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We propose a mapping from fracture systems consisting of intersecting fracture sheets

in three dimensions to an abstract network consisting of nodes and links. This makes it
possible to analyze fracture systems with the methods developed within modern network

theory. We test the mapping for two-dimensional geological fracture outcrops and Pnd
that the equivalent networks are small-world and dissasortative. By analyzing the Discrete
Fracture Network model, which is used to generate artibcial fracture outcrop networks,
we also bnd small world networks. However, the networks turn out to be assortative.
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1. INTRODUCTION Our analysis is somewhat related to the information measure
Topological analysis of networks has had an explosive grovigh cities introduced byrosvall et al. (2005).
over the last decadé@rabasi and Stanley, 200A large num- We analyze in the following fracture data from eight out-
ber of new concepts and quantitive tools for describing networksops found in south-east Sweden. A detailed description of the
have been introduced, making it possible to describe and classiggdrock composition and geological history are givenlarcel
complex network structures at a level that never earlier has begrel., 2006; Astrom, 2007; Strém et al., 2008). We show one of
achievedAlbert and Barabasi, 2002; Boccaletti et al., pOltere the outcrop fracture networks ifigure 1A As we shall see, the
is one class, though, of networks that has resisted this kindesfuivalent network (shown ifrigure 1B constructed from the
analysis: Fracture networks. These consist of intersecting fractoiginal network has small-world character. Furthermore, it is
sheetsnaking both the concepts of links and nodes far from obvidisassortative.
ous. Fracture networks, however, are extremely important from a We then go on to analyze arti cial fracture networks gener-
technological point of view. For example, in carbonate petroleuated with the Discrete Fracture Network (DFN) modélecel
reservoirs, the oil is transported through fracture networks as tlké al., 2008 Examples of DFN generated fracture systems are
permeability of the porous matrix is too low/én Golf-Racht given inFigure 2 The equivalent networks constructed from the
etal., 200y. Another example is the extraction of shale gas thoughiginal networks generated by this model also show small-world
hydrofracturing (Mooney, 2011). behavior. However, they aessortative.
We propose a transformation from fracture network to an
equivalent network consisting of nodes and links. This maké&s METHOD
it possible to qualitatively and quantitatively characterize tHEhe eight outcrops covers between 250 and 600l visible
topology of fracture networks. fractures with length over 0.5 m have been recorded in the data
An important consequence of this is that it is possible to consets. We prepare the data sets as follows. When tracing the fracture
pare models that generate arti cial networks with real networkies, they may appear disconnected or doubled due to topogra-
guantitatively. phy or ground weathering. An illustration of a outcrop is shown
Fractureoutcropnetworks have been studied from a networkn Figure 3A We therefore use a reconnection procedureu(cel
point of view byValentini et al. (2007a,bFracture outcrops are et al., 2009). That is, we rst project fracture traces on a at sur-
fracture lines visible on the surfaces of geological formatioriace to reduce the perturbation due to rock surface topography.
The outcrop fracture lines are one-dimensional cuts throughhen scattered segments that are likely to belong to the same trace
the two-dimensional fracture sheets. Valentini et al. treats fraare reconnected to one single segment accounting for orientation
ture lines as links and their crossing points as nodes. This gieesl distance consistency. We focus on traces with a dashed-line,
a more narrow degree distribution than the transform prodisconnected step or layered patterns. We then straighten all the
posed in this paper. However, Valentini et al. also conclude thiaactures lines. The result is shownkigure 3B
fracture networks are small-world network&aentini et al., We have now come to the central idea of this paper. In
2007a). In three dimensions where the fractures are sheets, Figure 3G each fracture line has been associated with a node.
transformation we propose is necessary to de ne the topoloyyhenever two fracture lines cross, we place a link between the
network. nodes representing the two fracture lineSigure 3D, we show
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Topology of fracture networks

FIGURE 1 | (A) Fracture network of outcrop AMS000025 (B) Equivalent
network based on the original network shown in (A).

FIGURE 2 | Examples of fracture systmes generated with DFN model
for varying parameters } and Dy.

FIGURE 3 | Clock-wise from upper left. (A) Representation of fracture
outcrop network. (B) Reconnected fracture network. (C) Equivalent
network placed on top of fracture outcrop network. (D) Equivalent network
representation of (B).

