Carbon dioxide in silica-undersaturated melt Part I: The effect of mixed alkalis (K and Na) on CO2 solubility and speciation

Yann Morizet, Michael Paris, Fabrice Gaillard, Bruno Scaillet

To cite this version:

Carbon dioxide in silica-undersaturated melt Part I: The effect of mixed alkalis (K and Na) on CO₂ solubility and speciation.

Yann Morizet¹,³, Michael Paris², Fabrice Gaillard³, Bruno Scaillet³

(1) Université de Nantes, Nantes Atlantique Universités, Laboratoire de Planétologie et Géodynamique de Nantes (LPGN)

UMR CNRS 6112

2 rue de la Houssinière, 44322 NANTES (France)

(2) Institut des Matériaux Jean Rouxel (IMN), Université de Nantes

UMR CNRS 6502

2 rue de la Houssinière, BP32229, 44322 NANTES Cedex 3 (France)

(3) CNRS – Université d’Orléans – BRGM

UMR 7327

Institut des Sciences de la Terre d'Orléans

1a rue de la Férollerie, 45071, Orléans, France
Corresponding author: Yann Morizet

Postal address:

Laboratoire de Planétologie et Géodynamique de Nantes (LPGN), UMR-CNRS 6112, Université de Nantes.

2 rue de la Houssinière, 44322 Nantes Cedex (FRANCE)

phone: +33 (0) 2 5112 5491

fax: +33 (0) 2 5112 5268

*E-mail: yann.morizet@univ-nantes.fr
Abstract

Silica undersaturated melts such as nephelinites are very peculiar magmatic materials. Their occurrence on Earth is often associated with carbonatite melts. These low-silica melts can dissolve a large quantity of CO$_2$ and are rich in alkalis. However, the way CO$_2$ dissolves into these melts and the effect of different alkali elements are poorly constrained.

We present experimental results on the CO$_2$ solubility and speciation in synthetic nephelinite in the NKCMAS system, equilibrated at high-pressure (50-300 MPa), high-temperature (1250°C) with an excess C-O-H fluid phase. The nephelinitic glasses with 20 mol.% total alkali oxides were synthesized with varying K$_2$O/(K$_2$O+Na$_2$O) ratio (denoted as #K) in order to investigate the differential effect of those two alkali cations on CO$_2$ solubility and speciation. All experiments were conducted under oxidizing conditions (>NNO+3) resulting in binary fluid phase compositions with CO$_2$ and H$_2$O species. The CO$_2$ content and speciation were investigated using Micro-Raman and Solid State NMR spectroscopies for 13C nucleus.

We observe an increase in CO$_2$ content as a function of pressure, consistent with previous studies but CO$_2$ solubility is much higher than in alkali-poorer melts. The CO$_2$ content is above 1 wt.% at 50 MPa and increases up to 4.5 wt.% at 300 MPa. The progressive replacement of Na by K (#K between 0 and 1) induces an increase in CO$_2$ content. At 50 MPa, the CO$_2$ solubility is ~1.75 wt.% in the K-free glass (#K = 0) and increases up to ~3.0 wt.% CO$_2$ in Na-free glass (#K = 1). The change in CO$_2$ solubility as a function of #K is discussed in terms of carbonatite genesis.

The 13C NMR spectra show that carbonate (CO$_3^{2-}$) environments can be attributed to carbonate species associated to non-bridging oxygen in agreement with the depolymerized nature of the investigated compositions. Two singular additional carbonated species were also
identified with 13C NMR signatures at 161 and 165 ppm. Those species are assigned to isolated K$^+$... CO$_3^{2-}$... H$^+$ and Na$^+$... CO$_3^{2-}$... H$^+$ carbonate species. The presence of such isolated carbonate species is interpreted as possible precursors to carbonatitic melt genesis.
1. Introduction

A large range of fluid compositions are present in the deep Earth and these have an important influence on various Earth processes (e.g. Eggler, 1974; Brey and Green, 1975, 1976; Wallace and Green, 1988; Falloon and Green, 1989; Hirose, 1997; Freda et al., 1997; Draper and Green, 1997; Dalton and Presnall, 1998). Carbon dioxide (CO$_2$) is the second most abundant magmatic volatile (e.g. Gerlach and Graeber, 1985; Symonds et al., 1994; Jambon, 1994) being even dominant in some volcanic systems (Roedder, 1965; Wyllie and Huang, 1976; Holloway, 1981; Giggenbach, 1997; Andersen and Neumann, 2001). Some of these systems may reflect a high CO$_2$ abundance in their source regions, as witnessed by unusual magma compositions (such as nephelinite, melilitite and kamafugite) which have been suggested to result from high CO$_2$ activity during mantle melting (e.g. Holloway, 1976; Wallace and Green, 1988; Johnson et al., 1994; Dixon and Stolper, 1995b; Papale and Polacci, 1999; De Moor et al., 2013). Recent experimental investigations have also argued that CO$_2$-rich source could play a major role on the genesis of ocean island basalts and associated alkali-rich magmas (Dasgupta et al., 2007; Gerbode and Dasgupta, 2010; Mallik and Dasgupta, 2013).

The genesis of those alkali-rich magmatic compositions is often associated to CO$_2$ incorporation, which might trigger the increase in alkali content in the silicate melts (Iacono-Marziano et al., 2008; Mitchell, 2009). Alkali-rich and CO$_2$-rich silicate magmas are indeed commonly associated to carbonatite rocks. For instance, several recent studies have shown the co-existence of CO$_2$-rich (several wt.% CO$_2$) nephelinite silicate melts (40-50 wt.% SiO$_2$ and >20 wt.% Na$_2$O+K$_2$O) with carbonatite melts in natural melt inclusions collected at Oldoinyo Lengai volcano (Mitchell, 2009; Mitchell and Dawson, 2012; De Moor et al., 2013).
The role of intensive parameters (T,P) on either CO\textsubscript{2} or H\textsubscript{2}O solubilities and speciations in silicate melts are well constrained (e.g. Blank and Brooker, 1994; Dixon et al., 1995a; Morizet et al., 2002, 2010; Behrens et al., 2009; Lesne et al., 2011a,b). The effect of melt composition is also reasonably well understood, and available studies cover various types of compositions ranging from basalts and affiliates (e.g. Fine and Stolper, 1986; Pan et al., 1991; Pawley et al., 1992; Dixon et al., 1995a; Botcharnikov et al., 2005, 2006; Iacono-Marziano et al., 2008; Shishkina et al., 2010; Lesne et al., 2011a,b) to rhyolites (e.g. Fogel and Rutherford, 1990; Blank et al., 1993; Tamic et al., 2001; Duncan and Dasgupta, 2014) and silica undersaturated melts (e.g. Brey and Green, 1976; Thibault and Holloway, 1994; Brooker et al., 2001a; Behrens et al., 2009). As a result, several thermodynamic and/or empirical models with the scope of predicting the CO\textsubscript{2} solubility as function of compositional and intensive parameters have been proposed (Dixon, 1997; Papale, 1999; Brooker et al., 2001a; Newman and Lowenstern, 2002; Papale et al., 2006; Lesne et al., 2011b, Iacono-Marziano et al., 2012). Furthermore, recent work by Guillot and Sator (2011) based on classical molecular dynamic simulations reproduces adequately the CO\textsubscript{2} solubility and physical properties of CO\textsubscript{2}-bearing basaltic and kimberlitic melts at pressures up to 12 GPa. However, although CO\textsubscript{2} dissolution mechanisms have been specifically studied (e.g. Fine and Stolper, 1986; Fogel and Rutherford, 1990; Blank and Brooker, 1994), the structure of CO\textsubscript{2}-bearing silicate melts is still poorly known. In particular, there is currently a lack of knowledge on the role of network modifying and charge balancing cations such as Na or K.

