounding [e.g., Jones, 1982]. Low mechanical strength could
arise from weakening associated with partial melt [e.g., Anderson and Sammis, 1970] and/or water [e.g.,
Karato and Jung, 1998]. A consequence would include the concentration of upper mantle flow into a thin
channel of greatly enhanced material mobility. Fluid dynamic studies based on numerical and analytic
models [e.g., Bunge et al., 1996; Busse et al., 2006; Tackley, 1996] indicate that high material mobility in the
asthenosphere is essential to promote the long-wavelength pattern of mantle flow observed on Earth.

Phipps Morgan and Smith [1992] and Phipps Morgan et al. [1995] argued that a plume-fed asthenosphere
explains various observations related to ocean bathymetry, heat flow, and mantle geochemistry. A series of
papers by Höink and Lenardic [2008, 2010] and Höink et al. [2011] support the idea that flow in the astheno-
sphere is caused by lateral pressure gradients (Poiseuille flow) and that the resulting basal shear is the
predominant force driving South Atlantic plate motion [Höink et al., 2011]. The concept of asthenosphere
flow driven by high- and low-pressure regions relates temporal changes in horizontal motion, i.e., spread-
ing rate changes driven by evolving basal shear forces, explicitly to nonisostatic vertical motion. The latter,
known as dynamic topography (see Braun [2010] for a review), can be tested with independent data. For
instance, Japsen et al. [2012a, and references therein] recently drew attention to episodic burial and exhuma-
tion of passive continental margins. Such events are well documented along the Brazilian coast [Cogne et al.,
2011; Japsen et al., 2012b] and presumably reflect temporal changes in regional dynamic topography.

The focus of this paper is linking horizontal and vertical motion in the South Atlantic region explicitly by
evolving upper mantle flow. First, we review the regional tectonics in terms of spreading history, topo-
graphic evolution of the Andes, and upper mantle structure constrained from a new tomographic study. We
then use simple torque balance models of the South American plate to separate the influence of basal shear
forces from plate boundary forces. We demonstrate that the rapid spreading reduction between 80 and
60 Myr followed by renewed and vigorous spreading after 45 Myr is unlikely to result from plate boundary
forcing associated with the Andes, as topography along South America’s western margin is low at the time.
We then turn our attention to Poiseuille flow and show that the current basin-wide dynamic topography
gradient may reflect significant pressure-induced upper mantle flow across the South Atlantic region. The
magnitude of the Poiseuille flow velocities is comparable to those suggested from basal shear. We test the
hypothesis of time-evolving upper mantle flow caused by time-evolving pressure gradients with geologic
observations and find that fast spreading periods in the Late Cretaceous and Eocene coincide with regional
topographic uplift events in the African and South American continents. We conclude with considerations
on rheology and the general style of mantle convection.

2. Tectonic Setting in the South Atlantic Region
2.1. South Atlantic Spreading History
A number of plate motion models are available for the South Atlantic. We compare six models: Earthbyte
[Müller et al., 2008], UTIG [Coffin et al., 1998], NGU [Labails et al., 2009; Torsvik et al., 2009], Moulin [Moulin et
al., 2010], and two commercial models, A and B. The models differ in the positions of Euler poles, angular
velocities, and the locations of plate boundaries, reflecting different interpretations of paleomagnetic and
geologic data. Because each model applies its own geologic timescale, we make the models comparable
by using a single timescale: Channell et al. [1995] from the opening to the M0 anomaly, and Gradstein et al.
[2004] from M0 to the present. Taking a point presently located in the Salado subplate of South America
(57.2◦W, 36◦S), we calculate the total spreading rate (with respect to Africa) of each of these models. The
resulting rates are reported in Figure 2 from 150 Myr to the present.
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Figure 2. South Atlantic spreading rate for different plate reconstruc-
tion models from 150 Myr to the present for a point currently located
at 57.2◦W, 36◦S in a reference frame that keeps Africa fixed. Chrons
(squares) and geological constraints dated by particular boundaries
(diamonds) used by one or more of the models are shown along the
horizontal axis. All models record a spreading rate minimum at around
60 Myr. The curves Africa (NGU) and Africa (UTIG) show the absolute
velocities of Africa in a mantle reference frame for an approximately
conjugate point in the Orange Basin, at 15◦E, 27.5◦S.

