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Abstract 

 

A vast shallow epicontinental sea extended across Eurasia and was well-connected to the Western 

Tethys before it retreated westward and isolated as the Paratethys Sea. However, the palaeogeography 
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and the timing of this westward retreat are too poorly constrained to determine potential wider 

environmental impacts, let alone understanding underlying mechanisms of the retreat such as global 

eustacy and tectonism associated to the Indo-Asia collision. Here, an improved chronostratigraphic 

and palaeogeographic framework is provided for the onset of the proto-Paratethys Sea retreat at its 

easternmost extent in the Tarim Basin in western China is provided. Five different third-order sea-

level cycles can be recognized from the Cretaceous–Paleogene sedimentary record in the Tarim Basin, 

of which the last two stepped successively westwards as the sea retreated after the maximum third 

incursion. New biostratigraphic data from the fourth and fifth incursions at the westernmost margin of 

the Tarim Basin are compared to our recent integrated bio-magneto-stratigraphic results on the fourth 

incursion near the palaeodepocenter in the south-western part of the basin. While the fourth incursion 

extended throughout the basin and retreated at ~41 Ma (base C18r), the last and fifth incursion is 

restricted to the westernmost margin and its marine deposits are assigned a latest Bartonian–early 

Priabonian age from ~38.0 to ~36.7 Ma (near top C17n.2n to base C16n.2n). Similar to the fourth, the 

fossil assemblages of the fifth incursion are indicative of shallow marine, near-shore conditions and 

their widespread distribution across Eurasia suggests that the marine connection to the Western Tethys 

was maintained. The lack of diachronicity of the fourth incursion between the studied sections across 

the southwest Tarim Basin suggests the sea entered and withdrew relatively rapidly, as can be 

expected in the case of eustatic control on a shallow epicontinental basin. However, the westward 

palaeogeographic step between the fourth and fifth incursions separated by several millions of years 

rather suggests the combined long-term effect of tectonism, possibly associated with early uplift of the 

Pamir-Kunlun Shan thrust belt. The fourth and fifth regressions are time-equivalent with significant 

aridification steps recorded in the Asian interior, thus supporting climate modelling results showing 

the stepwise sea retreat from Central Asia amplified the aridification of the Asian interior. 

 

Keywords: Eocene; Asia; Tarim Basin; Paratethys Sea; biostratigraphy; palaeogeography. 

 

 

1. Introduction 
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A vast shallow epicontinental sea extended across Eurasia during the Cretaceous and Paleogene 

from Europe to the Tarim Basin in western China, before it retreated westward and isolated as the 

Paratethys Sea in the Oligocene, of which nowadays only the Caspian and Black Seas remain (e.g. 

Báldi, 1984; Rusu, 1985; Tang et al., 1989; Dercourt et al., 1993; Lan and Wei, 1995; Burtman et al., 

1996; Robinson et al., 1996; Rögl, 1999; Burtman, 2000; Popov et al., 2004; Schulz et al., 2005; 

Vincent et al., 2005; Allen and Armstrong, 2008; Bosboom et al., 2011). The timing and 

palaeogeography of the long-term westward retreat of the proto-Paratethys Sea are however still 

poorly constrained and hamper understanding of the mechanisms controlling the sea retreat, as well as 

its palaeoenvironmental impact on the Eurasian continent. The retreat has originally been attributed to 

progressive tectonic overthrusting of the Pamir-Kunlun Shan thrust belt in the south and the Tian Shan 

in the north in response to the Indo-Asia collision (e.g. Hao and Zeng, 1984; Tang et al., 1992; 

Burtman and Molnar, 1993; Jia et al., 1997; Lan, 1997; Burtman, 2000; Yin and Harrison, 2000; 

Coutand et al., 2002; Cowgill, 2010). More recently, it has been proposed that fluctuations in the 

retreat of this sea may have been simultaneously paced by global climate and associated eustatic 

effects during the shift from greenhouse to icehouse conditions in the late Eocene, culminating at the 

Eocene-Oligocene Transition (EOT) at ~34 Ma (e.g. Browning et al., 1996; DeConto and Pollard, 

2003; Dupont-Nivet et al., 2007; Zachos et al., 2008; Bosboom et al., 2011; Gasson et al., 2012; 

Bosboom et al., in press). Climate modelling studies have suggested that the sea functioned as a major 

moisture source for the Asian continental interior (Ramstein et al., 1997; Zhang et al., 2007), such that 

its disappearance from Central Asia may have amplified the intensification of the Asian monsoons and 

the Asian aridification (Bosboom et al., 2011; Bosboom et al., in press). An opportunity to further test 

these hypotheses is provided by the Cretaceous and Paleogene marine records of the easternmost 

extent of this sea in the Tarim Basin. These deposits indicate a peculiar pattern of five successive 

marine incursions, i.e. after the maximum extent reached during the third transgression, the sea 

retreated stepwise westward paced by the fourth and fifth transgressions (Tang et al., 1989; Lan and 

Wei, 1995). Using integrated bio-magnetostratigraphy our previous study focused on the Aertashi, 

Kezi and Keliyang sections along the West Kunlun Shan (Fig. 1) and showed that the sea completely 
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withdrew from the palaeodepocenter of the southwest depression after the fourth regression at ~41 Ma 

(base C18r; Bosboom et al., in press). This new study aims to extend the established chronological 

framework of the stepped westward retreat by more accurate biostratigraphic dating of the succeeding 

fifth and last regression from the Tarim Basin at the Bashibulake Mine section along its westernmost 

margin (Fig. 1), in order to discuss the long-term palaeogeographic dynamics of the proto-Paratethys 

Sea with respect to early tectonic uplift of the Tibetan Plateau, regional palaeoenvironmental changes 

in the Asian interior and the deterioration of global climate in the late Eocene. 

 

2. Geological setting 

 

The Tarim Basin is part of a relatively undeformed crustal block within the Indo-Asia collision 

system (e.g. Yin and Harrison, 2000). The sedimentary infill on top of the oceanic crustal basement is 

primarily composed of Palaeozoic and Mesozoic clastic sediments, which were folded by successive 

distal accretion of continental terranes along the southern margin of Asia from the late Triassic until 

the Eocene Indo-Asia collision at ~50 Ma (Tian et al., 1989; Hendrix et al., 1992; Yin and Harrison, 

2000; Robinson et al., 2003; Jia et al., 2004; van Hinsbergen et al., 2012). Marginal overthrusting and 

tectonic loading of the Tian Shan, the Pamir Mountains and the Kunlun Shan by the Cenozoic 

northward movement of India into Eurasia, probably initiated the Late Cretaceous formation of two 

major distal foreland basins, the Kuche depression along the southern margin of the Tian Shan and the 

southwest depression along the West Kunlun Shan with its palaeodepocenter near Yarkand (Fig. 1; 

Burtman and Molnar, 1993; Jia et al., 1997; Yin and Harrison, 2000; Yang and Liu, 2002; Cowgill, 

2010). A period of relative tectonic quiescence followed with successive shallow marine incursions in 

the two depressions. This study focuses on the marine history of the westernmost margin of the Tarim 

Basin, part of the southwest depression and situated were the present-day Kunlun Shan and Tian Shan 

meet (Fig. 1). 

Marine deposition in the underfilled southwest depression supposedly initiated in the Cenomanian, 

though marine trace fossils have been described from Barremian to Albian sediments (Guo, 1991; Lan 

and Wei, 1995). The sea entered the Tarim Basin from neighbouring basins west of the present-day 
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Alai Valley (Tang et al., 1992; Burtman and Molnar, 1993; Burtman, 2000). The marine deposits are 

typical of a shallow and proximal marine environment characterized by distinct fossil assemblages of 

mostly bivalves, ostracods, dinoflagellate cysts and calcareous nannofossils, enabling inter- and intra-

basin stratigraphic correlations (e.g. Mao and Norris, 1988; Tang et al., 1989; Lan and Wei, 1995; 

Yang et al., 1995; Bosboom et al., 2011; Bosboom et al., in press). Strong similarities between fossil 

assemblages from the Tarim Basin, Central Asia and Europe indicate that the sea extended across a 

major part of Eurasia and was connected to the Tethyan Realm (Mao and Norris, 1988; Dercourt et al., 

1993; Rögl, 1999; Popov et al., 2004; Bosboom et al., 2011). A total of five marine incursions 

corresponding to third-order sea-level cycles (sensu Vail and Mitchum Jr, 1979) have been recognized 

in the Cretaceous–Paleogene sedimentary record of the Tarim Basin, of which the third marine 

incursion is considered the largest as it extended into the central Maza Tagh range, the northern Kuche 

Depression and Lop along the south-eastern margin (Fig. 2; Tang et al., 1989; Lan and Wei, 1995; 

Burtman et al., 1996; Burtman, 2000). Our previous work studied the Aertashi, Kezi and Keliyang 

sections along the West Kunlun Shan (Fig. 1) and focused on the major fourth incursion near the 

palaeodepocenter of the southwest depression of the Tarim Basin, showing that the associated sea 

retreat at ~41 Ma (base C18r; Bosboom et al., in press) is concomitant with the onset of aridification in 

the Asian interior and East Asian monsoonal intensification and with closure of the Turgai Strait 

(Akhmetiev and Beniamovski, 2006; Akhmetiev, 2007; Iakovleva and Heilmann-Clausen, 2010; Quan 

et al., 2011; Bosboom et al., 2014). This study intends to provide precise age control by 

biostratigraphic dating of the succeeding fifth transgression from the Tarim Basin, which has not been 

recognized in the previously studied sections along the West Kunlun Shan (Bosboom et al., 2011; 

Bosboom et al., in press). Previous biostratigraphic studies on the fifth incursion have only 

documented its marine deposits along the westernmost margin of the basin, west of Kashgar, and have 

assigned widely differing ages ranging from late Eocene to late Oligocene (Fig. 1; Hao and Zeng, 

1984; Mao and Norris, 1988; He, 1991; Zhong, 1992; Lan and Wei, 1995; Yang et al., 1995; Lan, 

1997).  