The intermixing between alkali and/or alkaline-earth in silicate melts is recognized to exert a non-negligible influence on the silicate melt structure and physical properties. Recent work by Le Losq and Neuville (2013) on rhyolitic polymerized melt composition identified a strong effect of K/Na ratio on the silicate melt structural and physical properties in CO\textsubscript{2}-free melt composition; hence, as CO\textsubscript{2} is dependent on the melt structural configuration, an effect
of K/Na ratio on CO$_2$ solubility and speciation is to be expected. In their work, Le Losq and Neuville (2013) showed that with increasing K/Na ratio, there is an increase in rhyolitic melt viscosity which they attributed to geometrical changes within the melt structure as K is progressively replaced by Na (i.e. changes in Si-O bond length and Si-O-Si bond angles). However, in Le Losq and Neuville (2013), the intermixing between Na and K in the studied rhyolitic composition does not induce a change in the degree of polymerization.

The degree of silicate melt polymerization is commonly expressed as the NBO/T ratio (Mysen, 1988; 1990) where NBO represents the concentration of Non-Bridging Oxygen associated with the presence non-network-forming or network modifier cations (Na$^+$, K$^+$, Ca$^{2+}$ and Mg$^{2+}$ in the present study) and T is the concentration of network forming cations (Si$^{4+}$ and Al$^{3+}$ in the present study). In other words, according to Le Losq and Neuville (2013), the intermixing between Na and K cations in silicate melt involves local structural rearrangements without changing the NBO/T which is kept constant.

Early work by Brooker et al. (2001a) showed that the NBO/T influences dramatically the CO$_2$ solubility in silicate glasses: an increase in the NBO/T provokes an increase in CO$_2$ solubility. Therefore, in the present study, several issues of varying importance have to be considered when investigating the systematic of CO$_2$ solubility in silicate melts. Brooker et al. (2001a) identified the change in CO$_2$ solubility with varying NBO/T which can be considered as a first order effect. The differential effect of K versus Na on CO$_2$ solubility in silicate melt could be considered as a second order effect; yet it is currently poorly known. Consequently, in the case a change in CO$_2$ solubility is observed with changing K/Na ratio in the presented work, it would reflect a difference in the chemical affinity of CO$_2$ with either Na or K cations rather than a change in the NBO/T.
We investigated the effect of the exchange between K and Na on the CO$_2$ solubility and speciation of a nephelinitic glass composition. We conducted our experimental study at 1250°C and between 50 and 300 MPa on five different starting compositions with #K (molar K$_2$O/(K$_2$O+Na$_2$O) ratio) ranging from 0 to 1. The CO$_2$ solubility and speciation in glass were investigated via Raman and NMR spectroscopies.

2. Experimental synthesis

A synthetic Fe-free nephelinitic starting composition was prepared from a mixture of dried oxides (28SiO$_2$, 29SiO$_2$, Al$_2$O$_3$, CaO and MgO) and carbonates (Na$_2^{13}$CO$_3$ and K$_2^{13}$CO$_3$). The absence of iron is justified by the analytical needs for investigating the C speciation with NMR which cannot be used on Fe-rich materials. The investigated nephelinitic composition is similar to the one reported in Brooker et al. (2001a) with (in mol.%) SiO$_2$ = 45, Al$_2$O$_3$ = 7, MgO = 13, CaO = 15, and Na$_2$O+K$_2$O = 20. The investigated composition is also very close to natural occurrences of nephelinitic silicate melt compositions found in melt inclusions from Oldoinyo Lengai volcano (Mitchell and Dawson, 2012; De Moor et al., 2013). As a comparison, the theoretical compositions are given in Table 1 along with some examples of the silicate melt compositions found in melt inclusions by Mitchell and Dawson (2012) and De Moor et al. (2013). As shown in Table 1, the investigated synthetic compositions are close to the reported natural compositions in melt inclusions: 1) the Na$_2$O+K$_2$O in mol.% is on the same order in both synthetic compositions (20 mol.%) and natural melt inclusions (20 to 26 mol.%); 2) the investigated degree of polymerization in the synthetic compositions is intermediate (NBO/T = 1.4) as compared to the natural ones for which the NBO/T is ranging from 0.74 to 2.08. The CaO and MgO contents are different in between natural and synthetic
compositions owing to the fact that Fe is not present in our synthetic compositions for the NMR analytical purpose.

In order to investigate the role of alkali exchange on the CO$_2$ solubility and speciation, Na and K were substituted for each other on a molar basis producing five different starting materials with different #K ranging from 0 to 1 (Table 1): K0-E, 20 mol.% Na$_2$O, 0 mol.% K$_2$O (#K = 0); K5-E, 15 mol.% Na$_2$O, 5 mol.% K$_2$O (#K = 0.25); K10-E, 10 mol.% Na$_2$O, 10 mol.% K$_2$O (#K = 0.5); K15-E, 5 mol.% Na$_2$O, 15 mol.% K$_2$O (#K = 0.75); and K20-E, 0 mol.% Na$_2$O, 20 mol.% K$_2$O (#K = 1). Although, natural nephelinitic melt inclusions exhibit #K close to the sodic end-member (Table 1, #K < 0.3), we cover #K between 0 and 1 so as to obtain a systematic view of the CO$_2$ content variation as a function of alkali composition. A small proportion of Fe$_2$O$_3$ (< 0.4 wt.%) was added as a source of paramagnetic element to reduce the NMR acquisition time length by reducing the relaxation time which is usually long for 13C (Kohn et al., 1991). The FeOtot was quantified by EPMA and is reported in Table 2. The measured FeOtot in the starting materials is below 0.3 mol.% which is known not to affect NMR spectra (Maekawa et al., 1991). The compositions from EPMA for the whole set of samples are reported in Table 2.

The carbonate powders (Na$_2$13CO$_3$ and/or K$_2$13CO$_3$) are the source of 13CO$_2$ during the experiments. The total CO$_2$ content is broadly similar between the different starting compositions: 13.2 wt.% 13CO$_2$ for K0, K5, K15 and K20-E and 14.62 wt.% 13CO$_2$ for K10-E. Up to 6 wt.% H$_2$O is added together as liquid water with the solid starting materials in the platinum capsules (see Table 2). As shown in Table 2, the loaded water content is different from one experiment to another but remains almost constant from one sample to another at a given pressure. The starting composition is loaded after water and the platinum capsule is welded shut.
Experiments were conducted at 1250°C in an Internally Heated Pressure Vessel (IHPV) for run durations between 2 to 5 hours which is sufficient to ensure bulk chemical equilibrium considering that at 1250°C CO$_2$ and H$_2$O diffusion coefficients are high (Watson, 1994; Zhang et al., 2007). Pressure varied between 50 and 300 MPa (Table 2). An additional set of samples was synthesised at 100 MPa under CO$_2$-free conditions (K-E5 denoted 100 MPa CO$_2$-free) but in equilibrium with water (see Table 2). For technical reasons, the experiment could not be conducted at 1250°C but instead at 1150°C. We believe that such difference will not produce any significant difference for the purpose of the present study. This experimental pressure range (50 < P < 300 MPa) is close to the reported entrapment pressure in natural melt inclusions studied by De Moor et al. (2013). As for the temperature, De Moor et al. (2013) did not specify a range of equilibrated temperature but suggested that the melt inclusions at some point experienced high enough temperature preventing immiscibility between silicate and carbonate liquids (Brooker and Kjarsgaard, 2011).

The procedure to achieve the experimental conditions is described elsewhere (e.g., Scaillet et al., 1992) and is summarized as follows. The IHPV is first loaded at room temperature with Argon gas to roughly half the desired total pressure value. The temperature is then brought to the final value and the pressure increases up to requested experimental pressure. P and T are constantly monitored during the experiment using an electronic gauge for P and a type S thermocouple connected to a Eurotherm controller for T. The T gradient along the capsule (2 cm in length) was measured with an additional S-type thermocouple and never exceeded 15°C. Reported P, T measurements are accurate to within ± 20 bars and ± 5°C, respectively.

