E. Products-include, E. Modis, and E. Avhrrmu, ET MODIS, spanning from was derived from MODIS-based phenological and surface variables (e.g., LAI, fraction of absorbed photosynthetically active radiation, enhanced vegetation index, surface albedo, and land cover) and a daily meteorological reanalysis data set (e.g., radiation and air temperature) from NASA's Global Modeling and Assimilation Office (GMAO) in combination with the Penman-Monteith equation ET AVHRR, spanning from 1983 to 2006, was derived from NOAA-AVHRR Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, NCEP/NCAR Reanalysis (NNR) daily surface meteorology, and NASA/Global Energy and Water-cycle Experiment (GEWEX) Surface Radiation Budget Release-3.0 solar radiation in combination with a modified Penman-Monteith equation, 2000.

G. Et, six outputs) was derived from water budgets (equation (1)) using P from PRISM, R from USGS monitoring data, and TWSC from the first-order derivative of GRACE-derived TWSA (see section 3

T. Water, S. Change, G. Therefore, and G. Twsayeh, TWSC is the time derivative of TWSA, which is referred specifically to as dS/dt at the monthly scale. GRACE satellite data from CSR and GRGS analysis centers were used to derive TWSA and TWSC at a monthly scale from for the three regions. CSR and GRGS represent two end-members for GRACE processing. CSR is one of the least constrained solutions [Bettadpur, 2007] and GRGS is one of the most constrained solutions Use of both products provides valuable information on uncertainty in GRACE TWSA. The latest release of CSR data (RL05) was used in the analysis. Details of the processing are provided in supporting information section S2. Uncertainties in GRACE-derived TWSA include: (1) inherent uncertainty in GRACE data and (2) propagation of bias/leakage correction using the additive correction method, due to uncertainties in a priori soil moisture storage (SMS) changes in GLDAS-1. Uncertainties in SMS changes were estimated from the standard deviation of SMS changes among four LSMs (i.e., Noah, Mosaic, VIC, and CLM) in GLDAS-1. All data used in this study are listed in Table 2, 2003.

M. C. Anderson, J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, Journal of Geophysical Research, vol.74, issue.D3, p.1011710, 1029.
DOI : 10.1029/2006JD007506

M. C. Anderson, J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology, Journal of Geophysical Research, vol.10, issue.8, p.1111210, 1029.
DOI : 10.1029/2006JD007507

W. G. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. Holtslag, A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, vol.212, issue.213, pp.1-4, 1998.
DOI : 10.1016/S0022-1694(98)00253-4

W. G. Bastiaanssen, E. J. Noordman, H. Pelgrum, G. Davids, B. P. Thoreson et al., SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions, Journal of Irrigation and Drainage Engineering, vol.131, issue.1, pp.85-93, 2005.
DOI : 10.1061/(ASCE)0733-9437(2005)131:1(85)

S. Bettadpur, Level-2 Gravity Field Product User Handbook, GRACE Project, Cent. for Space Res, pp.327-734, 2007.

S. Bruinsma, J. Lemoine, R. Biancale, and N. , CNES/GRGS 10-day gravity field models (release 2) and their evaluation, Advances in Space Research, vol.45, issue.4, pp.587-601
DOI : 10.1016/j.asr.2009.10.012

R. J. Burnash, R. L. Ferral, and R. A. Mcguire, A generalized streamflow simulation system: Conceptual models for digital computer, report, 204 pp., Joint Fed. State River Forecast Cent, 1973.

F. Chen, K. Mitchell, J. Schaake, Y. K. Xue, H. L. Pan et al., Modeling of land surface evaporation by four schemes and comparison with FIFE observations, Journal of Geophysical Research: Atmospheres, vol.4, issue.D3, pp.7251-726810, 1029.
DOI : 10.1029/95JD02165

Y. J. Dai, The Common Land Model, Bulletin of the American Meteorological Society, vol.84, issue.8, pp.1013-1023, 2003.
DOI : 10.1175/BAMS-84-8-1013

C. Daly, M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett et al., Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, International Journal of Climatology, vol.90, issue.15, pp.28-2031, 2008.
DOI : 10.1002/joc.1688

M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann et al., Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, Journal of Geophysical Research, vol.126, issue.D22, p.885110, 1029.
DOI : 10.1029/2002JD003296

J. B. Fisher, K. P. Tu, and D. D. Baldocchi, Global estimates of the land???atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sensing of Environment, vol.112, issue.3, pp.901-919, 2008.
DOI : 10.1016/j.rse.2007.06.025

H. L. Gao, Q. H. Tang, C. R. Ferguson, E. F. Wood, and D. P. Lettenmaier, Estimating the water budget of major US river basins via remote sensing, International Journal of Remote Sensing, vol.114, issue.14, pp.31-3955, 2010.
DOI : 10.1175/JCLI4086.1

Y. C. Gao and D. Long, Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT, Hydrological Processes, vol.19, issue.6, pp.22-4850, 2008.
DOI : 10.1002/hyp.7104

F. E. Grubbs, On Estimating Precision of Measuring Instruments and Product Variability, Journal of the American Statistical Association, vol.43, issue.242, pp.243-264, 1948.
DOI : 10.1080/01621459.1948.10483261

R. W. Higgins, W. Shi, E. Yarosh, and R. Joyce, Improved United States precipitation quality control system and analysis, NCEP/Climate Prediction Center ATLAS, p.40, 2000.