After the fifth regression, deposition is exclusively continental without any sedimentary evidence 

for marine deposition. However, it has been proposed that brackish-marine conditions may have 
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occasionally reoccurred up into the Miocene as indicated by foraminifera and ostracod findings, and 

stable isotope excursions (Zheng et al., 1999; Gao et al., 2000; Jia et al., 2004; Graham et al., 2005; 

Ritts et al., 2008; Kent-Corson et al., 2009; Zhuang et al., 2011). The reappearance of marine waters in 

the Tarim Basin during the Miocene is, however, disputable as the foraminifera may have adapted to a 

non-marine saline lake environment or are an allochthonous eolian deposit (Ye et al., 1996). The 

possibility of Miocene incursions will be further addressed in the discussion. 

Marine deposits predate rapid regional uplift and topographic expression of the Pamir-Kunlun 

system, occurring in the late Oligocene–early Miocene at ~25–18 Ma based on sedimentologic, stable 

isotope and provenance, thermochronologic, palaeomagnetic, and backstripping data (Thomas et al., 

1994; Sobel and Dumitru, 1997; Burtman, 2000; Jolivet et al., 2001; Yang and Liu, 2002; Yin et al., 

2002; Amidon and Hynek, 2010; Bershaw et al., 2012). However, evidence for initial earlier uplift of 

the Kunlun Shan is sparse and not well constrained (Jolivet et al., 2001; Yin et al., 2002; Graham et 

al., 2005; Kent-Corson et al., 2009; Amidon and Hynek, 2010; Clark et al., 2010; Cowgill, 2010). 

Directly north of the study area, thermochronologic dating in the Kashi Basin (north of Kashgar) and 

the Kyrgyz Alai Valley indicate exhumation by reactivation of late Palaeozoic thrust structures in the 

Tian Shan commenced near the Oligocene–Miocene boundary at ~24–22 Ma, but southward 

propagation reached the Kashi Basin-bounding thrust not until ~19 Ma (Sobel et al., 2006; De Grave 

et al., 2012; Yang et al., in press). Consequently, proximal foreland depressions developed during the 

Neogene along the margins of the Tarim Basin and experienced rapid accumulation of coarse-grained 

clastics. The Neogene sediments have been weakly deformed by basinward thrusting and overloading 

of the Kunlun Shan and Tian Shan, which is ongoing until today in response to the continuous 

northward movement of India into Eurasia. 

 

3. Lithostratigraphy of sampled sections 

 

In this study the lithostratigraphic nomenclature used in Bosboom et al. is applied (Fig. 2; 2011; in 

press). The marine succession of Paleogene age is referred to as the Kashi Group, which comprises in 
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chronological order the Aertashi, Qimugen, Kalatar, Wulagen and Bashibulake Formations. The 

overlying continental Wuqia Group consists of the Kezilouyi, Anjuan and Pakabulake Formations.  

Our previous work at the Aertashi, Kezi and Keliyang sections focused on the Kalatar and Wulagen 

Formations, which are associated to the fourth marine incursion (Figs. 1, 2 and 4). Herefocus is on the 

Bashibulake Mine section (39°51'N, 74°32'E) situated at the western margin of the Tarim Basin (Figs. 

1, 3 and 4). The last marine sediments should belong to the Bashibulake Formation, corresponding to 

the fifth transgression, which according to previous studies of macrofossil fauna was limited to the 

area west of Kashgar (Lan and Wei, 1995; Lan, 1997). The section is named after a nearby mine and 

complements the previously established stratigraphic framework of the fourth transgression in the 

southwest depression of the Tarim Basin (Bosboom et al., 2011; Bosboom et al., in press). The strata 

are exposed continuously in a tributary valley with consistent homoclinal ~75–80° ENE dip. The 

Bashibulake Mine section is close or identical to the Bashibulake section which has been part of 

earlier biostratigraphic studies by Lan and Wei (1995), Lan (1997), Mao and Norris (1988) and Tang 

et al. (1989). The stratigraphic thicknesses of the recognized lithostratigraphic units were measured to 

decimetric precision. Zero meter level is defined by the uppermost shell bed. 

Here  the lithostratigraphy and lithofacies are analysed by comparison to previous lithostratigraphic 

descriptions and to our previous stratigraphic framework of the fourth transgression in the southwest 

depression (Fig. 4; Mao and Norris, 1988; Tang et al., 1989; Ye et al., 1996; Jia et al., 2004; Bosboom 

et al., 2011; Yang et al., 2012; Bosboom et al., in press). These stratigraphic correlations will be 

assessed in light of biostratigraphic constraints from samples collected at the Bashibulake Mine 

section. 

The basal unit is a distinct resistant interval of grey (oolithic) pack- and grainstones interbedded by 

green mudstones and marls (base to -250 m level). The deposits are exceptionally rich in bivalves (in 

particular oysters) and are correlated to the previously described Kalatar Formation, which was 

interpreted to represent an intertidal carbonate shoal and mudflat environment (Bosboom et al., 2011; 

Bosboom et al., in press). The overlying unit comprises greyish-green mudstones interbedded with 

fine (bioturbated) sandstones rich in bivalves (-250 to -222 m level). These characteristics are typical 

of the deposits of the Wulagen Formation, which have previously been interpreted as sub- to intertidal 
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mudflat deposits (Bosboom et al., 2011; Bosboom et al., in press). The next unit constitutes massive 

evaporite beds with a green mud matrix (-222 to -198 m level) and has not been recognized near the 

palaeodepocenter of the southwest depression, but fits the lithostratigraphic descriptions given in 

previous biostratigraphic studies of the westernmost Tarim Basin margin and is referred to as the 

upper part of the Wulagen Formation, the lowest member of the Bashibulake Formation or as a 

separate formation (Mao and Norris, 1988; Lan, 1997). This evaporite unit is interpreted as 

representing a supratidal (salt) mudflat environment. Dark red mudstones intercalated with siltstones, 

occasional bluish grey marls and evaporite nodules constitute the overlying unit (-198 to -150 m level) 

and are interpreted as inter- to supratidal mudflat deposits. The dark-red siltstones and fine sandstones 

above are typical of a fluvial depositional environment and characterized by trough-cross-bedding, 

ripple marks and occasional channels which have NNE to NE palaeoflow directions (-150 to -110 m 

level; Fig. 3a and 3b). The clastic beds are replaced by red-brown mudstone alternating with bluish-

grey marly mudstones and muddy packstones rich in shells (-110 m level -5 m level; Fig. 3c), which 

are indicative of a sub- to intertidal mudflat environment. Upward red-brown siltstones and fine 

sandstones reoccur as intercalated beds in red-brown mudstone, initially containing shells, wave ripple 

marks and nodular evaporite beds (-5 m level to 24 m level). This alternation of shallow marine 

mudstones and fluvial sandstones is typical of the Bashibulake Formation. The gradual increase in 

clastic input records the actual regression, suggesting there is no major unconformity associated to the 

sea retreat. However, an abrupt shift to continental clastic deposition occurs in the upper part of the 

section (24 m level to top). Here recurrent (slumped) coarse-grained incised channel beds with gravel 

lag, characteristic of the continental Kezilouyi Formation, suggest a disconformable contact. 

In summary, preliminary facies analyses indicate that the lithostratigraphy constitutes two 

shallowing-upward cycles  typical for shallow epicontinental seas (Figs. 3d and 4; Van Wagoner et al., 

1988; Aigner et al., 1990). The lower cycle constitutes the marine Kalatar and Wulagen Formations 

associated to the fourth transgression and can be recognized across the entire southwest depression of 

the Tarim Basin. The regression is well-preserved in the sedimentary succession overlying the last 

fully marine deposits, constituting supratidal evaporite beds and fluvial sandstone channel beds (from -

222 to -149 m level). The upper cycle is recorded in the members of the Bashibulake Formation 
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associated to the fifth transgression, which marks the permanent retreat of the proto-Paratethys Sea 

from the Tarim Basin. The associated shallowing-upward trend after the uppermost marine shell bed is 

illustrated by the increasingly dominant presence of oxidized wave-reworked sandstones and evaporite 

beds (from -5 to -24 m level), but abruptly interrupted by erosive fluvial gravel beds at the top (from 

24 to 44 m level). The alternation of siliciclastic and carbonate deposits suggests that superimposed on 

the overall shallowing-upward trend, high-frequency fluctuations in relative sea level, local climate 

and sediment supply result in lowstand/wet siliciclastic shedding and highstand/dry carbonate build-up 

(Budd and Harris, 1990; Reading, 2006). 

 

4. Biostratigraphy 

 

In order to improve age control on the two marine incursions recognized in the Bashibulake Mine 

section, samples were collected from representative marine beds throughout the Kalatar, Wulagen and 

Bashibulake Formations for foraminifer, ostracod, mollusc, calcareous nannofossil and organic-walled 

dinoflagellate cyst (dinocyst) analyses (Fig. 4). Age correlations are primarily based upon the standard 

macro- and microfossil zonations of the geologic time scale by Gradstein et al. (2012). 