All runs were ended by drop-quenching the sample holder into the cold part of the IHPV, which resulted in quench rates of 150°C/s for that kind of apparatus (Di Carlo et al., 2006; Iacono-Marziano et al., 2008; Morizet et al., 2010). In all cases, opening of the capsules
produced a hissing sound suggesting that an excess fluid phase was present in the capsule during the experiment. Several chips from the recovered glasses were selected for micro-Raman analyses. The remaining of the glass sample was then crushed for MAS NMR analysis. Optical examination of the recovered samples was done. Unfortunately, we could not find any fluid inclusions preventing the fluid phase composition to be determined by analytical mean. All the investigated samples are clear glasses. Samples showing evidence of crystals (for instance K20-E, K15-E synthesized at 200 and 300 MPa; K10-E synthesized at 300 MPa) were discarded. The K10-E2 sample synthesized at 200 MPa showed evidence of a crystalline phase; we nevertheless considered this sample as it is still informative within the frame of the current work. All recovered synthesized samples are listed in Table 2.

3. Analytical techniques

3.1 Confocal Micro-Raman

Confocal micro-Raman was used to characterize the volatile species dissolved in the glass samples. The Raman system is a Jobin-Yvon Labram spectrometer (focal distance = 300 mm) equipped with a 2400 gratings/mm CCD detector. The light source is an Ar laser Innova 300-5W from Coherent© operating at 514.5 nm. The typical output laser power was set between 100 and 150 mW. The analyses were performed in confocal mode (hole = 500 μm, slit = 200 μm) with an Olympus (x50) objective. The spectra were recorded to characterize the network and CO$_3^{2-}$ vibrational modes in the 200-1200 cm$^{-1}$ range and the OH stretching band in the 2500-3900 cm$^{-1}$ range. The spectral frequency position was measured with the emission lines of Ne- and Hg-lamps. The accuracy stays within ±1 cm$^{-1}$. The acquisition time was usually within 45-90 s to obtain a reasonably good signal to noise ratio (S/N). Two to five Raman
spectra were collected on several spot locations to check for sample homogeneity with regards to its dissolved volatile contents (H₂O and CO₂).

3.2 ¹³C-MAS NMR

Solid State ¹³C-MAS NMR analyses of the partially crushed samples were performed with a 500 MHz Bruker Avance III. A 4 mm CP/MAS probe was employed and the samples loaded in a ZrO₂ rotor with Teflon end-cap. Rotors were spun at 10 kHz. All spectra are referenced against TMS (Tetramethylsilane).

For all samples, ¹³C-MAS NMR spectra were acquired with single π/4 excitation of 2 µs. ¹³C-species can have long spin lattice relaxation time in silicate glasses (several minutes, Kohn et al., 1991). As a result, a recycle delay between scans of at least 20 s was used. ¹H decoupling during acquisition (SPINAL64 scheme with a rf field of 60 kHz, Fung et al., 2000) was used to prevent from broadening of the ¹³C lines due to heteronuclear interactions with protons (Laws et al., 2002). For ¹³C Direct MAS spectra, up to 2560 scans have been co-added. The obtained free-induction-decay signal was treated with a low line broadening exponential function (50 Hz) preventing from loss of structural information.

¹H-¹³C CPMAS NMR sequence was also employed to investigate ¹H and ¹³C proximity and spatial relationship in the glass (Schmidt et al., 2000; Robert et al., 2001; Puls and Eckert, 2006). This method is selective but non quantitative. We applied a contact time (ct) length of 1 ms. During CP-MAS experiment, a ¹H repetition time of 1 s was sufficient for total relaxation before the next scan. The 2D heteronuclear correlation spectrum (¹H-¹³C HETCOR) for K0-E1 was acquired similarly except for the contact time set to 2 ms.
1H-1H EXCHANGE NMR acquisition was also conducted so as to investigate the interatomic proximity between proton environments in K0-E1 glass. In this experiment, rotor was spun at 14 kHz. A number of 2048 scans were collected at a recycle delay of 1 s. We used a mixing time of 1 and 500 ms. At 1 ms mixing time, the exchange between the proton is reduced and most of the hydroxyl signal will be located on the diagonal of the 2D NMR spectrum whereas at 500 ms mixing time the exchange between the proton is enhanced and the hydroxyl signal will start to depart from the 2D NMR spectrum diagonal.

3.3 EPMA

The major element compositions of glasses were measured using EPMA. Measurements were done on a Cameca SX 50, with 15kV and 10 nA, with 10 s peak counting time for all elements. Na and K were analysed first and a PAP correction procedure was applied. Na migration under the beam was corrected by using secondary hydrous glass standards of known Na$_2$O and H$_2$O contents (Clemente et al., 2004). Analyses were conducted in defocused mode (10 μm beam diameter) in order to reduce any elemental loss. Measurements have been conducted to evaluate the alkali loss under the electron beam. The Na/K is almost constant in analysed glasses: for example after 15 s of analysing time, the loss in Na as compared to K in K5-E1 is less than 5% in relative on the counting value. The average major elements concentrations (in mol.%) obtained from more than 20 analyses for each recovered glasses are reported in Table 2. The standard deviation for each oxide is below 0.3 mol.%.

4. Methods and Results

4.1 CO$_2$ content determined via micro-Raman spectroscopy
The glass CO\textsubscript{2} content was determined from micro-Raman spectroscopy using the calibration method of Morizet et al. (2013). We show a typical example of the adopted procedure in Figure 1 for identical experimental pressure (117 MPa) except for K5-E2 which was synthesized at 200 MPa. To obtain an idea of the statistical distribution of the silicate glass species (Rossano and Mysen, 2013), we have first considered the volatile-free glasses (VF). Starting from the reliable simulation of the VF spectra, we have followed the same approach for CO\textsubscript{2}-bearing glasses. We added an additional peak at 1070 cm-1 to simulate the CO\textsubscript{3}2- vibrational signature (see Figure 1). The whole set of peak parameters (peak position, full width at half maximum FWHM and areas) were then optimized until obtaining the lowest possible residuals as shown in Figure 1. The CO\textsubscript{2} dissolved in the glass was then calculated from the proposed linear equation in Morizet et al. (2013) which is independent of the glass composition. The reader is referred to this article for further information on the method.

The corresponding CO\textsubscript{3}/Qn HF ratio needed for the CO\textsubscript{2} estimate is reported in Table 2, along with the corresponding wt.% CO\textsubscript{2}. The CO\textsubscript{3}/Qn HF given value represents the average value determined from the replicated Raman analyses on the different spot locations. We observe a clear increase in the v\textsubscript{1} CO\textsubscript{3} peak with increasing synthesis pressure when comparing the spectra for K0-E3 (Figure 1A) and K5-E2 (Figure 1B). The increase in peak intensity is witnessing an increase in CO\textsubscript{2} solubility with increasing pressure, as anticipated (e.g. Blank and Brooker, 1994; Thibault and Holloway, 1994; Brooker et al., 1999; Morizet et al., 2002; Botcharnikov et al., 2005, 2006; Behrens et al., 2009).

If we compare the spectra obtained for samples synthesized under identical experimental pressure (K0-E3, K10-E3 and K15-E3 in Figure 1A, C and D, respectively), we observe that the resulting CO\textsubscript{3}/Qn is increasing from 0.149 for K0-E3 to 0.186 for K15-E3. This increase is well above the standard deviation calculated from replicated Raman spectra, and outside the error associated with the simulation procedure (error of ±0.018 on the CO\textsubscript{3}/HF reported in
Morizet et al., 2013); therefore such an increase may be attributed to an actual change in the CO₂ solubility with composition. Overall, the very low errors indicate the good homogeneity of the recovered glass samples.

The H₂O dissolved in the glass was determined from micro-Raman spectroscopy using the calibration procedure of Mercier et al. (2009). The presence of the CO₂ peak in the high-frequency (HF: 800-1200 cm⁻¹) region of the Raman spectra prevents the use of this frequency region to determine the H₂O content (see Mercier et al., 2009); therefore, we determined the glass H₂O solubility (H₂O₉⁰⁶) using the low-frequency (LF: 250-800 cm⁻¹) region. For mafic magmas, there is a linear correlation between this ratio and the glass water content (see Mercier et al., 2009; and Table 2). Typical Raman spectra are shown in Figure 2 with the LF region for carbonates (Figure 2A and C) and the HF region of water species (Figure 2B and D). Below each spectrum the third-order polynomial fitted baseline for quantifying the area of the different frequency region is also shown (i.e. LF and H₂O). The ratio between the H₂O and the LF bands is reported next to each spectrum.