The curves are similar from C34 (84 Myr)
to the present because the rotations
are based on similar models. The NGU,
Earthbyte, and UTIG models are based
on Müller et al.’s [1999] reconstruction;
Commercial B is based on Cande et al.
[1988]; and Commercial A is based on a
combination of Cande et al. [1988] from
C4A (8.8 Myr) until the present and Shaw
and Cande [1990] from C34 (84 Myr)
until C4A. In the early rifting the mod-
els vary, although a number of them
use Nürnberg and Müller [1991] for the
M4 (124.5 Myr) and the M0 (120.6 Myr)
anomalies. All models reveal a similar
spreading history after around 100 Myr,
with a pronounced minimum at the Cre-
taceous/Tertiary boundary. Spreading is
fastest in the Late Cretaceous, drops by
a factor of 2 from around 6 to 3 cm/yr
between 80 and 70 Myr, stays constant
for 10–20 million years before rising back

to almost 6 cm/yr in the middle Eocene, only to decrease again to the current value of about 3.5 cm/yr.
Because these rates are reconstructed over intervals of at least 5 Myr, we are confident that the bias of
finite-rotation noise [e.g., Iaffaldano et al., 2012] arising from the challenge of precisely identifying the mag-
netization pattern of the ocean floor and the uncertainty on the geomagnetic polarity timescale is negligible
in these models.

It has been proposed [e.g., Silver et al., 1998] that the South Atlantic spreading changes reflect motion of
Africa in a mantle reference frame. Thus, Figure 2 also shows the reconstructed absolute motion of Africa
according to two different models. The Africa (NGU) curve combines O’Neill et al.’s [2005] moving hot spot
frame for 100 Myr and younger with Steinberger and Torsvik’s [2008] true polar wander frame between
100 Myr and 150 Myr. The Africa (UTIG) curve is based on the fixed hot spot frame of Duncan and Richards
[1991] until the middle of their C13–C6 stage (28.5 Myr) and then Müller et al.’s [1993] fixed hot spot frame
until 130 Myr. While some part of the South Atlantic spreading changes may be ascribed to African absolute
motion from C34 to C25 (84 Myr to 56.7 Myr) in the Africa (UTIG) curve, neither the bulk of the spreading
variations cannot be explained this way nor can the magnitude of the changes. The spreading rate changes
must arise from other forces.

2.2. Topographic Evolution of the Andes
Gansser [1973] divided the Andean chain into a Northern (∼12◦N to ∼5◦S), Central (∼5◦S to ∼37◦S), and
Southern unit (∼37◦S to ∼55◦S). The Central unit is characterized by the Altiplano and Puna Plateaus, a mag-
matic arc (e.g., Western Cordillera) to the west, and a tectonically shortened Eastern Cordillera and foreland
to the east [Sempere et al., 2008]. Most models of the orogenic history of the Andes have three main phases
[Steinmann et al., 1929]: Peruvian during Late Cretaceous, Incaic in middle Eocene (or Oligocene, accord-
ing to Sempere et al. [1990]), and Quechua since late Miocene. The Northern Central Andes were probably
tectonically active during Late Cretaceous [Jaillard, 1994; Sempere et al., 1997]. In latest Cretaceous and
early Paleocene, a time also referred to as the KT Orogeny [Charrier, 2007], tectonic activity also took place
in the Central Orocline [Charrier, 2007; Cornejo, 2003; Mpodozis et al., 2005] and South Central Andes [Orts
and Ramos, 2006; Sempere et al., 1994]. Although no clear evidence exists for Andean paleoelevation in
latest Cretaceous and early Paleocene, the scarcity of compressional structures and the small amounts of
estimated crustal shortening indicate that elevation presumably was low.

Most studies agree that prominent uplift of the mountain chain started in middle Eocene, reaching a peak
in the Oligocene, with a second uplift period in late Miocene [Sempere et al., 1990, 2008]. Middle Eocene
and early Oligocene exhumation occurs in the Central Andes [Barnes et al., 2006; Ege et al., 2007; Gillis et al.,
2006] with coactivity in the North Central Andes [Hoorn et al., 2010; Jaillard and Soler, 1996; Sebrier et al.,
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Figure 3. Inferred Andean topographic evolution since Late
Cretaceous, plotted relative to today, from a variety of proxies: (1)
oxygen isotopes [Garzione et al., 2006; Ghosh et al., 2006], (2) leaf mor-
phology [Gregory-Wodzicki, 2000], (3) apatite fission track (AFT) in the
North Central Andes and Central Orocline [Hoorn et al., 2010], (4) AFT
in the Central Orocline [Gillis et al., 2006], (5) unconformities in the
Central Orocline [Cornejo, 2003], (6) tectonic activity related to uplift
in the Central Orocline [Sempere et al., 1997], and (7) tectonic activity
related to uplift in the Northern Central Andes [Jaillard, 1994]. Pink
region encompasses the average elevation and uncertainties, with
question marks signaling times when elevation is poorly constrained
but presumably low. Mc, Oc, Ec, Pc, and LC denote Miocene, Oligocene,
Eocene, Paleocene, and Late Cretaceous, respectively.