 

4.1 Ostracods 

Twelve samples of approximately 300 g each collected from the Bashibulake Mine section were 

analysed for ostracods. After the complete drying of sediments in order to eliminate interstitial water, 

a sodium sulphate solution (Na2SO4 - Glauber’s salt) was used, followed by several freeze-defrost 

cycles. Finally, samples were washed through a 250 mesh (0.63 mm) sieve. Ostracod species were 

picked up and identified with a ZEISS – GSZ binocular microscope. Photographs were taken using a 

Philips XL 30 Scanning Electron Microscope at Utrecht University. 

The ostracods are generally poorly to modestly preserved, as often the ornamentation features are 

partially dissolved or eroded, probably by transportation or reworking (Fig. 4), which complicates 

taxonomic identification. Taxonomy is largely based on key standard reference studies, in particular 

from western Europe (Oertli and Key, 1955; Oertli, 1956; Keij, 1957; Ducasse, 1969; Pietrzeniuk, 
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1969; Szczechura, 1977; Keen, 1978; Ducasse et al., 1985a; Ducasse et al., 1985b; Picot, 2002; 

Olteanu, 2006; Lord et al., 2009; Pirkenseer and Berger, 2011). Note that the age range given for most 

of the identified species largely differs in those reference studies. 

Micropalaeontological samples from the lower part of the Bashibulake Mine Section, which has 

been correlated to the Kalatar and Wulagen Formations, are almost barren. Few badly preserved 

specimens of Leguminocytheries, Cytheridea and Cytherella genera were recognized without being 

able to indicate theirs specific affiliation. These specimens are generally indicative of shallow marine 

conditions and do not allow giving a more precise geological age than broadly Eocene. The sample at -

224 m level is particularly rich in coprolites and small sized Cytheridea sp., suggesting restrictive 

lagoonal conditions in agreement with the directly overlying saline lake deposits.  

By contrast, the marine ostracod fauna of the upper marine part, which has been correlated to the 

Bashibulake Formation, are relatively well-preserved. The Cytherellidae family is well-represented by 

at least three species: Cytherelloidea ex. gr. dameriacensis, Cytherella compressa and possibly C. 

beyrichi with less visible ornamentation. C. ex. gr. dameriacensis is known from middle and upper 

Eocene deposits of the Paris and Aquitane Basins in France and the upper Brackleshman Beds of 

Lutetian age in southern England (Apostolescu, 1955; Keen, 1978; Ducasse et al., 1985b). C. 

compressa represents a widely recorded species from Eocene deposits of Belgium, southern England, 

Germany and Poland and Oligocene strata of Belgium, the Netherlands, Hungary, Germany  and the 

Transylvanian Basin of Romania (Keij, 1957; Haskins, 1967; Pietrzeniuk, 1969; Szczechura, 1977; 

Keen, 1978; Uffenorde, 1986; Monostori, 2004; Olteanu, 2006). This species is considered to live in 

normal salinity conditions from shallow low energy waters to the infralittoral zone from 0 to 150 m 

water depth with its main occurrence around 25 m water depth (Uffenorde, 1986; Keen, 1989). 

The Cytheretta genus is common in all samples from the Bashibulake Formation and the following 

three species have been identified:  Cytheretta ex. gr. eocaenica, C. ex. gr. elegans and C.(Flexus?) ex. 

gr. vulgaris var “tricostulée”. Cytheretta eocaenica has been reported from the Eocene of the Paris 

Basin in Belgium and France, from the upper Eocene of Poland and from the lower Oligocene of the 

northern Aquitanian Basin (Keij, 1957; Ducasse, 1969; Pietrzeniuk, 1969; Ducasse et al., 1985a; 

Ducasse et al., 1985b). C. vulgaris is described from middle to upper Eocene beds in the Aquitanian 
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Basin (Ducasse, 1969; Ducasse et al., 1985a; Ducasse et al., 1985b). Cytheretta  vulgaris var 

“tricostulée” has been described from sediments of the Medoc (Gironde) area in south-western France 

corresponding to a regressive phase at the base of the upper Eocene and the first transgressive phase of 

the lower Oligocene. 

The Cytherideidae ostracod family is represented by Cytheridea eocaenica, C. sandbergeri, C. ex. 

gr. pernota, Haplocytheridea ex. gr. curvata and Schuleridea perforata. C. eocaenica is described 

from the upper Eocene of Poland and also mentioned in the Oligocene of southern Romania 

(Pietrzeniuk, 1969; Olteanu, 2006). C. sandbergeri, sometimes difficult to separate from C. pernota, is 

recorded in Rupelian deposits from the upper Rhine Graben, the Hessian Depression and the Swiss 

Jura Molasse (Oertli and Key, 1955; Malz, 1962; Kammerer, 1993; Pirkenseer and Berger, 2011). C. 

pernota is mainly mentioned from the lower Oligocene of western Europe, but there exists 

considerable confusion concerning its correct identification. Haplocytheridea ex. gr. curvata 

(Lienenklaus) was described from lower Rupelian deposits from Sands of Berg and Nucula clay in 

Belgium (Keij, 1957). S. perforata is a littoral to sublittoral species with a wide regional and 

stratigraphic distribution, described from the middle Eocene to lower Oligocene from the southern 

Aquitanian and Paris Basins in France, Belgium, England and Germany, the upper Eocene to lower 

Oligocene from the Transylvania Basin in Romania and the upper Eocene of Poland (Keij, 1957; 

Malz, 1962; Ducasse, 1969; Olteanu and Popescu, 1973; Szczechura, 1977; Keen, 1978; Ducasse et 

al., 1985a; Ducasse et al., 1985b; Olteanu, 2006; Lord et al., 2009).  

Pterigocythereis genus is represented by Pterigocyhtereis ceratoptera (Bosquet) mentioned from 

the upper Rupelian of the upper Rhine Graben, the Oligocene of the Paris Basin and the lower 

Rupelian from Meeressand-Septarienton groups from the Swiss Jura correlated to zones NP21–22 

(Apostolescu, 1962; Ducasse et al., 1985a; Picot, 2002; Pirkenseer and Berger, 2011). This marine 

genus is used as a fossil marker for water depth, indicating minimum water depth of approximately 60 

m at open marine coasts and less than 10 m in restricted marine environments (Libeau, 1980; 

Carbonnel, 1998). However, recent Pterigocytheris jonesii has been observed in the Adriatic Sea up to 

242 m water depth with optimum depths between 80 and 170 m (Bonaduce et al., 1975). Some 

specimens also have similarities with the Eocene species Pterigocytheris cornuta.  
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Others species commonly recorded in the upper marine part are Eucytherura keiji, Rugieria 

semireticulata, “Leguminocythereis” sorneana, Echinocythereis? cf. hamsteadensis and Grinionensis 

ex. gr. triebeli. E. keiji, is described from the upper Eocene of Poland and Germany and the Oligocene 

of Belgium (Keij, 1957; Pietrzeniuk, 1969; Szczechura, 1977). R. semireticulata is reported from the 

Bartonian to Priabonian Barton Beds on the Isle of Wight in England, as well as from the Bartonian 

Barrême syncline in France (Keen, 1978; Apostolescu and Dellenbach, 1999; Lord et al., 2009). L. 

sorneana is known from the lower Oligocene in the southern upper Rhine Graben, the Swiss Molasse 

Basin and the Jura Molasse (Oertli, 1956; Picot, 2002; Pirkenseer and Berger, 2011). E. hamsteadensis 

is mainly a lower Rupelian species recorded from the upper Hamstead Beds on the Isle of Wight 

(Keen, 1978). G. triebeli is mentioned from the earliest Rupelian of the upper Rhine Graben, from 

which many ostracods have been recorded in two Rupelian transgression-regression cycles related to 

the global Ru1 and Ru2-3 sequences (Neal and Hardenbol, 1998; Pirkenseer and Berger, 2011).  

Less common species are represented by Loxoconcha ex. gr. nystiana, Cytheromorpha cf. zinndorfi 

and Paijenborchella tricostata. L. nystiana occurs from late Eocene to Oligocene and presents large 

variations in both size and ornamentation due to the palaeoenvironmental conditions, in particular 

water chemistry (Keen, 1978; Pirkenseer and Berger, 2011). This species is described as Loxoconcha 

favata from the lower Rupelian of the Swiss Jura (Picot et al., 2008). C. zinndorfi is widely recorded 

from the lower Oligocene of western Europe to Turkey (Keij, 1957; Sönmez-Gökçen, 1973; Keen, 

1978; Keen, 1989; Lord et al., 2009; Pirkenseer and Berger, 2011). Recent Cytheromorpha species (C. 

nana) reported from the Adriatic Sea are living in coastal areas up to 120 m water depth (Bonaduce et 

al., 1975), whereas the Paleogene species appears to occur in meso- to polyhaline coastal waters 

(Kammerer, 1993). 

Summarizing, most ostracod species from the Bashibulake Formation have a stratigraphic range 

from middle–late Eocene to early Oligocene and are indicative of littoral to sublittoral, shallow marine 

conditions. The identified species appear to correspond to the ostracod assemblages described from the 

Wulagen and Bashibulake Formations by Ye et al. (1996), despite their different usage of names 

(primarily based on the Russian literature of Mandelstam, 1958).  
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4.2 Foraminifera 

One sample from the lower marine part, which has been lithostratigraphically correlated to the 

Wulagen Formation, contains low numbers of poorly preserved Cibicides species. These are not age 

diagnostic and may be indicative of an open marine shelf environment. 