We show the spectra for K0 glass samples synthesized at different pressure. The H₂O/LF ratio varies between samples suggesting a different H₂O content. For instance, we see a change in H₂O/LF ratio between 0.455 and 0.538 between K0-E3 and K0-E2, respectively; for K0-E1, the H₂O/LF goes down to 0.420. We note that the standard deviation (based on replicate Raman spectra) on the H₂O/LF ratios can be high, hinting at a slight heterogeneity of the H₂O solubility of the glass samples. However, the difference in the H₂O/LF primarily reflects a difference in H₂O solubility which in large part comes from the different amounts of H₂O loaded to experimental charges (see Table 2), in addition to possible effects of K₂O on H₂O solubility (see below). The H₂O content in K-E5 glass samples (100 MPa CO₂-free) is very close to the initial H₂O content loaded in the capsule suggesting a fairly good accuracy of the Mercier et al. (2009) method in determining the H₂O content in the present
glass compositions. As an example, 2.92 wt.% H$_2$O was measured in K0-E5 for an initial H$_2$O content of 3.25 wt.% (see Table 2). The close agreement between the loaded and measured H$_2$O content also indicates that the experimental charges were not saturated with respect to water and the measured H$_2$O content does not represent the actual H$_2$O solubility.

4.2 Carbonate speciation from 13C MAS NMR spectroscopy

The CO$_2$ speciation has been investigated by 13C MAS NMR. We show in Figure 3 several 13C MAS NMR spectra obtained with various acquisition methods: single pulse or CPMAS. The spectra are represented at a given pressure (Figure 3A, B and C at 300, 200 and 100 MPa, respectively) and for a given glass composition (Figure 3D, E and F for K0, K5 and K10, respectively). Below the spectra we have also added the difference between two selected NMR spectra. We have reported the 13C NMR spectra between 155 and 185 ppm for the carbonate region. We did not find evidence for the presence of CO$_2^{\text{mol}}$ at 125 ppm (Kohn et al., 1991; Morizet et al., 2002) suggesting that CO$_2$ is dissolved only as carbonate groups (CO$_3^{2-}$) in the investigated composition in agreement with the results of Brooker et al. (2001b) on a similar composition.

The CO$_3^{2-}$ NMR signature is represented by a main peak located between 165 and 175 ppm. The line shape of this main CO$_3^{2-}$ contribution is slightly asymmetric. The asymmetry is consistent with the existence of several CO$_3^{2-}$ groups within the glass structure (Kohn et al., 1991; Brooker et al., 1999; Morizet et al., 2002; 2010). The existence of several CO$_3^{2-}$ environments is also confirmed by the complex changes in the difference spectra (Figure 3D, E and F). For instance, in Figure 3E, we observe a diminution of the spectra difference as compared to the average line around 168 ppm whereas we observe a growth in the spectra difference as compared to the average line at 171 ppm. A similar observation can be made for
K0 (Figure 3D) and K10 (Figure 3F), though the K10 sample synthesized at 200 MPa is partially crystallized. Comparing the spectra at a given pressure also gives evidence for several carbonate units dissolved in glasses of different compositions. The most important change is observed in Figure 3C for samples synthesized at 100 MPa. The spectra difference between K15 and K0 shows a strong diminution at 170 ppm whereas we observe a noticeable growth at 168 ppm. It is difficult to find any systematic change as a function of synthesis pressure or glass composition; only relevant spectrum simulations will provide quantitative information.

The main CO$_3^{2-}$ band is accompanied by additional signatures. In Figure 3C, we see two weak peaks located at 164.7 and 161.7 ppm, respectively. Those peaks are also visible in other plots from Figure 3. The assignment of these two peaks is unambiguous and has been well-documented at least for crystalline material: the 164.7 ppm peak is attributed to free hydrated sodium carbonate group (Nebel et al., 2008) and the 161.7 ppm peak is attributed to free hydrated potassium carbonate group (Gasc et al., 2009). These two distinct species are present in the glass as free clusters. The peaks indicating the presence of those free clusters are observed in samples free of crystalline material (clear glass) and are therefore considered to be part of the glass. In Figure 3D, E and F, we also added a 1H-13C CPMAS NMR spectrum for K0, K5 and K10 synthesized under different pressures. It appears that the peaks for the hydrated (Na,K) … CO$_3$ increase compared to the main carbonate peak under CPMAS acquisition.

5. Discussion

5.1 CO$_2$ and H$_2$O solubilities: the effect of composition
We show in Figure 4 the change in CO$_2$ and H$_2$O contents, determined by Raman spectroscopy, as a function of the #K as determined from EPMA analyses (numerical values are given in Table 2). In Figure 4A, we clearly see an increase in CO$_2$ content with increasing #K. The H$_2$O content is reported next to each point in Figure 4A. At 300 MPa, the CO$_2$ content changes from 3.7 to 4.4 wt.% CO$_2$ between K0 and K5 (i.e. #K = 0 and 0.251, respectively). The same applies to 200 MPa data point with an increase of CO$_2$ content from 3.1 to 3.6 wt.% CO$_2$ for K0 and K5, respectively. We also show an additional point (K10-E2) showing a slight increase in CO$_2$ content as compared to K5-E2, noting that this sample has a non-negligible amount of crystalline material. SEM elemental mapping revealed that most of the crystalline phase is composed of sodium. At 100 and 50 MPa, we still observe the increase in CO$_2$ content with increasing K$_2$O content; however, there seems to be a plateau in CO$_2$ content for #K between 0.5 and 0.75 (K10 and K15, respectively). At 50 MPa, this plateau is followed by a strong increase in CO$_2$ content for K20-E4.

The measured CO$_2$ content range for the investigated compositions and at the given intensive conditions (50 < P < 300 MPa) is the highest one measured so far in silicate melt. Thibault and Holloway (1994) measured a similar range for CO$_2$ solubility in Ca-leucitite but at higher pressure: between 3 and 4 wt.% CO$_2$ at 1.0 GPa. The Ca-leucitite composition studied by Thibault and Holloway (1994) has an NBO/T = 0.99 very close to our studied compositions (NBO/T ~ 1.4); Ca-leucitite composition is alkali-poor (Na$_2$O+K$_2$O = 6.65 wt.%) as compared to our compositions (Na$_2$O+K$_2$O > 20 wt.%). Owing to the change in chemical composition in between the mentioned compositions, the total alkali concentration is a strong control on the CO$_2$ solubility as inferred by recent thermodynamic modelling (Iacono-Marziano et al., 2012) as compared to the total alkaline earth concentration.

The increase in CO$_2$ solubility with increasing K$_2$O content is also accompanied by an increase in H$_2$O solubility. We show in Figure 4B the change in the H$_2$O glass content with
increasing \#K. For all investigated pressures, we observe a slight increase in H$_2$O content with increasing \#K in glass. This increase in H$_2$O content with increasing \#K in glass is also observed at almost constant water activity in the fluid phase (see Table 2 for X H$_2$O fluid). At 200 MPa, the H$_2$O content changes from 1.4 to 1.8 wt.% H$_2$O between K0-E2 and K10-E2. At 100 MPa, the change in H$_2$O solubility is on the same order between 1.2 and 1.6 wt.% H$_2$O between K0-E3 and K15-E3.

The change in CO$_2$ and H$_2$O solubilities might be correlated. Recent work by Behrens et al. (2009), Lesne et al. (2011a,b), and Iacono-Marziano et al. (2012) suggest that H$_2$O dissolution in silicate melt enhances that of CO$_2$. Therefore, it is possible that the increase in CO$_2$ is due to the effect of H$_2$O and not to the increase in K$_2$O content. This potential increase in CO$_2$ solubility with increasing H$_2$O content might be related to the water dissolution mechanism which is known to induce a depolymerization of the aluminosilicate melt structure (Kuemmerlen et al., 1992; Zotov and Keppler, 1998; Robert et al., 2001), therefore providing available NBOs for CO$_2$ molecules to dissolve as CO$_3^{2-}$ group. Whereas this mechanism applies adequately to polymerized aluminosilicate compositions (NBO/T close to 0), it does not straightforwardly applies for depolymerized aluminosilicate compositions. Xue and Kanzaki, (2004) showed that H$_2$O dissolution in depolymerized silicate composition does not induce an additional depolymerization and could on the contrary induce a polymerization. Furthermore, for a similar composition (foidite from Behrens et al., 2009), Iacono-Marziano et al. (2012) quantified the increase in CO$_2$ solubility with increasing H$_2$O content. They found that changing the H$_2$O content between 2.0 and 3.0 wt.% H$_2$O does not appreciably change CO$_2$ solubility. Hence, we propose that the increasing K$_2$O content induces an increase in both CO$_2$ and H$_2$O solubilities.