1988]. Significant topographic uplift is
inferred since late Miocene from paleosol
carbonates [Barke and Lamb, 2006; Ghosh
et al., 2006; Schildgen et al., 2007; Thouret
et al., 2007] and paleomagnetic data
[Rousse et al., 2003]. Gregory-Wodzicki
[2000] reached similar conclusions,
although leaf morphology studies
appear to underestimate paleoelevations
[Sempere et al., 2008]. Figure 3 sum-
marizes the tectonic and topographic
evolution of the Andes. Notice how the
paleoelevation of the mountain chain
was likely significantly lower in the Late
Cretaceous and Paleocene compared to
today, with prominent uplift starting in
middle Eocene.

2.3. Regional Upper Mantle
Seismic Structure
Upper mantle structure in the South
Atlantic region is not well known.
Sparsity of seismic stations and the

Figure 4. Horizontal slices of upper mantle seismic structure for the South Atlantic region in oblique Mercator projection,
together with two vertical transects [Colli et al., 2013]. Shaded regions mark insufficient model resolution. Lines AB and
CD on the 150 km depth slice (top left) show location of the two vertical transects (bottom right). The mantle is overall
slow, except for fast continental roots, with slow anomalies elongated in a generally east-west direction. The pronounced
slow seismic anomalies cease below about 350 km depth, where the structure transitions into a pattern dominated by
vertically oriented, columnar slow anomalies embedded in an overall faster mantle.
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Figure 5. Diagram illustrating geometry and main features of (a) the tectonic force balance model and (b) the fluid
dynamic scaling analysis. The tectonic model assumes a rigid plate overlying an isoviscous asthenosphere of constant
thickness, allowing us to estimate the excess velocity in the asthenosphere needed to balance all other tectonic forces
through basal drag (see equation (2)). The fluid dynamic scaling analysis ascribes the excess velocity explicitly to a
pressure-driven Poiseuille flow, whose implications for spatial variations of dynamic topography are shown.

existence of large aseismic areas on the African and South American plates make it difficult to image seismic
heterogeneity especially beneath the ocean.

The oceanic upper mantle is imaged primarily by global tomographic studies [e.g., Houser et al., 2008;
Kustowski et al., 2008; Panning and Romanowicz, 2006; Ritsema et al., 2011; Shapiro and Ritzwoller, 2002;
Simmons et al., 2006]. These reveal overall lower than average seismic velocities, although details differ for
scales less than ∼2000 km [Becker and Boschi, 2002; Dziewonski, 2005]. Some differences may originate from
different data sets and model parameterization, whereas others may reflect the approximations associated
with raypath tomography [Spetzler et al., 2002; Wang and Dahlen, 1995; Zhou et al., 2005].

Here we take the recent regional tomographic study of Colli et al. [2013], based on long-period surface and
body waves inverted with a full-waveform methodology, providing a good resolution of the upper South
Atlantic mantle above 400 km depth. Figure 4 shows horizontal slices through the model and two vertical
transects. While the mantle in the South Atlantic region is overall slow, except for fast continental roots, the
vertical transects show a pattern of pronounced slow seismic anomalies that is quite shallow and ceases
below about 350 km. At greater depth the horizontal slow seismic velocity anomalies give way to vertically
oriented, columnar slow seismic anomalies embedded in a faster mantle. Similar slow velocity anomalies,
elongated in the general direction of plate motion, were reported recently for other oceanic basins [e.g.,
French et al., 2013; Lekić and Romanowicz, 2011; Rickers et al., 2013].

3. Torque Balance Estimates for the South American Plate

To explore possible causes of the velocity changes in the South Atlantic spreading history, we estimate
the tectonic torques acting upon the South American plate from 1-D torque balance models. Such models
have a long history [e.g., Forsyth and Uyeda, 1975] and, although highly simplified and conceptual, have the
advantage of keeping the various tectonic torques separate and identifiable. Combined with geological and
geophysical considerations, this allows us to disregard those forces that, due to their known slow temporal
variation, cannot produce the rapid variations in the spreading rate.