Six samples from the upper marine part, identified as the Bashibulake Formation, contain 

moderately to poorly preserved but more diverse foraminifera. Single samples were collected at the -

95, -85 and -55 m levels, and three samples between the -45 and -40 m levels. The upper three 

samples, just below the -40 m level contain low numbers of the planktic species Pseudohastigerina 

micra. Nocchi et al. (1986) and Wade and Pearson (2008) report collapsing abundance and size 

reduction (from the fraction >125 µm to <125 µm) in the genus Pseudohastigerina at the EOT. As in 

the sampled material the specimens occur in the fraction >125 µm, these samples are likely of Eocene 

age. The low diversity assemblages of smaller benthic foraminifera dominated by Cibicides and 

Anomalinoides species (among others Cibicides cf. C. tenellus)  further suggest a late Eocene age 

(Murray et al., 1989), which is in agreement with the occurrence of larger-sized P. micra. 

The sample at the -85 m level is strongly decalcified and dominated by an agglutinated Rheophax 

species. Agglutinated foraminifera form 45% of the assemblage at the -95 m level, 30% at the -85 m 

level, and together with Rheophax sp. include Spiroplectinella laevis, Haplophragmoides spp. and 

Ammobaculites spp.. Less than 10% of the assemblages in the other samples consist of agglutinated 

foraminifera. Larger benthic foraminifera, mainly Nummulites spp., are extremely rare. 

In summary, the benthic assemblages suggest a late Eocene deposition in a neritic environment. At 

the -95 m level the benthic assemblage is relatively diverse and, together with sparse Melonis 

barleeanum, Pullenia sp. and Cibicides cf. C. pharaonis, might reflect mid-shelf depth although 

Haplophragmoides spp. are more common at inner neritic depths. At the -40 m level the common 

occurrence of miliolids, of which some are quite large, indicates a middle- to inner neritic depth, and 

possibly also a deviating salinity. In addition, fish remains, the occurrence of Bulimina ovata-quadrata 

and relatively abundant N. insecta suggest oxygen depletion at the sea floor. 

 

4.3 Molluscs 
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Oysters (Ostreidae) and scallops (Pectinidae) dominate the mollusc record of the Bashibulake Mine 

section (Fig 6 and Table DR1). These epibenthic pteriomorph (Pteriomorphia) bivalves produce 

calcite shells which makes them stable against secondary leaching in carbonate deposits (Esteban-

Delgado et al., 2008). The occurrence of aragonite secreting molluscs is indicated by few turritelline 

steinkerns and by drill holes in Platygena shells attributed to boring bivalve Lithophaga sp.. Our 

taxonomic identifications are presented in stratigraphic upward order through the Bashibulake Mine 

section, largely following Lan and Wei (1995) and Lan (1997), representing the most recent revision 

of regional systematic literature.  

The common, monospecific occurrence of Ostrea (Turkostrea) cizancourti in the lowermost part of 

the section points to stratigraphic position in the top of the Kalatar Formation (Lan, 1997), which has 

been assigned a Lutetian age (Bosboom et al., in press). This small-sized species indicates fully 

marine, shallow water littoral environment. Its common presence in contemporaneous deposits in the 

regional Alai stage in the Ferghana and Afghan-Tajik Basins (Berizzi Quarto di Palo, 1970), points to 

well-established connections to the open sea. The presence of Ostrea (Turkostrea) striplicata in the 

lowermost part of this interval is tentatively indicated by one large-sized, but badly preserved 

specimen. 

The two samples from the overlying unit bear oysters Sokolowia buhsi, Kokanostrea kokanensis 

and Flemingostrea kaschgarica and the scallop Palliolum trigintaradiatum, which are all 

characteristic of the Wulagen Formation and in line with previous results from the previously studied 

sections in the southwest depression (Lan and Wei, 1995; Lan, 1997; Bosboom et al., 2011; Bosboom 

et al., in press). This Sokolowia-Kokanostrea assemblage characterizes in particular the lower and the 

middle part of the formation and has been attributed a late Lutetian age (Lan, 1997; Bosboom et al., in 

press). It points to normal saline, warm and turbulent, subtidal shallow marine water conditions. The 

well-connected, open marine setting is indicated by the palaeobiogeographic distributional patterns of 

the fauna. In particular Sokolowia buhsi shows extraordinary wide dispersal in the regional Turkestan 

stage of Central Asia in northwest Afghanistan and in northern Iran and its occurrence has even been 

reported from lowermost Bartonian strata of the Transylvanian basin (Grewingk, 1853; Vialov, 1937; 

Berizzi Quarto di Palo, 1970; Rusu et al., 2004). Beyond that, the scallop Palliolum trigintaradiatum 
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has been found still further west, in Lutetian beds of the Bracklesham Bay in Great Britain (Wood, 

1861). The Ostrea ulugqatica assemblage described by Lan (1997) from the uppermost part of the 

Wulagen Formation is absent in the Bashibulake Mine section. 

Following an interval of 180-m thickness without any mollusc record, the subsequent marine 

transgression brings a complete overturn of mollusc fauna. The complete succession of 

biostratigraphic horizons described from the Bashibulake Formation by Lan (1997) is represented. The 

Bashibulake fauna has not been encountered in our previous studies of the fourth transgression near 

the palaeodepocenter of the southwest Tarim depression (Bosboom et al., 2011; Bosboom et al., in 

press), which is in agreement with previous mollusc studies (Lan and Wei, 1995; Lan, 1997). Two 

lowermost samples comprise Platygena asiatica, which is a large, thick-walled, shallow water, 

sediment incliner and marker of the Platygena-Pholadomya assemblage in the second and third 

members of the Bashibulake Formation (Lan, 1997). Its shells are secondarily bio-eroded by the 

boring bivalve Lithophaga sp., likely pointing to very shallow, fully marine littoral environment. 

Following a bed with common serpulid and balanid remains, the middle part of the interval is marked 

by the presence of large-sized Ferganea bashibulakeensis, a marker species of the Ferganea-

Lithophaga assemblage of the third and fourth members of the Bashibulake Formation. Small-sized 

Ferganea ferganensis and Ferganea sewerzowii are likely present therein. Together with Lithophaga 

sp. borings and the scallop Palliolum minblaki, these molluscs mark fully marine, subtidal, shallow 

water conditions. Finally, the common occurrence of Cubitostrea tianschanensis in the topmost 

sample indicate the installation of Cubitostrea-Ferganea sewerzowii assemblage characteristic of the 

fourth and fifth members of the Bashibulake Formation, indicating an intertidal environment within 

hypersaline lagoonal facies (Lan, 1997). The overall faunal composition with endemic taxa such as 

Ferganea or Cubitostrea tianschanensis, known only from the Tarim, Ferghana and Afghan-Tajik 

Basins, reflects the progressive basinal restriction marking the onset of the last regressive event when 

the sea gradually retreated from this region (Lan, 1997). 

In summary, the Bashibulake fauna indicates a progressive shift from fully open to more restricted 

conditions. It points to a Priabonian age, fixed by the correlation with the uppermost marine deposits 
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of the late Priabonian Sumsar Formation in the Ferghana Basin in Kyrgyzstan (nannoplankton zones 

NP19–NP20; Lan and Wei, 1995; Muzylev et al., 1996).  

 

4.4 Calcareous nannofossils 

The preparation followed standard techniques by Bown and Young (1998) and analyses were 

performed with a light microscope at 1200x magnification along two transverses of the slide, and 

sometimes extended at 400x in search of rare biomarkers. The biostratigraphic attribution is primarily 

based on the standard zonations (Okada and Bukry, 1980; Gradstein et al., 2012). In general, 

nannofossil abundance and preservation in the collected samples are very limited, which could be 

indicative of a near-shore environment (Fig. 7 and Table DR2).  

The lowermost fossiliferous sample at -247 m level in the lower marine part, correlated to the base 

of the Wulagen Formation, contains a nannofossil assemblage that is generally characteristic of the 

middle Eocene. The absence of Reticulofenestra umbilicus may indicate a late Lutetian age. The 

sporadic presence of Lanternithus arcanus in the same sample may further constrain this age by 

correlation to Zone CP13c (equivalent to NP15c of  Martini, 1970) as suggested by Bown (2005). This 

age assignment is consistent with the age of the lower part of the Wulagen Formation and the upper 

part of the Kalatar Formation in the previously studied Aertashi, Kezi and Keliyang sections of the 

southwest Tarim Basin (Fig. 1; Bosboom et al., in press), where rare L. arcanus were recorded without 

R.umbilicus. The rare nannofossils indicate a near-shore environment. 