Figure 5A displays the change in volatile content (CO$_2$ and H$_2$O) for the whole set of glasses synthesized at different pressures and for all \#K compositions (except for K-E5 synthesised at
100 MPa and CO$_2$-free). Clearly, there is a gradual increase in both H$_2$O and CO$_2$ contents (at fixed #K); while the opposite is generally observed in common silicate melt compositions (i.e. dissolved CO$_2$ and H$_2$O are inversely correlated). The co-increase in H$_2$O and CO$_2$ appears to follow one linear trend except for samples synthesized at 300 MPa which plot at CO$_2$ contents slightly higher relative to the main trend. We have indicated next to each data point, the measured #K. As shown in Figure 4 and inferred from Figure 5, we see that the highest CO$_2$ and H$_2$O contents are always observed for the higher #K values.

In an attempt to disentangle the relative roles of either a$_{H_2O}$ or #K on CO$_2$ solubility, we have calculated the CO$_2$ activity, here expressed as the ratio between the wt.% CO$_2$ and the CO$_2$ fugacity ($X_{CO_2}^f x f^0_{CO_2}$) in the system. The fugacity of pure CO$_2$ ($f^0_{CO_2}$) is calculated using the CORK equation of Holland and Powell (1991). The results are shown as a function of #K (Figure 5B) and H$_2$O content (Figure 5C). Considering the entire data set, a broad positive correlation is apparent, which suggests that exchanging K for Na altogether increases CO$_2$ solubility. In detail, however, at each specific pressure, the increase is highly nonlinear: in the #K range 0-0.5 a gentle increase of the wt.% CO$_2$/f$^0_{CO_2}$ ratio with increasing K$_2$O content is observed; from #K 0.5 to 0.75, this ratio dampens, even decreasing somewhat, to eventually increase again beyond #K = 0.75. In contrast, no obvious correlation between the wt.% CO$_2$/f$^0_{CO_2}$ ratio and dissolved H$_2$O can be extracted from Figure 5C which suggests that the behaviour observed in Figure 5B is due to the change in X$_{K2O}$ and not to the change in a$_{H2O}$.

Furthermore, we observe a clear effect of pressure onto the wt.% CO$_2$/f$^0_{CO_2}$. For instance, comparing the low pressure experiments at 50 MPa (K-E4) and high pressure experiments at 300 MPa (K-E1), we observe that the wt.% CO$_2$/f$^0_{CO_2}$ ratio strongly increases between 300 and 50 MPa. It suggests that the solution mechanism for CO$_2$ molecules is enhanced at low pressure as compared to higher pressure. It also implies that the activity of CO$_2$ is less ideal at high pressure.
Results shown in Figure 4 and 5 suggest that the exchange of Na by K induces an important increase in CO$_2$ solubility and a more modest increase in H$_2$O solubility. Recent work by Scaillet and Pichavant (2005) suggested that the increase in melt K$_2$O content was a main factor controlling the CO$_2$ solubility, and Papale et al. (2006) and Iacono-Marziano et al., (2012) modeling also concluded to a possible effect of the network modifying cation (alkali and alkaline earth) on the CO$_2$ solubility. Yet the differential effect of Na and K on CO$_2$ solubility was not clearly assessed. The model derived by Dixon (1997) tried to address the differential effect of melt cations on the CO$_2$ solubility based on the Π parameter. In the Π parameter, the effect of K$^+$ on CO$_2$ solubility is more important than the effect of Na$^+$. Our results presented in Figure 4 confirm this point; however, the anticipated change in CO$_2$ solubility with the addition of K$^+$ instead of Na$^+$ from the Π parameter is less than our results show. Although, the Π parameter model from Dixon (1997) is not calibrated for a wide range of composition (i.e. alkali content below 12.0 wt.% in Dixon (1997)), we calculated the Π parameter for our compositions. Between #K = 0 and 1, the calculated Π parameter changes from 3.5 to 3.9 in agreement with the increase in CO$_2$ solubility with increasing K$_2$O content.

We also calculated the change in CO$_2$ solubility in our glass compositions using the model of Papale et al. (2006). We performed the calculations with two different fluid phase compositions: 1) X CO$_2^{\text{fl}}$ = 1, X H$_2$O$^{\text{fl}}$ = 0 and 2) X CO$_2^{\text{fl}}$ = 0.65, X H$_2$O$^{\text{fl}}$ = 0.35. The former case is very close to the suspected fluid phase compositions in our experiments (see Table 2). Both sets of calculations were carried out at 300 MPa and 1250°C. For X CO$_2^{\text{fl}}$ = 1, the calculation results are consistent with the observed trend in CO$_2$ solubility with increasing K$_2$O content. Although the CO$_2$ solubility values calculated are different from our experimental results; between #K = 0 and 1, Papale et al. (2006) thermodynamic model suggest an increase in CO$_2$ solubility between 0.92 and 2.03. In other words, the CO$_2$ solubility would be doubled between K0 and K20 glass compositions. However, calculations
performed with $X \text{CO}_2^{\text{f}} = 0.65$ leads to almost no change in CO$_2$ solubility in between K0 and K20: 0.17 wt.% CO$_2$ for #K = 0 and 0.19 wt.% CO$_2$ for #K = 1. In a certain way, our CO$_2$ solubility experimental results are in agreement with both Dixon (1997) and Papale et al. (2006) models; however, additional parametrization might be useful.

At 50 MPa, the CO$_2$ solubility increases twice between 5 and 20 mol.% K$_2$O (15 and 0 mol.% Na$_2$O). This finding readily explains the close association documented worldwide between K-rich magmatism and enhanced CO$_2$ activity, as summarised in the introduction. It follows that K-rich magmas might be potentially CO$_2$-rich reservoirs in the upper crust, as compared to the more sodic varieties. Similarly, the generation of K-rich mantle melts will be a potent and efficient CO$_2$-sink mechanism of any CO$_2$ reservoir stored in the deep Earth. Finally, our results highlight once again (see also Lesne et al., 2011a,b) that barometric estimates based on dissolved volatile contents of glass inclusions trapped in phenocrysts may be seriously in error (for instance overestimated trapping pressure).

5.2 Carbonate speciation as a function of #K

13C MAS NMR spectra shown in Figure 3 witness a complex environment for CO$_3^{2-}$ molecules in the glass. Moreover, the spectra differences reported in Figure 3 indicate that the CO$_3^{2-}$ global spectral signature is a complex convolution of several individual carbonate environments. Considering that we observe two clear features from the difference spectrum (see Figure 3) underneath the main CO$_3^{2-}$ contribution, we suspect that at least two individual CO$_3^{2-}$ environments are present. To assess such an hypothesis, we performed a simulation of the 13C MAS NMR spectra using statistical distribution with several Gaussian peaks; however, we did not obtain a reasonable interpretable solution explaining the complex
change in carbonate speciation as observed in Figure 3. The subtle differences observed in Figure 3 cannot be resolved with our actual NMR data.

In Figure 6, we provide a comparison between 13C MAS spectra obtained for different CO$_2$-bearing glass compositions: haplo-phonolite (NCMAS system) synthesised at 2.0 GPa and 1350°C obtained from Morizet et al. (2002); diopside (CaMgSi$_2$O$_6$) synthesised at 1.0 GPa and 1580°C obtained from Morizet (2002). We compare the 13C MAS NMR spectra with two of our 13C MAS NMR spectra (K0-E3 and K15-E3). The whole set of glass compositions shows different degree of polymerization: haplo-phonolite glass is slightly depolymerized with NBO/T = 0.2 whereas diopside glass is strongly depolymerized with NBO/T = 2 and the investigated alkali-rich nephelinitic glass has an NBO/T ~ 1.39.