We start by separating the total tectonic torque into net pull (M⃗sp) exerted on the trailing plate by litho-
spheric slabs descending into Earth’s mantle, gravitational spreading of large topographic features such as
continental plateaus (M⃗mb) or thermally subsiding oceanic lithosphere (the latter is known as the ridge push,
which we denote here as M⃗rp), viscous stresses associated with basal drag at the base of the lithosphere
(M⃗bd) arising from mantle convective motions, and frictional torques along the uppermost, brittle zone of
plate margins (M⃗fr). Basal drag is often assumed to resist plate motions but may as well drive it. No slab is cur-
rently attached to South America or has one been since at least the Mesozoic. The motion of South America
is then governed by a balance of the following torques:

M⃗fr + M⃗mb + M⃗rp + M⃗bd = 0. (1)

For present-day conditions, each torque may be estimated with reasonable confidence. Molnar and Stock
[2009] quantified gravitational spreading of continental plateaus through energy balance arguments.
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Table 1. Flow Velocities at Present Day Within the Asthenosphere
Beneath the South American Plate Required by the Torque Balance
(See Equation (2)) to Sustain Current Andean Elevation for a Variety
of Asthenosphere Thickness and Viscosity Combinationsa

Asthenosphere Channel Thickness

Viscosity 100 km 200 km 300 km 400 km 500 km

1 × 1018 Pa s 81.2 154.5 226.7 298.5 370.0
5 × 1018 Pa s 17.5 32.2 46.6 61.0 75.3
1 × 1019 Pa s 9.5 16.9 24.1 31.3 38.4
5 × 1019 Pa s 3.2 4.6 6.1 7.5 8.9
1 × 1020 Pa s 2.4 3.1 3.8 4.5 5.3

aUnits are cm/yr. Flow velocities are reported for the middepth
of the asthenosphere, where the Poiseuille flow component is close
to maximum. Preferred thickness-viscosity combination is marked
in boldface.

Ridge push is estimated from the iso-
static balance of oceanic lithosphere
[e.g., Fowler, 1990], while torques associ-
ated with frictional sliding along western
South America may be assessed from the
effective friction coefficient along plate
margins, which we assume depends
primarily on the sediment intake [e.g.,
Iaffaldano, 2012] and tends to be low
relative to a Byerlee estimate [Carena
and Moder, 2009; Iaffaldano et al., 2006;
Suppe, 2007]. For basal drag from a
Newtonian viscous mantle, we write

M⃗bd = ∫A

[
r⃗ × 𝜇

dv⃗
dr

]
dA, (2)

where the shear stress on the plate base at position r⃗ is the product of viscosity (𝜇) and radial velocity gradi-
ent, while A is the basal plate area (see Figure 5a for a sketch of model geometry). To clarify the dependence
of the numerical results on model parameters, one may approximate the velocity gradient by assuming a
linear increase with depth:

M⃗bd = ∫A

[
r⃗ × 𝜇D

v⃗a − v⃗p

D

]
dA,

where v⃗p is the plate velocity, v⃗a is the flow at depth D within the asthenosphere, which we choose to be
the midpoint of the asthenospheric layer, and 𝜇D is the viscosity averaged from the plate base to depth D.
Plates can be approximated as rigid bodies whose motions are described by Euler vectors (𝜔⃗p). The mantle,
in contrast, behaves as a viscous fluid. For clarity we assume nevertheless that asthenosphere flow beneath
the South Atlantic realm may be approximated crudely using a time-dependent Euler vector (𝜔⃗a), with|r⃗D| = (r − D), and obtain

M⃗bd = ∫A

[
r⃗ × 𝜇D

(𝜔⃗a × r⃗D) − (𝜔⃗p × r⃗)
D

]
dA

= ∫A

[
r⃗ × 𝜇D

𝜔⃗a × r⃗D

D

]
dA − ∫A

[
r⃗ × 𝜇D

𝜔⃗p × r⃗

D

]
dA.

(3)

Equation (3) shows that this torque has two parts [Höink et al., 2011]. The first integral is the Poiseuille com-
ponent of mantle flow, while the second provides an estimate of the Couette counterpart associated with
plate motions. The unknowns are 𝜔⃗a, D, and 𝜇D, whereas the area and Euler vector of the plate may be
inferred from the geologic record. Substituting (3) into (1) allows us to solve for 𝜔⃗a and the associated basal
drag Mbd needed to balance the current Andean elevation. We consider a number of combinations of D and
𝜇D in Table 1, showing that mantle flow velocities scale with D∕𝜇D, as expected.