From the overlying 180-m-thick interval seven samples have been examined which are completely 

barren. As calcareous phytoplankton requires clear waters to thrive and prefers open marine 

conditions, the interval lithostratigraphically correlated to the upper part of the Wulagen Formation 

and lower part of the Bashibulake Formation, records a sea-level lowstand in this part of the basin, 

which would correspond to the last major sea retreat recorded in the southwest Tarim Basin near the 

palaeodepocenter (Bosboom et al., in press). The age of this interval is not precisely identifiable by 

means of nannofossils, but should be younger than the first occurrence (or lowest occurrence) of R. 

umbilicus, as it has been previously identified in the underlying Wulagen Formation in the southwest 

Tarim Basin and should therefore correspond to Zone CP14 (Bosboom et al., 2011). 
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At -57 m level the reappearance of nannofossils by the presence of Cribrocentrum reticulatum 

suggests the age is not older than Bartonian. Although, the distribution of C. reticulatum has been 

matter of debate, in particular its first occurrence (see  Fornaciari et al., 2010 and references therein), it 

can be conservatively restricted to an interval corresponding to the middle part of magnetochron C18r 

up to the base of C15n. A correlation to an interval above its Lowest Common Occurrence (sensu 

Fornaciari et al., 2010), which is used as a reliable biomarker for the Bartonian, is further suggested by 

C. reticulatum being relatively more abundant and well-preserved in the sample at the -49 m level 

with moderate to good preservation. The relatively good preservation and common presence of the 

nannofossil assemblage indicate more open marine conditions for the upper marine part of the section 

correlated to the Bashibulake Formation (from -57 to 0 m level). 

In general, the encountered nannofossil assemblage in the Bashibulake Formation correlates to 

Zones CP14b–CP15a. The absence of the genus Neoccolithes, which last occurrence is reported at the 

base of CP15a, can further refine this correlation to Zone CP15a. 

This correlation is further supported by studies of Zhong (1992) and Ye et al. (1996) reporting in a 

few samples from the second to fourth members of the Bashibulake Formation the rare presence of 

Ismolithus recurvus, which has its first occurrence at the top of subzone CP15a (top C17n1n),  

although the samples did not yield any Ismolithus recurvus most likely due to the relatively low 

sampling-resolution in the Bashibulake Formation and the poor preservation of the assemblage. 

Accordingly, the Bashibulake Formation has a younger age than that assigned to the underlying 

Wulagen Formation correlated to Zone CP14 (Bosboom et al., in press), which is in agreement with 

the age assigned by Zhong (1992) to the first and second members of the Bashibulake Formation. The 

assemblage is generally characteristic of mid-latitude water masses. The relatively common abundance 

of holococcoliths like Transversopontis pulcheroides and Lanthernithus spp. indicates a near-shore 

environment. 

 

4.5 Palynology 

Twenty samples have been processed for palynological analyses, from which nine samples were 

either barren or the preservation state was insufficient to identify species on a genus level. The 
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preparation followed standard palynological techniques as described in Houben et al. (2011). 

Taxonomy follows that cited in Fensome and Williams (2004).  

The recovered palynological assemblages from the lower and upper marine unit are characterized 

by abundant dinocysts and yield typically low amounts of terrestrial palynomorphs (Fig. 8 and Table 

DR3). The upper marine unit has some marked elevated abundances (up to 30%) of the marine green 

algae Tasmanites spp. The regressive interval of gypsum and coarse-grained clastics between the two 

marine incursions is palynologically barren. 

The presence of the dinocyst species Aerospharidium diktyoplokum, Charlesdowniea wulagenensis 

and Rhombodinium draco imposes a close correspondence of the lower marine unit to the 

Turbiosphaera filosa Zone of Mao and Norris (1988) and to the previously studied marine deposits of 

the Kalatar and Wulagen Formations at the Aertashi, Kezi and Keliyang sections in the southwest 

Tarim Basin, which have previously been assigned a Lutetian age (Fig. 1; Bosboom et al., 2011; 

Bosboom et al., in press). The marine mud bed at level -247 m in the Bashibulake Mine section is 

tentatively correlated to magnetochron C19n, based upon the First Occurrence (FO) of R. draco 

(Iakovleva and Heilmann-Clausen, 2010). This corroborates with the lithostratigraphic correlation of 

these lower marine sediments to the Kalatar and Wulagen Formations (Bosboom et al., in press). 

The samples of the upper marine part (-108 to 0 m level), lithostratigraphically correlated to the 

Bashibulake Formation, hold many different dinocyst species, including Cordosphaeridium 

funiculatum. Since C. funiculatum occurs rather consistently in the Bashibulake Formation, its FO 

there is tentatively correlated to the consistent occurrence of C. funiculatum in southwest Siberia 

within magnetochron C17n (Iakovleva and Heilmann-Clausen, 2010). The FO of Lentinia serrata at 

the –108 m level supports this correlation, as the FO of L. serrata and the consistent occurrence of C. 

funiculatum are almost synchronous in southwestern Siberia. Furthermore, the FOs of Charlesdowniea 

coleothrypta subsp. rotundata sensu De Coninck (1986), Glaphyrocysta microfenestrata and 

Thalassiphora reticulata in the upper part of the record (-38 to 0 m level) are in perfect agreement 

with the southwest Siberian and Danish records (Heilmann-Clausen and Van Simaeys, 2005; 

Iakovleva and Heilmann-Clausen, 2010). Using the FO of these species, the top of the upper marine 

interval is bracketed between the base of magnetochron C16n.1n and the base of C15n. Summarizing, 
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the marine beds of the last transgression at the Bashibulake Mine Section are tentatively correlated to 

the latest Bartonian–early Priabonian from ~38.4 (base C17n.3n) to ~35.3 Ma (base C15n; Fig. 4). 

The recovered dinocyst assemblages generally lack dinocysts species that are typically associated 

with more open marine conditions, such as Impagidinium spp. Most assemblages are dominated by 

outer neritic species, such as Spiniferites spp. and Areosphaeridium diktyoplokum (Brinkhuis, 1994; 

Powell et al., 1996). In total, three periods of restricted marine ‘lagoonal’ conditions have been 

recorded by elevated abundances of goniodomid taxa, in particular Homotryblium spp. The red 

coloured coarse-grained clastics situated between the lower and upper marine unit are barren, which is 

in agreement with the supposed drop in water level. The marine conditions re-establish upwards with a 

minor peak in Impagidinium spp. at level -82 m marking the most open marine conditions during the 

studied interval. The successive peaks of Adnatosphaeridium (outer neritic), Glaphyrocysta (inner 

neritic) and finally Homotryblium (restricted marine) impose a shallowing trend and a more proximal 

setting towards the end of the record (Pross and Brinkhuis, 2005).  

 

5. Discussion 

 

5.1 Timing, palaeoenvironment and palaeogeography of the sea retreat 

 

5.1.1. Fourth incursion 

The studied dinocyst, calcareous nannofossil, mollusc, ostracod and foraminifera assemblages of 

the lower marine incursion at the Bashibulake Mine section confirm correlation to the Kalatar and 

Wulagen Formations. This, our previous study of marine deposits of the fourth incursion along the 

West Kunlun Shan and the regional compilation of reports of the distribution of these formations 

(Bosboom et al., 2011; Bosboom et al., in press), clearly illustrates that the fourth and last major 

incursion into the Tarim Basin reached across the entire southwest depression (Figs. 1 and 9). At the 

Bashibulake Mine section the Wulagen Formation is thinner in comparison to the Kezi, Aertashi and 

Keliyang sections and saline lacustrine evaporite beds are dominant, which is in agreement with the 

Bashibulake Mine section being located farther from the depocentre (Figs. 1 and 4; Jia et al., 1997; 
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Yang and Liu, 2002). Our biostratigraphic analyses consistently point to a Lutetian age for the marine 

deposits of the fourth transgression at the Bashibulake Mine section, which is in perfect agreement 

with the latest Lutetian–earliest Bartonian age of the sea retreat by integrated bio-magnetostratigraphic 

dating of the marine-continental transition at sections near the palaeodepocenter of the southwest 

depression (~41 Ma; base C18r; Bosboom et al., in press).  

 

5.1.2. Fifth incursion 

The encountered fossil assemblages of the upper marine part corroborate the lithological 

correlation to the Bashibulake Formation and thus confirm that the uppermost marine sediments at the 

westernmost margin of the Tarim Basin correspond to the fifth transgression. Our biostratigraphy 

indicates a late Bartonian–Priabonian age range for the marine sediments of the Bashibulake 

Formation, which significantly narrows the previous late Eocene–late Oligocene age range based upon 

foraminifera, ostracods, bivalves, calcareous nannofossils and dinoflagellate cysts (Hao and Zeng, 

1984; Mao and Norris, 1988; He, 1991; Zhong, 1992; Lan and Wei, 1995; Yang et al., 1995). Careful 

evaluation of the acquired biostratigraphic ages for each fossil group leads us to assign an age ranging 

from base C17n.3n to base C15n for the marine deposits of the fifth transgression. Relying on the 

small age range given by correlation to calcareous nannofossil Zone CP15a, the best age estimate 

ranges from near top C17n.2n to base C16n.2n. Accordingly, the uppermost age-diagnostic fossil 

found at level 0.0 m would be older than ~36.7 Ma and the lowermost age-diagnostic fossil at level 

−107.9 m would be younger than ~38.0 Ma (Fig. 4). Chronostratigraphic synthesis of the 

biostratigraphic results thus constrains the last sea retreat from the Tarim Basin to the early 

Priabonian, evidently showing that it clearly precedes the major ~70 m sea-level drop associated to the 

EOT at ~34 Ma (Pekar et al., 2002; Miller et al., 2005; Katz et al., 2008; Lear et al., 2008).  