G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin et al., The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, Journal of Hydrometeorology, vol.8, issue.1, pp.38-55, 2007.
DOI : 10.1175/JHM560.1

A. E. Jeton, S. A. Watkins, T. J. Lopes, and J. Huntington, Evaluation of precipitation estimates from PRISM for the 1961?90 and 1971?2000 data sets, Nevada Report, U.S. Geol. Surv., Sci. Invest. Rep, pp.2005-5291, 2005.

L. Jiang and S. Islam, Estimation of surface evaporation map over Southern Great Plains using remote sensing data, Water Resources Research, vol.36, issue.5, pp.329-340, 2001.
DOI : 10.1029/2000WR900255

R. D. Koster and M. J. Suarez, The components of a ???SVAT??? scheme and their effects on a GCM's hydrological cycle, Advances in Water Resources, vol.17, issue.1-2, pp.61-78, 1994.
DOI : 10.1016/0309-1708(94)90024-8

R. D. Koster and M. J. Suarez, Energy and water balance calculations in the Mosaic LSM, p.60, 1996.

X. Liang, D. P. Lettenmaier, E. F. Wood, and S. J. Burges, A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research, vol.129, issue.D3, pp.415-14428, 1994.
DOI : 10.1029/94JD00483

D. Long and V. P. Singh, Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales, Journal of Geophysical Research, vol.52, issue.5, pp.10-1029, 2010.
DOI : 10.1029/2010JD014092

D. Long and V. P. Singh, A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery, Remote Sensing of Environment, vol.121, pp.370-388, 2012.
DOI : 10.1016/j.rse.2012.02.015

D. Long and V. P. Singh, A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework, Water Resources Research, vol.97, issue.10, pp.10-1029, 2012.
DOI : 10.1029/2011WR010607

D. Long and V. P. Singh, Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation, Water Resources Research, vol.118, issue.1, pp.2601-2618, 2013.
DOI : 10.1002/wrcr.20208

D. Long, B. R. Scanlon, L. Longuevergne, A. Sun, D. N. Fernando et al., GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas, Geophysical Research Letters, vol.9, issue.3, pp.3395-3401, 2013.
DOI : 10.1175/2007JHM951.1

URL : https://hal.archives-ouvertes.fr/insu-00876937

L. Longuevergne, B. R. Scanlon, and C. R. Wilson, GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA, Water Resources Research, vol.9, issue.1-2, pp.10-1029, 2010.
DOI : 10.1029/2009WR008564

URL : https://hal.archives-ouvertes.fr/hal-00708088

J. W. Luo, J. Bai, P. He, and K. Ying, Axial strain calculation using a low-pass digital differentiator in ultrasound elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, issue.9, pp.51-1119, 2004.

A. Marx, H. Kunstmann, D. Schuttemeyer, and A. F. Moene, Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results, Agricultural and Forest Meteorology, vol.148, issue.4, pp.656-667, 2008.
DOI : 10.1016/j.agrformet.2007.11.009

M. F. Mccabe and E. F. Wood, Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors, Remote Sensing of Environment, vol.105, issue.4, pp.271-285, 2006.
DOI : 10.1016/j.rse.2006.07.006

K. E. Mitchell, The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, Journal of Geophysical Research, vol.80, issue.10, pp.7-9010, 2004.
DOI : 10.1029/2003JD003823

Q. Z. Mu, F. A. Heinsch, M. Zhao, and S. W. Running, Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, vol.111, issue.4, pp.519-536, 2007.
DOI : 10.1016/j.rse.2007.04.015

Q. Z. Mu, M. S. Zhao, and S. W. Running, Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, vol.115, issue.8, pp.1781-1800, 2011.
DOI : 10.1016/j.rse.2011.02.019

K. Nishida, R. R. Nemani, S. W. Running, and J. M. Glassy, An operational remote sensing algorithm of land surface evaporation, Journal of Geophysical Research: Atmospheres, vol.4, issue.4, pp.10-1029, 2003.
DOI : 10.1029/2002JD002062

M. Pan, A. K. Sahoo, T. J. Troy, R. K. Vinukollu, J. Sheffield et al., Multisource Estimation of Long-Term Terrestrial Water Budget for Major Global River Basins, Journal of Climate, vol.25, issue.9, pp.3191-3206, 2011.
DOI : 10.1175/JCLI-D-11-00300.1