The South Atlantic spreading record allows us to extend our scaling to earlier times. To this end, we assume
steady mantle flow, constant frictional forces, and constant ridge push since the latest Mesozoic. These
assumptions, although simplifying, are motivated by the fact that all these three force components are
expected to vary smoothly and over longer timescales with respect to the observed spreading rate vari-
ations. For instance, mantle flow changes significantly over time intervals of the order of the transit time
(100 Myr), which is the time necessary to cross the mantle by advection. Ridge push increases linearly with
plate age for a half-space cooling model or to an asymptote assuming a plate cooling model. In this case,
equation (1) allows us to relate the South American velocity record to temporal variations in the torques
associated with the Andes. In other words, we equate spreading changes (Δ𝜔⃗p) exclusively with changes in
the orogenic load

ΔM⃗mb = ∫A

[
r⃗ × 𝜇D

Δ𝜔⃗p × r⃗

D

]
dA. (4)

Our scaling makes an explicit prediction—relative to today—for the evolution of Andean elevation.
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Figure 6. (top) Predicted evolution of Andean paleoelevation, in percent of present elevation, required to balance
temporal variations in South American plate velocity and size since mid-Cretaceous, for a variety of asthenosphere vis-
cosities. Black, red, green, blue, and purple lines correspond to 1 × 1018 Pa s, 5 × 1018 Pa s, 1 × 1019 Pa s, 5 × 1019 Pa s,
and 1×1020 Pa s, respectively. (bottom) Reconstructed South American plate area (green curve) and spreading rate (blue
curve) according to the Earthbyte model. Note that for low viscosities (green, black, and red curves in Figure 6, top), esti-
mated Andean paleoelevation scales with South American plate area, while it scales inversely with the plate velocity for
higher viscosities (blue and purple curves). Comparison with Figure 3 shows that high- and low-viscosity end-members
are both incompatible with geologic inferences of Andean topographic evolution.

Figure 6 shows our results for a range of mantle viscosities, assuming a 300 km thick asthenosphere chan-
nel, as suggested by our tomographic results (Figure 4). Two end-member regimes are apparent. For low
asthenosphere viscosities and correspondingly high flow velocities, the plate velocity changes imply
minor changes in the effective basal drag. In other words, the recorded spreading changes are small rel-
ative to the assumed upper mantle flow velocities (Table 1). In this case, inferred elevation changes scale
directly with the plate size (compare black, red, and green curves with plate size in Figure 3), and we pre-
dict that the mountain chain would remain high throughout the Cenozoic to balance the effective torques.
Assuming larger asthenosphere viscosities and correspondingly lower mantle flow velocities instead, the
recorded South American plate motion history implies significant basal drag changes. Correspondingly,
large temporal changes in the height of the Andes are required to balance the evolving shear stress. Inferred
Andean elevation in this case scales inversely with the spreading history (compare blue and purple curves
to Figure 2).

Both end-members are incompatible with the inferred topographic evolution of the Andes (Figure 3), and
we find that the early Tertiary South Atlantic spreading variations cannot be attributed to Andean eleva-
tion changes. All combinations of model parameters yield estimates for the average Andean elevation in
Late Cretaceous and early Paleocene that are too large (50% or higher from ∼70 to ∼40 Myr) compared to
geologic constraints. Hence, we deduce that our assumptions of steady Poiseuille flow and steady basal
drag are unrealistic. It seems logical then to consider an unsteady flow component that evolves on shorter
timescales than the pattern of large-scale mantle circulation driven by temporal pressure variations in the
asthenosphere beneath the South Atlantic region.

4. Asthenosphere Flow

Rapid spreading rate changes in the South Atlantic imply decoupling of plate motion from the large-scale
mantle buoyancy distribution, presumably through a mechanically “weak” (i.e., low viscosity) astheno-
sphere. Postglacial rebound (PGR) provides one of our most direct constraints on mantle rheology. Since
the pioneering work of Haskell [1935], where he calculated the viscosity of the upper part of the mantle
to be ∼1021 Pa s (known as Haskell constraint), PGR studies focused on resolving the radial mantle viscos-
ity distribution. A general consensus exists that the average viscosity of the sublithospheric upper mantle
is smaller than that of the deeper mantle, even if the amount of viscosity contrast and the thickness of the
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Table 2. Calculated Poiseuille Mantle Flow Velocities in cm/yr in an
Asthenosphere Channel Beneath the South Atlantic Region for a Pres-
sure Gradient of 300 Bar Across the Basin and a Variety of Channel
Widths and Asthenosphere Viscosities (See Text)a

Viscosity
Asthenosphere Channel Thickness

100 km 200 km 300 km 400 km 500 km

1 × 1018 Pa s 16.9 67.6 152.0 270.3 422.3
5 × 1018 Pa s 3.4 13.5 30.4 54.1 84.5
1 × 1019 Pa s 1.7 6.7 15.2 27.0 42.2
5 × 1019 Pa s 0.3 1.3 3.0 5.4 8.4
1 × 1020 Pa s 0.2 0.7 1.5 2.7 4.2

aFlow velocities are reported for the middepth of the astheno-
sphere, where the Poiseuille flow component is close to maximum.
Preferred thickness-viscosity combination is marked in boldface.