We represent also the spectrum simulation following the work of Morizet et al. (2002) using four Gaussian peaks. Morizet et al. (2002) identified a peak at 168.4 ppm and attributed it to NBO-carb. M$^{n+}$, where a CO$_3^{2-}$ molecule is connected to a NBO and charge compensated by a surrounding cation (M$^{n+}$). This CO$_3^{2-}$ configuration in depolymerized compositions has been inferred from previous spectroscopic studies (Blank and Brooker, 1994; Brooker et al., 2001b; Morizet et al., 2010). The other Gaussian peaks were attributed to network carbonates consistent with the high degree of polymerization of the haplo-phonolite glass. Diopside glass exhibits a 13C peak centered at 167.6 ppm. Our investigated glasses have a 13C ppm shift at higher value around 169-170 ppm. This comparison suggests that CO$_2$ in the nephelinitic glasses is dissolved as NBO-carb. M$^{n+}$ only; the 13C MAS NMR peak does not extend towards the identified region for network carbonates (see Figure 6).

Considering the high alkali concentrations in our investigated compositions (see Table 1), it is likely that the charge compensating cation is either Na$^+$ or K$^+$ or both Na$^+$ and K$^+$. It might also be possible for Ca$^{2+}$ and Mg$^{2+}$ to be part of this charge compensating role; however, in
the highly depolymerized diopside glass 13C NMR spectrum, the peak is centered at lower ppm shift (167.6 ppm) as compared to the one observed for K0-E3 and K15-E3. This also suggests that the nature of the charge compensating cation induces a shift in the 13C MAS NMR peak. If this difference seems clear between alkali (K0 and K15) and alkaline-earth (diopside), it appears difficult to constrain any change in 13C chemical shift between K-free (K0-E3) and K-bearing (K15-E3). Early investigation for crystalline carbonates by Papenguth et al. (1989) showed that the difference in 13C chemical shift is limited. For instance, Li$_2$CO$_3$ and Na$_2$CO$_3$ exhibit a 13C chemical shift at 168.4 and 169.8 ppm, respectively. This difference can be resolved for crystalline carbonates showing sharp NMR signature but cannot be adequately resolved for amorphous CO$_2$-bearing glasses.

5.3 Free carbonate clusters as precursors to liquid immiscibility: Carbonatite liquid genesis

The existence of free hydrated carbonate groups ($(K^+,Na^+)\ldots CO_3^{2-} \ldots H$; see Figure 3) is intriguing. Such free units are likely to constitute precursors to immiscible carbonatite liquids. Brooker et al. (2001b) proposed that free carbonate groups dissolved in melt are observed in alkali-rich melts; our results are in agreement with such a statement. The existence of isolated hydrated carbonate groups also implies that at some stage an oxygen atom is consumed as a result of the CO$_2$ molecules dissolution. Such isolated units might have a strong ionic character as suggested in previous studies (Genge et al., 1995; Williams and Knittle, 2003; Morizet et al., 2013), and potentially a high electrical conductivity as well (Gaillard et al., 2008).

We have shown in Figure 3, that the isolated carbonate units are hydrated in character (see CPMAS NMR spectra in Figure 3). 1H-13C HETCOR NMR spectra for K0-E1 was
conducted so as to better constrain the hydration of these particular species. The spectrum is reported in Figure 7A. We observe that the main CO$_3^{2-}$ signature (169.8 ppm assigned to the main carbonates species) is associated with hydrogen atoms with a 1H NMR shift centered at 5.0 ppm. The 1H NMR shift in silicate glasses has been extensively studied (e.g. Eckert et al., 1988; Kummerlen et al., 1992; Riemer et al., 2000; Schmidt et al., 2000; Cody et al., 2005; Xue and Kanzaki, 2008). The 1H ppm shift centered at 5.0 ppm can be attributed to hydrogen atoms with different configurations: SiOH, water molecules in the vicinity of SiO$_4$ tetrahedra.

We observe from Figure 7A that the isolated Na$^+ \ldots$ CO$_3^{2-} \ldots$ H$^+$ (~165 13C ppm shift) are associated to a particular 1H signature (~14 ppm 1H ppm shift). NMR investigations of proton environments have shown that the position of the 1H NMR shift is correlated to the distance between the hydrogen and oxygen atoms and can be considered as a witness of the hydrogen bond strength (Yesinowski and Eckert, 1987; Eckert et al., 1988; Xue and Kanzaki, 2007): the higher the 1H ppm shift, the shorter hydrogen – oxygen atoms distance. In Figure 7, the Na$^+ \ldots$ CO$_3^{2-} \ldots$ H$^+$ unit is related to hydrogen atoms with a very short distance from the oxygen atom. This observation confirms the fact that such a unit occurs as an isolated cluster. It is also in agreement with the fact that hydrogen atoms or water is probably a key parameter for the formation of carbonate melt (Genge et al., 1995; Williams and Knittle, 2003).

We also show additional 1H-1H EXCHANGE NMR experiment in Figure 7B and C acquired with two different mixing time (1 and 500 ms). In the 1 ms spectrum (Figure 7B), the distribution of the proton environments is located along the diagonal and the two main proton contributions seen in the $\{^1$H$\}$-13C HETCOR NMR are not distinguished. Under this mixing time, the spin diffusion is not efficient and an individual proton will see an individual proton of the same nature (i.e. same molecular environment). In the 500 ms spectrum (Figure 7C), we observe two distinct proton correlations: one is associated to a proton environment at +5.0 ppm and one is associated to the proton environment at +14 ppm. The former at +5.0 ppm
exhibits a strong NMR signature extending broadly off the diagonal. This shows that all the hydroxyl environments are correlated to each other due to strong spin diffusion. The latter narrow signature at +14 ppm on the contrary is remaining exclusively on the diagonal confirming that this proton environment attributed to Na\(^+\) … CO\(_3\)^{2-} … H\(^+\) is isolated from the hydroxyl environments in the glass.

Recent review by Jones et al. (2013) summarized the atomic properties of carbonate melts. The carbonate melts exhibit a unique property different from silicate melts: ionic character with a trigonal symmetry CO\(_3\)^{2-} molecule compensated by a metal cation. In the present study, we show that the metal cation involved in the carbonatitic precursor is probably an alkali. Recent work by Mitchell (2009) on immiscibility textures from Oldoynio Lengai melt inclusions suggests that the carbonate immiscible liquid phase is alkali-rich as compared to alkaline-earth cation.

Whether the genesis of such melt is favoured by the presence of Na or K can also be discussed in term of CO\(_2\) solubility difference between Na-rich and K-rich melts. We have shown that CO\(_2\) solubility in nephelinitic melt is increased by K relative to Na. Hence, K-rich silicate melts can accommodate more CO\(_2\) in their structure than those Na-rich; therefore the lower CO\(_2\) solubility level of Na-rich silicate melt makes them good candidates to produce an exsolved carbonate melt precursor to natrocarbonatite natural melts. Furthermore, the suspected increase of network carbonate units in K-rich melt will prevent an efficient immiscibility K-rich carbonatitic melt. Although, we do not have currently natural examples of K-rich (in comparison with Na) carbonatitic melt (Jones et al., 2013), recent experimental work (Thomsen and Schmidt, 2008; Grassi and Schmidt, 2011; Tsuno et al., 2012) witnessed the potential existence of K-rich (relative to Na) carbonatite liquid obtained from the partial melting of carbonated natural pelites.
6. Concluding remarks

In the present experimental study conducted at high pressures (50 – 300 MPa) and high temperature (1250°C), we have shown that a silica undersaturated melt (nephelinite) can dissolve several wt.% CO\textsubscript{2}. The determined CO\textsubscript{2} solubility appears to be several orders of magnitude higher than the CO\textsubscript{2} solubility measured in silicate melts so far, at comparable P-T conditions. Our objective was to investigate the possible change in CO\textsubscript{2} solubility with different alkali cations. We have shown that the exchange between Na and K induces a significant change in CO\textsubscript{2} solubility. Increasing the K\textsubscript{2}O molar fraction (i.e. decreasing the Na\textsubscript{2}O molar fraction) in the bulk composition causes an increase in the CO\textsubscript{2} solubility suggesting that potassium-rich melts can accommodate more CO\textsubscript{2} molecules in their structure than those are sodium-rich. This result is only preliminary, and more work is necessary to fully investigate the systematic changes in CO\textsubscript{2} solubility as a function of other compositional variables (e.g. Ca/(Ca+Mg), Fe3+/(Fe2++Fe3+)).