A. Premoli and P. Tavella, A revisited three-cornered hat method for estimating frequency standard instability, IEEE Transactions on Instrumentation and Measurement, vol.42, issue.1, pp.7-13, 1993.
DOI : 10.1109/19.206671

G. Ramillien, F. Frappart, A. Guntner, T. Ngo-duc, A. Cazenave et al., Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, Water Resources Research, vol.31, issue.2, pp.10-1029, 2006.
DOI : 10.1029/2005WR004331

M. Rodell, I. Velicogna, and J. S. Famiglietti, Satellite-based estimates of groundwater depletion in India, Nature, vol.171, issue.7258, pp.460-999, 2009.
DOI : 10.1038/nature08238

M. Rodell, J. S. Famiglietti, J. L. Chen, S. I. Seneviratne, P. Viterbo et al., Basin scale estimates of evapotranspiration using GRACE and other observations, Geophysical Research Letters, vol.103, issue.8, pp.10-1029, 2004.
DOI : 10.1029/2004GL020873

M. Rodell, The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, vol.85, issue.3, pp.381-394, 2004.
DOI : 10.1175/BAMS-85-3-381

A. K. Sahoo, M. Pan, T. J. Troy, R. K. Vinukollu, J. Sheffield et al., Reconciling the global terrestrial water budget using satellite remote sensing, Remote Sensing of Environment, vol.115, issue.8, pp.115-1850, 2011.
DOI : 10.1016/j.rse.2011.03.009

J. Sheffield, C. R. Ferguson, T. J. Troy, E. F. Wood, and M. F. Mccabe, Closing the terrestrial water budget from satellite remote sensing, Geophysical Research Letters, vol.103, issue.B9, pp.740310-1029, 2009.
DOI : 10.1029/2009GL037338

Z. Su, The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth System Sciences, vol.6, issue.1, pp.85-99, 2002.
DOI : 10.5194/hess-6-85-2002

URL : https://hal.archives-ouvertes.fr/hal-00304651

P. Tavella and A. Premoli, Characterization of frequency standard instability by estimation of their covariance matrix, paper presented at the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, U.S. Naval Observatory, pp.3-5, 1991.

P. Tavella and A. Premoli, Estimating the instabilities of N-Clocks by measuring differences of their readings, Metrologia, pp.30-479, 1994.

T. E. Twine, W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser et al., Correcting eddy-covariance flux underestimates over a grassland, Agricultural and Forest Meteorology, vol.103, issue.3, pp.279-300, 2000.
DOI : 10.1016/S0168-1923(00)00123-4

R. K. Vinukollu, E. F. Wood, C. R. Ferguson, and J. B. Fisher, Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sensing of Environment, vol.115, issue.3, pp.801-823, 2011.
DOI : 10.1016/j.rse.2010.11.006

K. C. Wang and R. E. Dickinson, A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Reviews of Geophysics, vol.115, issue.D17, pp.10-1029, 2012.
DOI : 10.1029/2008JD011213

H. L. Wei, Y. L. Xia, K. E. Mitchell, and M. B. Ek, Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation, Hydrological Processes, vol.47, issue.11, pp.27-297, 2013.
DOI : 10.1002/hyp.9214

E. F. Wood, Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resources Research, vol.25, issue.2, pp.10-1029, 2011.
DOI : 10.1029/2010WR010090

R. A. Wurbs, Methods for Developing Naturalized Monthly Flows at Gaged and Ungaged Sites, Journal of Hydrologic Engineering, vol.11, issue.1, pp.55-64, 2006.
DOI : 10.1061/(ASCE)1084-0699(2006)11:1(55)

Y. L. Xia, Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, Journal of Geophysical Research: Atmospheres, vol.117, issue.D22, pp.311010-1029, 2012.
DOI : 10.1029/2011JD016048

Y. L. Xia, Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, Journal of Geophysical Research: Atmospheres, vol.100, issue.D22, pp.310910-1029, 2012.
DOI : 10.1029/2011JD016051

Y. T. Yang and S. H. Shang, A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: Algorithm and model test, Journal of Geophysical Research: Atmospheres, vol.48, issue.10, pp.2284-2300, 2013.
DOI : 10.1016/j.agrformet.2008.05.016

Y. T. Yang, D. Long, and S. H. Shang, Remote estimation of terrestrial evapotranspiration without using meteorological data, Geophysical Research Letters, vol.149, issue.44, pp.3026-3030, 2013.
DOI : 10.1002/jgrd.50259

P. J. Yeh, S. C. Swenson, J. S. Famiglietti, and M. , Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE), Water Resources Research, vol.103, issue.D16, pp.10-1029, 2006.
DOI : 10.1029/2006WR005374

K. Zhang, J. S. Kimball, R. R. Nemani, and S. W. Running, A continuous satellite-derived global record of land surface evapotranspiration from, Water Resour. Res, vol.46, pp.952210-1029, 1983.