low-viscosity layer remain debated.
Mitrovica [1996] noted the Haskell
constraint applies effectively to man-
tle depths of ∼1000–1200 km, while
Paulson and Richards [2009] drew
attention to the trade-off between
radial viscosity contrast and layer
thickness: models favoring a coarse
subdivision of the mantle into two
layers separated at the 670 km phase
transition will naturally obtain modest
viscosity contrasts, while providing an
equally good fit to the data as models
with a thin layer and strong viscos-

ity reduction. The trade-off exists also in modeling the geoid [Schaber et al., 2009] and arises because the
decay time 𝜏 varies linearly with viscosity 𝜇 and inversely with h3 [Cathles, 1975], in the limit of a small-layer
thickness h relative to the loading wavelength:

𝜏 ∝ 𝜇

h3
.

Equivalently, in the long-wavelength limit, the load may be accommodated by horizontal (Poiseuille) flow in
the low-viscosity layer. The significant parameter here is the volumetric flow rate [Davies, 1999], dependent
on 𝜇 and h3, where P′ is a pressure gradient:

Q = P′h3

12𝜇
,

Assuming the low seismic velocity layer imaged in Figure 4 indicates a low-viscosity channel, a channel
thickness of about 300 km, and the Haskell constraint yields an effective viscosity of ∼1019 Pa s.

In addition to spreading rate changes, the South Atlantic sustains a topography gradient which is likely
of dynamic origin (see Figures 1c and 5b). On the eastern side, elevated topography, termed the African
superswell [Nyblade and Robinson, 1994], consists of uplifted portions of the African continent and areas of
abnormally high bathymetry in the southeastern Atlantic, whereas much of the southwestern Atlantic, espe-
cially in the Argentine Basin, is abnormally deep. The basin-wide dynamic topography gradient in excess
of ∼1 km implies lateral pressure differences in excess of ∼300 bar. Significant pressure-driven (Poiseuille)
flow is thus expected in the sublithospheric mantle. Supporting evidence for westward fluxing upper man-
tle comes from seismically imaged flow-like structures [French et al., 2013] and geodynamic investigations
of upper mantle flow around the southern tip of South America [Nerlich et al., 2013]. The magnitude of
Poiseuille flow is readily calculated

Vm = h2

8𝜂
ΔP
Δx

, (5)

where ΔP is the pressure difference and Δx is the length scale across the basin. The computed flow veloci-
ties depend on the assumed viscosity (𝜂) and thickness (h) of the channel (Table 2). A channel thickness of
300 km, together with an assumed asthenosphere viscosity of 1019 Pa s yields good agreement between
velocities predicted from pressure-driven flow and those required to sustain the current Andean load
through basal shear (Table 1).

5. Spreading Rate Changes and Coeval Epeirogenic Motion
in the South Atlantic Region

It seems likely that temporal variations in upper mantle flow associated with temporal changes of pressure
gradients should be linked to changes in dynamic topography. This linkage between changes in horizon-
tal and vertical motion can be tested with geologic data. As noted earlier, the South Atlantic has a bimodal
spreading history (Figure 2) with high spreading rates in Late Cretaceous and Eo-Oligocene. Thus, it is rea-
sonable to explore the consequences for regional dynamic topography from attributing these changes to
unsteady upper mantle flow induced by temporal variations of the pressure gradients in the asthenosphere.
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Figure 7. Main uplift events in Oligocene-Miocene (5–40 Myr) and Late Cretaceous (70–90 Myr) time along Africa’s South
Atlantic margin as inferred from a variety of techniques: thermochronology (FT), sequence stratigraphy (St), and inverse
modeling of stacking velocities from seismic lines (SV). The bottom panel shows that times of widespread uplift (shaded
intervals) correlate with times of faster spreading.

Topography in the South Atlantic realm has changed over time. Japsen et al. [2012a] and Cogne et al. [2011]
document Late Cretaceous and Eocene uplift events along the Brazilian coast. MacGregor [2012] summa-
rizes margin uplifts for South America and Africa in Late Cretaceous and Oligocene. Since the seminal work
by King [1955] a consensus exists [e.g., Partridge and Maud, 1987] that Southern Africa’s topography had
experienced successive phases of planation by scarp retreat that produced low-relief pediplain that could
be correlated across the continent (e.g., the Gondwana and the African surface). King [1955] proposed that
episodic regional uplift caused these events.