The marine depositional environment of the last and fifth transgression is, like the fourth 

transgression, characterized by fully marine, shallow water, near-shore conditions with deviating 

salinity. The stratigraphic succession of the encountered fossil assemblages perfectly illustrates the 

associated shallowing-upward cycle (Fig. 4) and typical of shallow epicontinental basins. After the 

uppermost continental sandstone beds at the -110 m level rapid deepening occurs, followed by gradual 
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shallowing from subtidal facies at outer neritic depth at the -85 m level to restricted marine 

hypersaline lagoonal facies at the 0 m level.  

Our litho-biostratigraphic analyses have improved the age accuracy of the Central Asian sea retreat 

during the late Eocene. This allows us to further evaluate the palaeogeography, controlling 

mechanisms and palaeoenvironmental impact of the stepped disappearance of the proto-Paratethys Sea 

from Central Asia in the Eocene (Fig. 2). 

 

5.2 Palaeogeographic synthesis 

The maximum third marine incursion, corresponding to the Aertashi and Qimugen Formations, 

extended farthest eastward into the Tarim Basin and is poorly constrained in age between the late 

Paleocene and early Eocene (Hao and Zeng, 1984; Mao and Norris, 1988; Tang et al., 1989; Zhong, 

1992; Lan and Wei, 1995; Yang et al., 1995; Burtman, 2000). During the subsequent fourth incursion 

in the Lutetian the sea concentrated mostly in the southwest depression along the West Kunlun Shan 

as indicated by deposition of the Kalatar and Wulagen Formations (e.g. Hu, 1992; Jia et al., 1997; 

Yang and Liu, 2002; Jia et al., 2004; Bosboom et al., 2011; Bosboom et al., in press). This study 

shows that during the last fifth incursion in the latest Bartonian–early Priabonian, the sea was indeed 

restricted to the westernmost margin of the Tarim Basin. The area west of Kashgar likely formed a 

separate basin, isolated from the southwest depression of the Tarim Basin (Figs. 1 and 9). Near the 

palaeodepocenter of the southwest Tarim Basin at the previously studied Aertashi and Kezi sections, 

the Bashibulake Formation is not observed in age-equivalent stratigraphic intervals (Bosboom et al., 

2011; Bosboom et al., in press). There, the marine deposits of the Kalatar and Wulagen Formations 

associated to the fourth incursion are directly overlain by the continental deposits of the Kezilouyi 

Formation and hence the marine deposits of the Bashibulake Formation cannot be traced eastward into 

the southwest depression (Figs. 4 and 9). This is in contrast with several reports arguing for the 

presence of the Bashibulake Formation in the southwest Tarim Basin, leading to erroneous age 

determinations and associated interpretations (Wang et al., 2012). Note also that much older early 

Eocene ages for the sea incursions have recently been proposed based on magnetostratigraphic dating 

of the Oytag (Wuyitake) section in northwest Tarim (Sun and Jiang, 2012). This discrepancy is clearly 
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attributable to the evident lack of continuity of this well-known section, making it unsuitable for 

magnetostratigraphic analysis (Sobel and Dumitru, 1997; Bershaw et al., 2012). 

During the fourth transgression the sea in the Tarim Basin maintained well-established connections 

to the Western Tethys, as indicated by the close resemblance of the fossil assemblages from the 

southwest Tarim Basin to those studied in contemporaneous Eurasian basins (Bosboom et al., 2011). 

This is further corroborated by this study, since the mollusc assemblages collected from the Kalatar 

and Wulagen Formations at the Bashibulake Mine section have a geographical extend as far west as 

Backlesham Bay in Great Britain. The palaeogeography of the proto-Paratethys Sea during the 

succeeding fifth marine incursion was probably comparable, despite that it extended less far eastward 

into the Tarim Basin. The collected molluscs are common throughout Transcaucasia and Europe, 

showing the connection with the Western Tethys was maintained and the Eurasian sub-basins 

remained interconnected as a single unified basin. However, the mollusc species from the assemblage 

at the top of the Bashibulake Formation are endemic to the Tarim, Ferghana and Afghan-Tajik Basins 

in Central Asia, likely as a result of their autochthonous evolution under restricted conditions during 

the last phase of the fifth incursion before the retreat. 

After the fifth incursion, the continental Tarim Basin probably remained hydrologically connected 

to the west until at least the major sea-level drop of the ~34 Ma EOT, expressed by a major 

discontinuity in the continental deposits of equivalent age at the Aertashi section in the southwest 

Tarim Basin (Bosboom et al., in press). This hiatus may correspond to the observed abrupt change in 

depositional environment and incision observed at the top of the Bashibulake Formation and base of 

Kezilouyi Formation at the 24 m level in the Bashibulake Mine section studied here (Fig. 4). The EOT 

is contemporaneous with the reported isolation and birth of the Paratethys Sea, which supposedly 

occurred in the latest Eocene or early Oligocene, as shown by the widespread sedimentation of anoxic 

organic-rich mudstones in basins to the west (e.g. Black Sea and South Caspian Basins; Báldi, 1984; 

Rusu, 1985; Dercourt et al., 1993; Robinson et al., 1996; Rögl, 1999; Popov et al., 2004; Schulz et al., 

2005; Vincent et al., 2005; Allen and Armstrong, 2008; Popov et al., 2008; Johnson et al., 2009). 

It is questionable if fully marine conditions re-established in the Tarim Basin after the fifth 

incursion. This has been suggested based on interpretation of stable isotope excursions and the rare 
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occurrences of euryhaline and brackish ostracods and foraminifera in sediments of middle Miocene 

age (Zheng et al., 1999; Gao et al., 2000; Jia et al., 2004; Graham et al., 2005; Ritts et al., 2008; Kent-

Corson et al., 2009; Zhuang et al., 2011). However, diagnostically marine depositional environments 

with marine bivalves such as found in the Paleogene have not been reported after the fifth incursion 

(Ye et al., 1996; Zheng et al., 1999; Jia et al., 2004). Brackish-marine conditions may have been 

maintained up to the Miocene in isolated restricted basins where former marine species could have 

adapted to these brackish environments (Ye et al., 1996). Remarkably, Ritts et al. (2008) report well-

preserved planktonic foraminifera typical of open marine conditions from middle Miocene 

conglomeratic units in the south-eastern margin of the Tarim Basin, while from the sediments of the 

major and well-established marine incursions of the Cretaceous and Paleogene only rare planktonic 

taxa have been reported from the westernmost margin of the Tarim Basin (Hao and Zeng, 1984). 

Based on the complete absence of middle Miocene marine deposits in the neighbouring basins 

providing potential connection to the global ocean (e.g. Burtman, 2000; Coutand et al., 2002; Popov et 

al., 2004), combined with the character of the sedimentary facies contrasting open marine conditions, 

these findings are highly doubtful and need careful consideration before providing proof for post-

Eocene marine flooding of the Central Asian basins. 

 

5.3 Controlling mechanism 

Our new results corroborate our previous conclusion that the stepwise sea retreat out of the Tarim 

Basin was likely caused by a combination of long-term aggradational infilling controlled by early 

Tibetan Plateau uplift and short-term eustatic sea-level fluctuations (Fig. 2; Bosboom et al., in press). 

For the fourth incursion, the coeval ages of the marine Kalatar and Wulagen Formations between 

southwest to northwest Tarim suggest that this incursion is not time-transgressive at the age-resolution 

of the biostratigraphy. Such limited diachronicity indicates the sea entered in and withdrew out of the 

Tarim Basin relatively rapidly, as can be expected in the case of eustatic control on a shallow 

epicontinental basin with low gradients, rather than long-term tectonic control. The fourth regression 

at ~41 Ma corresponds in age with the late Lutetian disconnection of the proto-Paratethys Sea from the 
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Arctic Sea by closure of the West-Siberian Sea and Turgai Strait (Akhmetiev and Beniamovski, 2006; 

Akhmetiev, 2007; Iakovleva and Heilmann-Clausen, 2010; Bosboom et al., in press).  

The fifth incursion corresponds in timing with reported marine transgressions of Bartonian age 

followed by early Priabonian regression documented in various European basins, including the Paris 

Basin, the Ebro Basin, the Transylvanian Basin and the Hampshire Basin (Proust and Hosu, 1996; 

López-Blanco et al., 2000; Lartaud, 2007; Costa et al., 2010; Dawber et al., 2011). These regionally 

time-equivalent events suggest eustatic forcing. Global sea-level drops, in the order of 10 to 40 m, 

have indeed been reported from the early Priabonian around ~37.5 and ~35.5 Ma (Miller et al., 2005; 

Kominz et al., 2008).  These sea-level fluctuations are contemporaneous with short-term global 

cooling in the early Priabonian reported from the marine record, as indicated by a positive peak in 

δ18
O in the Southern Ocean (named event C by Villa et al., 2008) and by an elevated CaCO3 interval 

in the equatorial Pacific (named Carbonate Accumulation Event 5) interpreted as deepening of the 

calcite compensation depth (CCD) in reaction to cooling (Lyle et al., 2005). Early Priabonian eustatic 

variations may thus have forced the observed sea fluctuations across the Tarim Basin. 