The CO\textsubscript{2} speciation study reveals the presence of several CO\textsubscript{3}2- environments, possibly connected to non-bridging oxygens but also in network configuration in the melt. An additional NMR signature was found which can be attributed to isolated carbonate environments. The existence of such isolated units has major implications for the petrogenesis of carbonatite as they can constitute the precursors of carbonatitic melts.

Acknowledgements

The authors are grateful to the ANR agency which financed the current through the ANR-2010-BLAN-621 “Electrolith”. The authors thank the University of Orléans, the University
of Nantes and the CNRS for their access to analytical facilities. We also much appreciated the constructive reviews by two anonymous reviewers which greatly improved the quality of the manuscript. Rajdeep Dasgupta is thanked for handling our manuscript and for his detailed comments.

References

Figure 1. Typical Raman spectra obtained for different nephelinitic glass samples: A, K0; B, K5; C, K10; D, K15. Spectra obtained on CO$_2$-bearing and volatile-free (VF) are reported. The CO$_2$ content was determined using the calibration method from Morizet et al.
The high-frequency envelope (800-1200 cm\(^{-1}\)) was first simulated for VF spectra considering four individual Gaussian peaks. For CO\(_2\)-bearing, the spectrum simulation was conducted by adding an additional peak for \(\nu_1\) CO\(_3\) peak vibrational signature at ~1080 cm\(^{-1}\). The CO\(_3\)/Q\(^0\) ratio obtained from the simulation is reported next to each spectrum and the residual from the simulation is shown underneath the spectra.
Figure 2. Typical Raman spectra obtained for H$_2$O quantification in glasses. The spectra are presented for two typical glass compositions: K0 (A) and K5 (C); and shown for the silicate glass frequency region (LF 200-800 cm$^{-1}$ and HF 800-1200 cm$^{-1}$ in A and C) and the H$_2$O frequency region (2500-3900 cm$^{-1}$ in B and D). A typical third-order polynomial baseline curve is reported underneath each Raman spectrum. The H$_2$O content was determined with the calibration method established by Mercier et al. (2009) and using the areas ratio between H$_2$O and the LF regions (shown next to each spectrum).

Figure 3. 13C MAS NMR spectra obtained for glass samples 1) synthesized at different pressure: 300 (A), 200 (B) and 100 MPa (C); 2) of different composition: K0 (D), K5 (E) and K10 (F). Spectra were acquired under Direct (single pulse) or 1H-13C CPMAS NMR conditions. The difference between two spectra is also shown underneath the spectra in
each plot. The arrows shown in plots A to C are informative and show the possible existence of individual carbonate component.
Figure 4. Change in CO\textsubscript{2} (A) and H\textsubscript{2}O (B) solubilities in glasses as a function of #K (see Table 1 and 2). In (A), we indicate the determined H\textsubscript{2}O content for each glass sample from Raman. The error bars reported for each corresponds to the standard deviation from replicated Raman analyses; therefore representing the homogeneity/heterogeneity of the CO\textsubscript{2} and H\textsubscript{2}O contents in each glass sample. The open symbol corresponds to the CO\textsubscript{2} and H\textsubscript{2}O contents determined for glass sample showing evidences of crystalline material (K10-E2 in Table 2).

Figure 5. A) wt.% CO\textsubscript{2} as a function of wt.% H\textsubscript{2}O. The #K is indicated next to each data point. B) wt.% CO\textsubscript{2} normalized to f/CO_2 (10000 x wt.% CO\textsubscript{2} / f/CO_2) showing the CO\textsubscript{2} thermodynamic activity as a function of #K. C) CO\textsubscript{2} activity (10000 x wt.% CO\textsubscript{2} / f/CO_2) the as a function of the wt.% H\textsubscript{2}O. The f/CO_2 was calculated from the fluid phase composition ($X_{CO_2}^{fl}$ in Table 2) and the standard f^0/CO_2 from Holland and Powell (1991) such as $f/CO_2 = X_{CO_2}^{fl} x f^0/CO_2$. The open symbol corresponds to the CO\textsubscript{2} and H\textsubscript{2}O contents determined for glass sample showing evidences of crystalline material (K10-E2 in Table 2).
Figure 6. Comparison of 13C MAS NMR spectra obtained for different compositions ranging from slightly depolymerized (haplo-phonolite with an NBO/T = 0.2 from Morizet et al., 2002) to highly depolymerized (diopside with an NBO/T = 2, from Morizet, 2002). 13C spectra obtained for K0-E3 and K15-E3 are reported as a comparison. The haplo-phonolite spectrum simulation from Morizet et al. (2002) is shown. The comparison suggests that most of the carbonates if not all are dissolved as NBO-carb. M^{n+} in K0-E3 and K15-E3. The charge compensating cation (M^{n+}) is likely to be Na$^+$ and/or K$^+$, however, the actual NMR resolution does not allow deciphering the exact chemical shift of each individual species.
Figure 7. A) Acquired 1H-13C HETCOR spectrum for K0-E1 glass synthesized at 300 MPa. The main CO_3^{2-} contribution at 169.8 ppm is correlated to a proton signature at 5.0 ppm corresponding to (Si,Al)-OH environments; the peak at 164.7 ppm corresponding to
isolated \(\text{CO}_3^{2-} \) environment is correlated to 14.0 ppm H environment. B) Homonuclear \(^1\text{H}-^1\text{H}\) EXCHANGE NMR spectrum acquired at 1 ms mixing time and C) Homonuclear \(^1\text{H}-^1\text{H}\) EXCHANGE NMR spectrum acquired at 500 ms mixing time. At 500 ms, the spin diffusion is effective for the main environments at +5.0 ppm associated to bonded hydroxyl in glass whereas the +14.0 ppm contribution remains on the diagonal in agreement with the isolated character of \(\text{Na}^+ \cdots \text{CO}_3^{2-} \cdots \text{H}^+ \) groups.
Table 1: Nephelinitic elemental compositions, synthetic compositions from this study and natural compositions from De Moor et al. (2013) and Mitchell and Dawson (2012).

<table>
<thead>
<tr>
<th>Oxides (mol.%)</th>
<th>Theoretical composition in the present study</th>
<th>Nephelinitic composition from De Moor et al. (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K0-E</td>
<td>K5-E</td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>CaO</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Na<sub>2</sub>O+K<sub>2</sub>O</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>#K<sup>b</sup></td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>NBO/T<sup>c</sup></td>
<td>1.39</td>
<td>1.39</td>
</tr>
</tbody>
</table>

^a The oxides concentrations are reported on a molar basis for the studied synthetic compositions (K0-E to K20-E) and for natural compositions from De Moor et al. (2013) and Mitchell and Dawson (2012).

^b #K corresponds to the ratio K₂O/(K₂O+Na₂O) on a molar basis.

^c The NBO/T is calculated following the method of Mysen (1988, 1990). It represents the ratio between the concentration Non-Br network modifier cations (Na⁺, K⁺, Mg²⁺, Ca²⁺ and Fe²⁺) and the Tetrahedral charges carried by the network former cations (Si⁴⁺,...
Table 2: Experimental conditions, glass elemental composition, dissolved volatile concentration and fluid phase composition.

