P. Bono, W. Dreybrodt, S. Errcole, C. Percopo, and K. Vosbeck, Inorganic calcite precipitation in tartare karstic spring (Lazio, central Italy) : field measurement and theoretical prediction on depositional rates, Environmental Geology, vol.41, pp.305-313, 2001.

J. Drake and R. Harmon, Hydrochemical environments of carbonate terrains, Water Resources Research, vol.10, issue.2, pp.949-957, 1973.
DOI : 10.1029/WR009i004p00949

W. Dreybrodt, L. Einsenlohr, B. Madry, and S. Ringer, Precipitation kinetics ofcalcite in the system CaCO 3 - H 2 O-CO 2 : the conversion to CO 2 by the slowprocess H+ + HCO 3 -? CO 2 + H 2 O as a limiting steps, 1997.

J. Faimon, M. Li?binská, and P. Zají?ek, Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic, International Journal of Speleology, vol.41, issue.1, pp.17-28, 2012.
DOI : 10.5038/1827-806X.41.1.3

J. Faimon, M. Li?binská, P. Zají?ek, and O. Sracek, Partial pressures of co 2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the moravian karst, czech republic, Acta Carsologica, vol.41, pp.47-57, 2012.

I. Fairchild, A. Borsato, A. Tooth, S. Frisia, C. Hawkesworth et al., Controls on trace element (Sr???Mg) compositions of carbonate cave waters: implications for speleothem climatic records, Chemical Geology, vol.166, issue.3-4, pp.255-269, 2000.
DOI : 10.1016/S0009-2541(99)00216-8

D. Ford and P. Williams, Karst hydrogeology and geomorphology, 2007.
DOI : 10.1002/9781118684986

J. Herman and M. Lorah, CO2 outgassing and calcite precipitation in Falling Spring Creek, Virginia, U.S.A., Chemical Geology, vol.62, issue.3-4, pp.251-262, 1986.
DOI : 10.1016/0009-2541(87)90090-8

R. Johnson, E. Dewitt, and L. Arnold, Using hydrogeology to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: part 1, Environmental Earth Sciences, vol.15, issue.12, pp.1821-1835, 2012.
DOI : 10.1007/s12665-012-1801-1

H. Karimi, E. Raesi, and M. Bakalowicz, Characterising the main karst aquifers of the Alvand basin, northwest of Zagros, Iran, by a hydrogeochemical approach, Hydrogeology Journal, vol.15, issue.5-6, pp.787-799, 2005.
DOI : 10.1007/s10040-004-0350-4

W. Langelier, The analystical control of anti-corrosion water treatment, Journal of American Waterworks Association, vol.28, pp.1500-1521, 1936.

M. Leybourne, R. Betcher, W. Mcritchie, C. Kaszycki, and D. Boyle, Geochemistry and stable isotopic composition of tufa waters and precipitates from the Interlake Region, Manitoba, Canada: Constraints on groundwater origin, calcitization, and tufa formation, Chemical Geology, vol.260, issue.3-4, pp.221-233, 2009.
DOI : 10.1016/j.chemgeo.2008.12.024

Q. Li, H. Sun, J. Han, Z. Liu, and L. Yu, High-resolution study on the hydrochemical variations caused by the dilution of precipitation in the epikarst spring: an example spring of Landiantang at Nongla, Mashan, China, Environmental Geology, vol.47, issue.3, pp.347-354, 2008.
DOI : 10.1007/s00254-007-0821-8

Z. Liu, Q. Li, H. Sun, and J. Wang, Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects, Journal of Hydrology, vol.337, issue.1-2, pp.207-223, 2007.
DOI : 10.1016/j.jhydrol.2007.01.034

Z. Liu, U. Svensson, W. Dreybrodt, Y. Daoxian, and D. Buhmann, Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates, Geochimica et Cosmochimica Acta, vol.59, pp.3087-3097, 1995.

D. Mattey, I. Fairchild, T. Atkinson, J. Latin, M. Ainsworth et al., Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar, Geological Society, London, Special Publications, vol.336, issue.1, pp.323-344, 2010.
DOI : 10.1144/SP336.17

D. Parkhurst, User's guide to PHREEQC A computer program for speciation, reaction-path, advectivetransport , and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report, pp.95-4227, 1995.