However, the difference in westward palaeogeographic extent between the fourth and fifth 

incursions separated by several millions of years rather suggests the combined effect of long-term 

mechanisms such as tectonically controlled sedimentary infilling or diminished subsidence. The 

reported eustatic sea-level fluctuations from the Lutetian to Priabonian do not show a long-term 

decreasing trend that would correspond to the observed decrease from the fourth to the fifth incursion 

(Miller et al., 2005; Kominz et al., 2008). A distal source of infilling sediment is provided to the south 

by the early uplift of the Pamir and Kunlun Shan thrust belts (Yin and Harrison, 2000; Jolivet et al., 

2001; Yang and Liu, 2002; Yin et al., 2002; Graham et al., 2005; Kent-Corson et al., 2009; Amidon 

and Hynek, 2010), which according to the late Eocene configuration of the Pamir by Cowgill (2010) 

were situated 100–300 km south of their present-day positions. This is in good agreement with 

measured northward palaeoflow directions in the continental infill on top of the marine sediments of 

the fourth marine incursion, both at the Bashibulake Mine section reported here and at the Aertashi 

section to the west (Bosboom et al., in press). Accordingly, deformation and associated aggradational 

infilling propagated to the north in relation to the Indo-Asia collision and Pamir indentation, forcing 
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the long-term westward sea retreat from the Tarim Basin. This process started from the maximum 

third incursion in the late Paleocene–early Eocene, coeval with the onset of the Indo-Asia collision. 

Long-term distal tectonism continued until at least the ~34 Ma EOT when the Tarim Basin was still 

hydrologically connected to the Western Tethys and not isolated from basins to the west. The 

complete closure of the Tarim Basin by the Pamir indentation probably ensued important proximal 

tectonism in the Western Kunlun Shan and Tian Shan, associated with documented major exhumation 

and alluvial deposition reported to start only ~25–18 Ma (e.g. Sobel and Dumitru, 1997; Sobel et al., 

2006; Amidon and Hynek, 2010; 2010; De Grave et al., 2012; Yang et al., in press). This 

palaeogeographic evolution is generally similar to that recently proposed by Wei et al. (2013). 

However, they use the highly unlikely Miocene presence of a Tarim Sea connected to the western 

marine realm to infer the tectonic evolution of the Pamir, based upon a review of previously discussed 

reports of rare foraminifera from Miocene strata (e.g. Hu, 1982; Ritts et al., 2008).  

 

5.4 Palaeoenvironmental impact 

To evaluate the potential palaeoenvironmental impacts of the fourth and fifth sea incursions, their 

established ages can be compared to reported ages of Asian palaeoenvironmental changes. Our 

previous study has shown that the major fourth sea-level retreat during the latest Lutetian-earliest 

Bartonian is concomitant with indications of aridification of the Asian continental interior and 

intensification of the East Asian monsoon (Bosboom et al., in press), which is in agreement with 

climate modelling studies suggesting that the sea functioned as an important moisture source for the 

Asian interior (Ramstein et al., 1997; Zhang et al., 2007). The timing of the sea retreat at ~41 Ma is 

concomitant with an increase in seasonal precipitation in the middle Eocene (C19r–C18r) recorded in 

fossil pollen and leaf records in northeast China and regional disappearance of a relatively wet 

perennial saline lake system and prominent shift to relatively more arid flora around ~41 Ma (C19n–

C18r) recorded in the Xining Basin along the north-western margin of the Tibetan Plateau (Quan et al., 

2011; Quan et al., 2012; Bosboom et al., 2014; Bosboom et al., in press). Here, the middle to late 

Eocene stepwise disappearance of saline lake gypsum beds and shift to relatively arid flora have been 

accurately linked to both regional biotic turnovers and the deterioration of global climate (e.g. Meng et 
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al., 1998; Miller et al., 2005; Zachos et al., 2008; Kraatz and Geisler, 2010; Gomes-Rodrigues et al., 

2012), both culminating at the EOT at ~34 Ma which precisely correlates to the uppermost gypsum 

bed (top C13r; Dupont-Nivet et al., 2007; Abels et al., 2011). The aridification step at ~41 Ma is 

followed by another significant step recorded at ~37.1 Ma (top C17n.1n), which shows a shift to less 

stable saline lake systems indicated by a decrease in gypsum relative to mudstone beds and a drastic 

palynological change (named Step 1 in Figs. 2 and 4; Abels et al., 2011; Hoorn et al., 2012). The 

coeval timing of the ~37.1 Ma aridification step and the continued intensification of the East Asian 

monsoon system in the late Eocene with the fifth regression (Quan et al., 2011), suggests that the sea 

in Central Asia may have continued to act as an important moisture source for the Asian continental 

interior until at least the early Priabonian (Figs. 2 and 4). This aridification step is followed by the 

major regional Asian aridification at the EOT, which corresponds in age with the major hiatus found 

in the Aertashi section and possibly with the unconformable contact at the top of the Bashibulake 

Formation and the base of the Kezilouyi Formation at the 24 m level in the Bashibulake Mine section 

studied here. It is possible that the major ~70 meter eustatic sea-level drop associated with the EOT 

resulted in another significant westward retreat of the proto-Paratethys Sea in Central Asia (Pekar et 

al., 2002; Miller et al., 2005; Katz et al., 2008; Lear et al., 2008), although its palaeogeographical 

distribution at that time is uncertain. A major negative isotopic shift from Eocene to Oligocene 

reported from the Tarim Basin and northern Tibetan Plateau by Graham et al. (2005) has been 

attributed to aridification in response to early development of Tibetan topography after the Indo-Asia 

collision (e.g. Rowley and Currie, 2006; Dupont-Nivet et al., 2008; Wang et al., 2008; Dai et al., 

2013). A Paleogene decrease in oxygen isotope values has also been reported from the same region by 

Kent-Corson et al (2009). These results perfectly fit with the outcome of this study indicating that the 

long-term retreat of the proto-Paratethys Sea from Central Asia primarily occurred during the late 

Eocene. 

 

6. Conclusions 
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The last and fifth marine incursion in the Tarim Basin was limited to its westernmost margin and 

occurred during the latest Bartonian–early Priabonian, showing that the sea had retreated westward  

before the EOT and isolation of the Paratethys Sea. Similar to the fourth transgression the 

palaeoenvironment of the fifth transgression was characterized by shallow marine conditions with 

well-established connections across Eurasia to the Western Tethys. 

The apparent lack of diachronicity of the regressions from the southwest Tarim Basin and 

concomitant sea-level falls recorded in global marine records and Eurasian basins, corroborate that, in 

addition to long-term tectonic forcing of the stepwise westward retreat from Central Asia by early 

distal uplift of the Pamir-Kunlun orogenic system to the south, the individual regressions were forced 

by short-term eustatic sea-level lowering. Since both the fourth and fifth regressions coincide with 

significant aridification steps in the Xining Basin, the link between the middle to late Eocene records 

of the stepped proto-Paratethys Sea retreat from the Tarim Basin and the stepwise Asian aridification 

is now better established. 

Later and farther long-term westward retreat of the sea from Central Asia, which eventually 

isolated as the Paratethys Sea, is still poorly constrained in time and space. The fifth and last 

regression studied here probably extended far westward into the neighbouring Ferghana and Afghan-

Tajik Basins according to existing stratigraphic correlations (Burtman et al., 1996; Burtman, 2000). 

However, the sedimentary successions of these basins remain poorly dated such that further accurate 

litho-biostratigraphic study of their marine sediments is required to ascertain these correlations. 
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Figure captions 

 

Fig. 1. Locations of the lithostratigraphic sections (MI = Bashibulake Mine; KZ = Kezi; AT = 

Aertashi; KY = Keliyang) are displayed on the schematic geological map of Central Asia displaying 

major tectonic features (modified from Cowgill, 2010). The inset shows the locations of the Tarim and 

Xining Basins on a large-scale map of Eurasia (present-day coastal outline obtained from GPlates 

0.9.7.1). 

  

Fig. 2. Simplified regional lithostratigraphic framework of the marine incursions recognized in the 

southwest Tarim Basin, compared temporally with the palaeogeographic evolution of the proto- 

Paratethys Sea, the regional tectonic evolution of the Pamir, Kunlun Shan and Tian Shan, the 

palaeoenvironmental changes recorded in the Asian interior and global climate events, based on the 

geological time scale (Gradstein et al., 2012). Also indicated is the disputable reoccurrence of minor 

brackish-marine incursions in the Miocene. See the discussion for references and a complete overview 

of the link between the proto-Paratethys Sea retreat and these different geological events, indicated by 

the thin-dotted lines. The formations, corresponding thicknesses and lithologies are summarized from 

Jia et al. (2004), Mao and Norris (1988) and Tang et al. (1989). Through our studies age estimates 

have been obtained for the Bashibulake Formation (this study), the Wulagen and the Kalatar 

Formations (Bosboom et al., 2011; Bosboom et al., in press), whereas for the older formations 

previous age estimates have been reviewed based upon calcareous nannofossils, bivalves, ostracods, 

dinoflagellate cysts and benthic foraminifera (Hao and Zeng, 1984; Mao and Norris, 1988; Zhong, 

1992; Lan and Wei, 1995; Yang et al., 1995). The shaded area highlights the Bashibulake Formation 

corresponding to the fifth and last sea retreat from the westernmost margin of the Tarim Basin, which 

has been accurately dated by biostratigraphy in this study. The approximate relative changes in sea 

level of each transgression are shown by the thick-dotted line and are simply based upon the reported 

eastward extent of each incursion into the basin. . 
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Fig. 3. Field photographs of formations and sedimentologic features at the Bashibulake Mine section. 

(a) Sinuous-crested ripples, trough cross-bedding and (b) incised channels in the fine sandstone beds 

of the first member of the Bashibulake Formation are indicative of a fluvial depositional environment. 