<table>
<thead>
<tr>
<th>Sample</th>
<th>K0- E1</th>
<th>K5- E1</th>
<th>K0- E2</th>
<th>K5- E2</th>
<th>K10- E3</th>
<th>K10- E4</th>
<th>K15- E3</th>
<th>K15- E4</th>
<th>K20- E5</th>
<th>K5- E5</th>
<th>K1- E5</th>
<th>K15- E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>125</td>
</tr>
<tr>
<td>P (MPa)</td>
<td>308</td>
<td>308</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>117</td>
<td>117</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glass chemical composition (mol.%)</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>47.4 ± 0.2</td>
<td>47.8 ± 0.2</td>
<td>46.4 ± 0.2</td>
<td>46.6 ± 0.2</td>
<td>48.8 ± 0.2</td>
<td>47.1 ± 0.2</td>
<td>48.1 ± 0.2</td>
<td>47.2 ± 0.2</td>
<td>47.5 ± 0.2</td>
<td>47.7 ± 0.2</td>
<td>46.6 ± 0.2</td>
<td>47.0 ± 0.2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>7.0 ± 0.2</td>
<td>6.4 ± 0.2</td>
<td>6.4 ± 0.2</td>
<td>6.6 ± 0.2</td>
<td>6.4 ± 0.2</td>
<td>7.3 ± 0.2</td>
<td>7.1 ± 0.2</td>
<td>7.0 ± 0.2</td>
<td>7.0 ± 0.2</td>
<td>6.9 ± 0.2</td>
<td>7.0 ± 0.2</td>
<td>6.8 ± 0.2</td>
</tr>
<tr>
<td>FeO</td>
<td>0.2 ± 0.2</td>
<td>0.1 ± 0.2</td>
<td>0.1 ± 0.1</td>
<td>0.0 ± 0.1</td>
<td>0.0 ± 0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>11.8 ± 0.2</td>
<td>10.6 ± 0.2</td>
<td>10.0 ± 0.1</td>
<td>10.1 ± 0.2</td>
<td>11.6 ± 0.2</td>
<td>11.0 ± 0.2</td>
<td>10.7 ± 0.2</td>
<td>10.9 ± 0.2</td>
<td>10.6 ± 0.2</td>
<td>10.8 ± 0.1</td>
<td>10.9 ± 0.2</td>
<td>10.9 ± 0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>15.2 ± 0.2</td>
<td>15.7 ± 0.2</td>
<td>17.4 ± 0.2</td>
<td>16.3 ± 0.2</td>
<td>17.0 ± 0.2</td>
<td>15.9 ± 0.2</td>
<td>15.5 ± 0.2</td>
<td>14.9 ± 0.2</td>
<td>15.8 ± 0.2</td>
<td>15.4 ± 0.2</td>
<td>14.8 ± 0.2</td>
<td>15.4 ± 0.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>18.4 ± 0.2</td>
<td>14.2 ± 0.2</td>
<td>19.6 ± 0.2</td>
<td>15.0 ± 0.2</td>
<td>9.7 ± 0.2</td>
<td>16.2 ± 0.2</td>
<td>9.4 ± 0.2</td>
<td>4.7 ± 0.2</td>
<td>14.1 ± 0.2</td>
<td>9.4 ± 0.2</td>
<td>4.8 ± 0.2</td>
<td>0.0 ± 0.2</td>
</tr>
<tr>
<td>K2O</td>
<td>0.0 ± 0.2</td>
<td>5.0 ± 0.2</td>
<td>0.0 ± 0.2</td>
<td>5.2 ± 0.2</td>
<td>10.0 ± 0.2</td>
<td>0.0 ± 0.2</td>
<td>9.9 ± 0.2</td>
<td>14.4 ± 0.2</td>
<td>5.0 ± 0.2</td>
<td>10.1 ± 0.2</td>
<td>14.8 ± 0.2</td>
<td>20.0 ± 0.2</td>
</tr>
<tr>
<td>Volatile content</td>
<td></td>
</tr>
<tr>
<td>wt.%</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>3.15 ± 0.1</td>
<td>2.88 ± 0.1</td>
<td>5.41 ± 0.1</td>
<td>5.56 ± 0.1</td>
<td>5.96 ± 0.1</td>
<td>4.18 ± 0.1</td>
<td>5.01 ± 0.1</td>
<td>3.76 ± 0.1</td>
<td>2.80 ± 0.1</td>
<td>3.47 ± 0.1</td>
<td>3.03 ± 0.1</td>
<td>3.81 ± 0.1</td>
</tr>
<tr>
<td>H2O (wt.%)</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>1.11 ± 0.01</td>
<td>1.34 ± 0.01</td>
<td>1.42 ± 0.01</td>
<td>1.64 ± 0.01</td>
<td>1.83 ± 0.01</td>
<td>1.20 ± 0.01</td>
<td>1.36 ± 0.01</td>
<td>1.62 ± 0.01</td>
<td>1.22 ± 0.01</td>
<td>1.13 ± 0.01</td>
<td>1.46 ± 0.01</td>
<td>1.55 ± 0.01</td>
</tr>
<tr>
<td>CO2</td>
<td>4.7 ± 0.2</td>
<td>8 ± 0.2</td>
<td>6 ± 0.2</td>
<td>4 ± 0.2</td>
<td>6 ± 0.2</td>
<td>9 ± 0.2</td>
<td>1 ± 0.2</td>
<td>6 ± 0.2</td>
<td>0 ± 0.2</td>
<td>5 ± 0.2</td>
<td>0 ± 0.2</td>
<td>3 ± 0.2</td>
</tr>
<tr>
<td>CO2/Q0</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>2.4 ± 0.01</td>
<td>2.8 ± 0.01</td>
<td>0.2 ± 0.01</td>
<td>0.23 ± 0.01</td>
<td>0.24 ± 0.01</td>
<td>0.14 ± 0.01</td>
<td>0.18 ± 0.01</td>
<td>0.18 ± 0.01</td>
<td>0.11 ± 0.01</td>
<td>0.13 ± 0.01</td>
<td>0.13 ± 0.01</td>
<td>0.20 ± 0.01</td>
</tr>
<tr>
<td>Raman ratio</td>
<td>0.08 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.47 ± 0.01</td>
<td>0.00 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.01</td>
</tr>
<tr>
<td>wt.%</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3.68 ± 0.01</td>
<td>4.37 ± 0.01</td>
<td>3.09 ± 0.01</td>
<td>3.63 ± 0.01</td>
<td>3.75 ± 0.01</td>
<td>2.28 ± 0.01</td>
<td>2.82 ± 0.01</td>
<td>2.85 ± 0.01</td>
<td>1.77 ± 0.01</td>
<td>2.13 ± 0.01</td>
<td>2.07 ± 0.01</td>
<td>3.07 ± 0.01</td>
</tr>
<tr>
<td>C02/Q0</td>
<td></td>
</tr>
<tr>
<td>Fluid phase composition</td>
<td></td>
</tr>
<tr>
<td>dCO2</td>
<td>2.8 ± 0.2</td>
<td>7.4 ± 0.2</td>
<td>4.1 ± 0.2</td>
<td>1 ± 0.2</td>
<td>0 ± 0.2</td>
<td>6 ± 0.2</td>
<td>7 ± 0.2</td>
<td>3 ± 0.2</td>
<td>4 ± 0.2</td>
<td>1 ± 0.2</td>
<td>0 ± 0.2</td>
<td>6 ± 0.2</td>
</tr>
</tbody>
</table>

* The glass composition was determined by EPMA analyses. The observed error based on replicated EPMA analyses associated to each oxide concentration is less than 0.3 mol.% in relative at worst.

* K corresponds to the ratio K2O/(K2O+Na2O) on a molar basis. The calculated error on each ratio is on the order of ±0.01.

* The wt.% CO2 was determined using Raman spectroscopy and following the method of Mercier et al. (2009) calibrated for a various range of bulk silicate glass composition.

* The wt.% CO2 was determined using Raman spectroscopy and using the method established by Morizet et al. (2013). The wt.% CO2 is related to the determined CO2/Q0 ratio from Raman spectra by a linear factor such as: wt.% CO2 = 15.17 x CO2/Q0.

* The fluid phase composition was calculated from mass balance calculations: iops = iops + iops.
The CO$_2$ fugacity (ρCO$_2$) was calculated from standard thermodynamic properties from Holland and Powell (1991).