The African side of the South Atlantic has three main relief elements: South African Plateau, Angola Moun-
tains, and Congo-Cameroon Atlantic Swell. The uplift ages of these structures have been debated with three
main scenarios. (1) Inheritance from Atlantic rifting [e.g., Gilchrist et al., 1994], (2) Late Cretaceous [e.g., de
Wit, 2007], and (3) Oligo-Miocene [e.g., Burke and Gunnell, 2008]. Geologic data (Figure 7) now suggest two
main uplift periods, Late Cretaceous and Oligo-Miocene, with different amplitudes from South Africa to
Cameroon. Late Cretaceous uplifts are documented by apatite fission track (AFT) data in Gabon [Walgenwitz
et al., 1992], South Africa-Namibia [Gallagher and Brown, 1999a, 1999b; Kounov et al., 2009; Raab et al., 2002,
2005; Stanley et al., 2013], and Equatorial Guinea [Turner et al., 2008]. Significant vertical displacement is
also confirmed by numerous lowstand wedges along the margins [Hartwig et al., 2012; Hirsch et al., 2010;
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McMillan, 2003; Paton et al., 2008]. Supporting evidence comes from siliciclastic flux measurements. While
these record continental denudation, not necessarily uplift, they are consistent with a major Late Cretaceous
denudation event [Anka et al., 2010; Guillocheau et al., 2012; Leturmy et al., 2003; MacGregor, 2012; Seranne
and Anka, 2005].

The Oligo-Miocene uplift is also documented on AFT data along the Congo-Cameroon Atlantic Swell
[Walgenwitz et al., 1992] and the Angola Mountains [Jackson et al., 2005], confirming the pioneering work
of Lunde et al. [1992]. On the Angola margin, inverse modeling of stacking velocities along offshore seismic
lines [Al-Hajri et al., 2009; Walford and White, 2005] finds two major uplifts in early Oligocene and Pleis-
tocene. Lowstand wedges and incised canyons were preserved along the Congo Delta [Anka et al., 2009],
and the Cameroon-Gabon margins, with canyon incision around the Eo-Oligocene boundary in Cameroon
and major lowstand wedges in early Miocene [Manga, 2008; Rasmussen, 1996]. Along the Congo margin,
paleowater depth reconstructions [Lavier et al., 2001] and modeling of vertical movements [Lucazeau et
al., 2003] show similar uplift timing. Sedimentary flux analysis confirms the second denudation period
[MacGregor, 2012; Seranne and Anka, 2005], with a strong increase along the Congo-Ogooue (Gabon) deltaic
system [Anka et al., 2009; Lavier et al., 2001; Leturmy et al., 2003].

These two major uplift events correlate with pulses in regional basin reactivation [Janssen et al., 1995] and
magmatic activity [Jelsma et al., 2009; O’Connor et al., 2012].

6. Discussion

Our results suggest that topographic variations of the Andes alone cannot fully account for the South
Atlantic spreading changes. The most recent South Atlantic spreading reduction correlates with late
Miocene Andean uplift. However, the elevation of the Andes was small in Late Cretaceous and Early Pale-
ocene, relative to the present day, and presumably did not vary much in time. Thus, the pronounced
early Tertiary spreading rate variations in the South Atlantic are not easily linked to elevation changes in
the Andes.

At the same time, substantial evidence suggests that the bimodal spreading history of the South Atlantic
is matched by a bimodal history of uplift on the South American and African sides of the South Atlantic
[MacGregor, 2012]. A linkage between changes in horizontal and vertical motion is expected if temporal
variations in upper mantle flow arise from temporal variations of pressure gradients in the asthenosphere.
In this case, the evolving flow field would be associated with evolving basal shear forces and nonisostatic
vertical motion that is dynamic topography.

6.1. Unmodeled Effects
We must emphasize that our force balance models and our fluid dynamic analysis of upper mantle flow are
highly simplified. We have assumed a rigid plate overlying an incompressible Newtonian asthenosphere of
constant thickness, disregarding among others the complex 3-D structure of the asthenosphere in the South
Atlantic region that is imaged, for instance, by our tomographic study [Colli et al., 2013]. Furthermore, we
did not account for the complex rheological behavior of mantle material, and we considered the momen-
tum equation alone, without coupling it to the heat and mass conservation equations in a self-consistent
and time-dependent model. At this stage, however, we believe it is prudent to explore simple models of the
South Atlantic region, aimed at providing physical insight, before moving to complex computational simu-
lations that carry their own limitations. For example, a fully time-dependent geodynamic model of the plate
tectonic evolution of the South Atlantic region would require the choice of an appropriate initial condition.
While fluid dynamic inverse theory of mantle convection has been developed during the last decade [Bunge
et al., 2003; Ismail-Zadeh et al., 2004], its application to the initial condition problem with real geophysical
data remains challenging.