(c) Oysters in a red mudstone bed in the Bashibulake Formation. (d) Overview of the Bashibulake 

Mine section showing all the Paleogene formations recognized in the field. Note the alternation of red 

and green mudstones within the Bashibulake Formation.  

 

Fig. 4. Lithostratigraphy and recognized age diagnostic biostratigraphic events correlated to the 

geological time scale (GTS12; Gradstein et al., 2012) for the southwest Tarim Basin. The 

biostratigraphic sample levels of this study are indicated next to the stratigraphic column. The same 

samples were analysed for foraminifera and ostracods. Zero level is defined by the uppermost green-

coloured shell bed. Preliminary palaeo-waterdepth estimates are shown directly next to the 

lithostratigraphic columns, as well as the previously obtained magnetostratigraphic polarity pattern at 

the Aertashi and Kezi sections near the palaeodepocenter in the southwest Tarim Basin (Bosboom et 

al., in press). The biostratigraphic correlations are indicated by dotted lines and shaded areas (dark for 

calcareous nannofossils and light for dinoflagellate cysts). The last sea retreat in the western Tarim 

Basin is concomitant with a significant aridification step recognized in the Xining Basin at ~37.1 Ma 

(top of C17n.1n; named Step 1 by Abels et al., 2011) and short-term global cooling in the early 

Priabonian (C17n.1n; cooling event C by Villa et al., 2008 and Carbonate Accumulation Event 5 by 

Lyle et al., 2005). 

 

Fig. 5a. The most important species of ostracods recognized. External lateral view of valves of 

ostracods, all belonging to adult individuals (LV = left valve; RV = right valve). 1, 2. Cytherelloidea 

ex. gr. dameriacensis (Apostolescu); 1. carapace, view from RV; 2. LV. 3,4. Cytherella compressa 

(von Münster); 3. carapace, view from RV; 4. LV. 5,6. Cytherella sp., possible C. beyrichi with less 

visible ornamentation, carapaces, view from RV. 7,8. Paracypris sp.; 7. LV; 8. carapace, view from 

RV. 9,10. Pterigocyhtereis ceratoptera (Bosquet); 9. LV; 10. carapace, view from RV. 11,12. 

Loxoconcha ex. gr. nystiana Bosquet; 11. LV, female. 12. RV, male. 13, 14. Schuleridea ex. gr.  
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perforata (Jones); 13. carapace, view from LV; 14. carapace, view from RV. 15, 16.  Cytheridea 

eocaenica Pietrzeniuk; 15. LV; 16. carapace, view from RV. 17, 18. Cytheridea ex. gr. pernota Oertli 

and Key; 17. LV, male; 18. carapace, view from RV, female. 19, 20. Haplocytheridea ex. gr. curvata 

(Lienenklaus) 19. LV; 20. RV. 21. Cytheridea sandbergeri Kammerer, carapace, view from RV. 22, 

23. Cytheromorpha aff. zinndorfi (Lienenklaus); 22. carapace, view from LV; 23, carapace, view from 

RV. 24. Grinioneis ex. gr. triebeli (Stchepinsky), carapace, view from LV. 25–28. Cytheretta ex. gr. 

eocaenica Keij; 25. carapace, view from LV, female; 26. carapace, view from RV, female; 27. 

carapace, view from LV, male; 28. RV, male 

 

Fig. 5b. The most important species of ostracods recognized (continued from Fig. 5a). External lateral 

view of valves of ostracods belong to adult individuals (LV = left valve; RV = right valve). 1, 2. 

Cytheretta ex. gr. vulgaris Ducasse; 1. carapace, view from LV, female; 2, carapace, view from RV, 

male. 3, 4. Cytheretta (Flexus?) vulgaris  Ducasse var “tricostulée”; 3. LV, male; 4. carapace, view 

from RV, male. 5, 6. Echinocythereis ? cf. hamsteadensis Keen; 5. LV. 6. carapace, view from RV. 7, 

8. Eucytherura keiji Pietrzeniuk; 7. carapace, view from LV, female; 8. carapace, view from RV, 

female. 9, 10. “Leguminocythereis” sorneana Oertli; 9. LV. 10. RV. 11, 12. Rugieria semireticulata 

Haskins; 11. carapace, view from LV. 12. carapace, view from RV. 13. Paijenborchella tricostata 

(Lienenklaus), carapace view from RV and ventral. 

 

Fig. 6. The species of molluscs identified. All specimens are in natural size. 1. Ostrea (Turkostrea) 

cizancourti Cox, 1939; left valve (-275.9 m level; MI-S02). 2. Ostrea (Turkostrea) cizancourti Cox, 

1939; right valve (-275.9 m level; MI-S02). 3. Ostrea (Turkostrea) cizancourti Cox, 1939; left valve (-

260.3 m level; MI-S03). 4. Ostrea (Turkostrea) cizancourti Cox, 1939; left valve (-250.7 m level; MI-

S04). 5. Kokanostrea kokanensis (Sokolow, 1910); left valve (-239.1 m level; MI-S07). 6. Ferganea 

bashibulakeensis Wei, 1984; left valve (-36.1 m level; MI-S11). 7. Ostrea (Turkostrea) cf. 

strictiplicata (Roulin and Delbos, 1855); strongly eroded left valve (-275.9 m level; MI-S02). 8. 

Platygena asiatica (Romanovskiy, 1879); fragment of the left valve (-58.9 m level; MI-S08). 9. 

Sokolowia buhsii (Grewingk, 1853); left valve (-239.1 m level; MI-S07). 10. Cubitostrea plicata 
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(Solander, 1766); right valve (-51.2 m level; MI-S09). 11. Cubitostrea plicata (Solander, 1766); left 

valve (-51.2 m level; MI-S09). 12. Cubitostrea tianschanensis (Romanovskiy, 1884); right valve (-4.3 

m level; MI-S13). 13. Flemingostrea kaschgarica (Vyalov, 1948); right valve (-242.5 m level; MI-

S05). 14. Flemingostrea kaschgarica (Vyalov, 1948); left valve (-242.5 m level; MI-S05). 15. 

Cubitostrea tianschanensis (Romanovskiy, 1884); left valve (-4.3 m, MI-S13). 16. Palliolum 

trigintaradiata (Sowerby, 1850); right valve (-239.1 m level; MI-S07). 17. Palliolum minblaki 

(Mirkamalova, 1958); right valve (-36.1 m level; MI-S11).  

 

Fig. 7. The most important species of calcareous nannofossils recognized. Scale bar in each 

micrograph is 1 μ.1, 2. Ericsonia formosa (MI-B26). 3, 4. Discoaster barbadiensis (MI-B05). 5. 

Lanternithus sp. side view, (MI-B05). 6. Zigrablithus bijugatus (MI-B05). 7. Lanternithus arcanus 

(MI-B05). 8–10. Cribrocentrum reticulatum (8: MI-B39; 9, 10: MI-B26). 11, 12. Blackites sp. (MI-

B05; 11: x nicols; 12: phase contrast). 13. Reticulofenestra umbilicus (MI-B26). 14. Transversopontis 

pulcheroides (MI-B05). 15. Neococcolithes dubius (MI-B05). 16. Blackites spinosus (MI-B23). 

 

Fig. 8. Important dinoflagellate cysts and green algae. Scale bar in each micrograph is 20 mμ (apart 

from micrograph 5 which is only 5 mμ as indicated).  Adnatosphaeridium multispinosum (MI-B16). 2. 

Areosphaeridium diktyoplokum (MI-B5). 3. Charlesdowniea coleothrypta subsp. rotundata (MI-B39). 

4. Charlesdowniea coleothrypta (MI-B39). 5. Same specimen as plate 4 showing close up of 

membranous ectophragm (MI-B39). 6. Charlesdowniea tenuivirgula/crassiramosa (MI-B5). 7. 

Charlesdowniea crassiramosa (MI-B5). 8. Cordosphaeridium funiculatum (MI-B16). 9. Enneadocysta 

pectiniformis (MI-B16). 10. Hystrichokolpoma rigaudiae (MI-B5). 11. Hystrichosphaeridium 

salpingophorum (MI-B5). 12. Lentinia serrata (MI-B16). 13. Rhombodinium draco (MI-B16). 14. 

Wetzeliella cf. gochtii (MI-B16). 15. Tasmanites spp. (MI-B16). 

 

Fig. 9. Geographic map displaying the present-day extent and age of the marine sediments associated 

to the fourth and last fifth incursions, based upon data of this study, Bosboom et al. (2011; in press) 

and a review of the distribution of existing reports of marine sediments throughout the Tarim Basin 
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(e.g. Tang et al., 1989; Lan and Wei, 1995). The digital elevation data was downloaded from the 

online database of the CGIAR Consortium for Spatial Information (Jarvis et al., 2008). 
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Timing, cause and impact of the late Eocene stepwise sea 

retreat from the Tarim Basin (west China) 

Roderic Bosboom, Guillaume Dupont-Nivet, Arjen Grothe, Henk Brinkhuis, 

Giuliana Villa, Oleg Mandic, Marius Stoica, Tanja Kouwenhoven, Wentao 

Huang, Wei Yang and ZhaoJie Guo 

 

Highlights 

- Fifth and last sea retreat step from Tarim Basin in early Priabonian. 

- Shallow marine conditions and paleogeographic connection to Western Tethys maintained. 

- Lack of diachroneity regressions suggests short-term eustatic forcing. 

- Stepwise retreat over millions of years suggests long-term tectonic forcing. 

- Stepwise retreat is concomitant with aridification steps Asian interior. 