S. Pasvanoglu and F. Gultekin, Hydrogeochemical study of the Terme and Karakurt thermal and mineralized waters from Kir??ehir Area, central Turkey, Environmental Earth Sciences, vol.19, issue.2, pp.169-182, 2012.
DOI : 10.1007/s12665-011-1217-3

N. Peyraube, R. Lastennet, and A. Denis, Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the Pco 2 -SIc relationship, Journal of Hydrology, vol.430, pp.13-24, 2012.

N. Peyraube, R. Lastennet, A. Denis, and P. Malaurent, Estimation of epikarst air <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:math> using measurements of water ??13CTDIC, cave air <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math altimg="si3.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mi mathvariant="normal">??</mml:mi><mml:msup><mml:mrow/><mml:mrow><mml:mn>13</mml:mn></mml:mrow></mml:msup><mml:msub><mml:mrow><mml:mtext>C</mml:mtext></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:math>, Geochimica et Cosmochimica Acta, vol.118, pp.1-17, 2013.
DOI : 10.1016/j.gca.2013.03.046

L. Plummer, D. Parkhurst, and D. Kosiur, MIX2, a computer program for modeling chemical reactions in natural waters, U.S. Geological Survey Water-Resources Investigations Report, vol.61, 1975.

L. Plummer and E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90??C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et Cosmochimica Acta, vol.46, issue.6, pp.1011-1040, 1982.
DOI : 10.1016/0016-7037(82)90056-4

D. Riechelmann, A. Schröder-ritzrau, D. Scholz, J. Fohlmeister, C. Spötl et al., Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site, Journal of Hydrology, vol.409, issue.3-4, pp.682-695, 2011.
DOI : 10.1016/j.jhydrol.2011.08.068

J. Roberge, Géomorphologie du karst de la Haute-Saumons, île d'Anticosti, 1989.

E. Shuster and W. White, Source areas and climatic effects in carbonate groundwaters determined by saturation indices and carbon dioxide pressures, Water Resources Research, vol.7, issue.5, pp.1067-1073, 1972.
DOI : 10.1029/WR008i004p01067

E. Shuster and W. White, Seasonal fluctuations in the chemistry of lime-stone springs: A possible means for characterizing carbonate aquifers, Journal of Hydrology, vol.14, issue.2, pp.93-128, 1971.
DOI : 10.1016/0022-1694(71)90001-1

C. Spötl, I. Fairchild, and A. Tooth, Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves, Geochimica et Cosmochimica Acta, vol.69, issue.10, pp.2451-2468, 2005.
DOI : 10.1016/j.gca.2004.12.009

J. Thrailkill and T. Robl, Carbonate geochemistry of vadose water recharging limestone aquifers, Journal of Hydrology, vol.54, issue.1-3, pp.195-208, 1981.
DOI : 10.1016/0022-1694(81)90160-8

A. Tooth and I. Fairchild, Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland, Journal of Hydrology, vol.273, issue.1-4, pp.51-68, 2003.
DOI : 10.1016/S0022-1694(02)00349-9

J. Troester and W. White, Seasonal Fluctuations in the Carbon Dioxide Partial Pressure in a Cave Atmosphere, Water Resources Research, vol.13, issue.4, pp.53-156, 1984.
DOI : 10.1029/WR020i001p00153

Y. Unger-lindig, B. Merkel, and M. Schipek, Carbon dioxide treatment of low density sludge: a new remediation strategy for acidic mining lakes?, Environmental Earth Sciences, vol.22, issue.3, pp.1711-1722, 2010.
DOI : 10.1007/s12665-009-0305-0

D. Vesper and W. White, Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA, Hydrogeology Journal, vol.12, issue.2, pp.135-143, 2004.
DOI : 10.1007/s10040-003-0299-8

. Sic-)-reference and . Frame, A scale for Pco 2 eq (in percent) is added above horizontal axis; a scale for HCO 3 ¯ concentration in mg/l at 13°C is added. Black line represents a constant bicarbonate concentration