In our analysis of South Atlantic spreading variations, we did not account for changes in plate geometry
offshore of the western margin of South America, which acquired its current shape since the Neogene as
evidenced by paleomagnetic and geodetic studies [e.g., Allmendinger et al., 2005, and references therein].
Paleoplate configurations recently published by Müller et al. [2008] and Seton et al. [2012], see Figure 8, sug-
gest that plate motion was oblique along the central and northern Chilean margin before the Eocene, when
the current subduction geometry was established. While it is not obvious how this plate geometry change
would induce a deceleration and subsequent acceleration in South Atlantic spreading rates around the
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Figure 8. Plate configurations and ocean floor age in the South Atlantic region for four time periods (100 to 25 Myr) from
Müller et al. [2008]. Note that oblique subduction off western South America is inferred to have changed into the current
trench-perpendicular subduction from the Eocene (≈50 Myr) on, with a corresponding change from trench-parallel to
trench-perpendicular motion.

Cretaceous/Tertiary boundary, or how this would explain the recent Eo-Oligocene uplift events recorded on
the African continent, its influence should be investigated further.

We also assumed a constant friction coefficient of the South American plate boundaries, including the
Andean margin, for the Cenozoic. The friction coefficient of megathrusts and marine plate margins could
be regulated by the amount of sediments delivered to the margin—with the highest coefficient associ-
ated with sediment-starved margins, such as the present-day Chilean trench offshore the Altiplano-Puna
Plateaus [Lamb, 2006; Seno, 2009]. Although semiarid climatic conditions prevailed during most of the Pale-
ocene along the northernmost Chilean fore arc, Hartley [2003] proposed increased local aridity since the
Oligocene as a dominant control on the rise of the Andean Plateau. This calls for a reduction of the amount
of sediments transported from the fore arc into the trench and a subsequent increase of the interplate fric-
tion coefficient [Lamb and Davis, 2003; Oncken et al., 2006]. However, variations of the effective friction
coefficient along plate margins are unlikely to exceed 0.06 [Iaffaldano, 2012]. Moreover, any such varia-
tions along the Andean margin would have been restricted to a relatively minor portion of the total South
American plate boundary. It is thus reasonable to expect no significant impact upon the torque balance and
kinematics of the South American plate [e.g., Iaffaldano and Bunge, 2008].

6.2. Implications
Our results suggest it is possible to exploit the oceanic spreading record to quantify some of the forces
involved in driving and resisting plate motion. Plate tectonics explains the piecewise constant nature of
surface velocities on our planet [DeMets et al., 1994], but the nature and magnitude of the driving and
resisting forces remain obscure. The difficulty stems from three sources. First, the mantle buoyancy forces
are not well known, although combining mantle convection simulations with mantle mineralogy models
[Piazzoni et al., 2007] may shed light on how to interpret mantle seismic structure in terms of density anoma-
lies [Forte et al., 2010; Schuberth et al., 2009a, 2009b, 2012]. Second, we lack robust descriptions of the mantle
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deformation behavior in the regime of low strain rates, high temperature, and high pressure that charac-
terizes the deep Earth. Theoretical progress from multiscale material modeling [Castelnau et al., 2010] may
allow one to augment experimental work to better understand from first principle the deformation of man-
tle minerals [Ammann et al., 2010; Cordier et al., 2012]. The third challenge reflects the fact that the inertia
of moving plates is negligible so that tectonic forces balance everywhere on Earth. Our ability to consider
past and present plate velocities is thus essential to quantify the forces, because plate motion changes are
necessarily driven by changes in the driving or resisting forces.

7. Conclusions

We have investigated the South Atlantic region in terms of spreading history, Andean topographic evolu-
tion, and upper mantle seismic structure, focusing on prominent short-term spreading velocity changes
recorded in the basin. The far-field effects of the Andes on the South Atlantic spreading record are rela-
tively straightforward. Rapid Andean topographic growth in the Miocene correlates with a recent reduction
in South Atlantic spreading velocity, likely due to increased plate boundary forcing associated with the
newly elevated topography. The twofold reduction in South Atlantic spreading velocity and subsequent
renewed vigorous spreading at the Cretaceous/Tertiary boundary, in contrast, lack such correlation, as
Andean paleoelevation at the time presumably was low. Torque balance models demonstrate that the Late
Cretaceous/Tertiary spreading changes could arise from variations in basal drag associated with unsteady
asthenosphere flow. The magnitude of the pressure-induced mantle flow velocities compares well with
those required from independent considerations to maintain South American plate motion through basal
shear. Predictions from our models for temporal changes in regional topography, due to temporal changes
in pressure gradients and upper mantle flow, appear to agree with geologic and geophysical observations,
including episodes of passive margin uplift, regional basin reactivation, and magmatic activity.
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