ASMO000025
— ASM000026

ASMO000205
— ASM000206

ASMO000208

ASM000209
3l ASM100234
10 — ASM100235
—— Average
— a2k™?

P(>K)
5
T

10* 10°
Degree, k

Degree k

FIGURE 4 | Cumulative degree distribution ~ P(> k) for: (A) Networks
generated from the eight outcrop data sets. Insert shows the average
compared to a power law bt ( exponent $2.3) and an exponential bt.(B)
DFN model. Values for the expoents of the bts are given in Table 2.

3. RESULTS

Arguably the most central property of any complex network is the
degree distributionP(k). The degreek, of a node is the number of
other nodes that it is linked to. The equivalent networks generated
from the outcrop networks show a broad degree distribution. We
plot the cumulative distributionP(> k) in Figure 4 WhenP(k)
follows a power-law the network is scale fréért and Barabasi,
200). We plot the data on a log-log scale and t the average to
the power lanP(k) k22, The scaling ensues over one decade.
We note, however, as shown in the insert, that with such a short
range, an exponential twould also match. Inthe case of the DFN
data the goodness of the power law t is dependent on model
parameters.

The clustering is a local measure of how well a network is con-
nected on a local neighbor-to-neighbor scale. The global cluster-
ing coef cient,C, is de ned (Watts and Strogatz, 1998; Newman,
2009 as the average over all the local clustering coef ciedits,
for each node

1i=N

N
i=

17N 2B
Ci _ ENN,l

c= "N kK&SD'

1)

1

wherek; is the degree of nodie N is the total number of nodes
andEny;, i is the number of links between the nearest neighbors of
nodei. The clustering coef cient falls in the interval 0C 1,

and a high value indicates that there is a high chance that two
neighbors of a node is connected to each other. This makes the
network highly connected on a local scale, making it easy for
nodes to ef ciently interact on this scale.

In order to determine whether the clustering coef cients found
for the networks are large for their number of nodes and links,
we compare them to rewired and random versions of the same
networks. In rewiring {lathias and Gopal, 20)%wo pairs of
connected nodes are selected at random, and the links inter-

the equivalent network consisting of nodes representing the frazttanged so that two new pairs of connected nodes are created.
ture lines and links representing crossing fracture lidesifesen, The procedure is repeated until all links are moved. This pre-

2009.

serves the degree distribution since all nodes retain their initial

We note that this equivalent network is as simple to construdiegree, but it removes any correlation between the degrees of the
in athree-dimensional system of fracture sleeetsfracture sheet connected nodes. For the random version all links are removed
is represented by a node and whenever two sheets cross each adhdrredistributed randomly between the nodes. This produces a

a link is placed between the equivalent nodes.

new degree distribution that is generally not broad. In all cases the
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guoted values for these networks are averaged over 1000 realina-random versions means that compared to ordered networks

tions. As can be seen frofable 1, the equivalent networks havethey have a large ef ciency. We will discuss the impa& ahdE

an average clustering coef cient of 0.18 which is more than dor the equivalent networks in more detail below.

order of magnitude larger than for comparable rewired networks, It is also interesting to study any correlations between the

and two orders of magnitude larger than for purely randondegrees of linked nodes. Does high degree nodes link predomi-

versions. Hence, they are well connected on a local scale. nantly to low degree nodes or high degree nodé&2s(ov and
The ef ciency,E, is a global measure for how well the differSneppen, 20Q4ntroduced a correlation matrix

ent parts of the network are connected, and how easily nodes

in different parts of the network can interact. The measure is P(ky, ko)
de ned using the shortest distanat,, between two nodeisand] Clka, ko) = m ®3)
(Boccaletti et al., 2006
1 1 where P(ky, ko) is the probability that a node of degrde is
E= NNS D) G (2) linked to a node of degre&, for the network to be investi-
i) Nji=j " gated.Pr(ki, ko) is the same probability of a rewired version of
the network. If C(ky, ko) = 1 for all (ki, ko) then there is no
whered;j = if nodei andj are not connectecE falls in the degree correlations in the linking between node€(Ky, ko) > 1

interval 0 E 1, and a high value indicates that it is easy fdor some values ofks, ko) then there is an over-representation
nodes far apart in the network to interact since there on averagtlinks between nodes of degrke and ky in the investigated
is just a few links between any two nodes. network compared to that of a rewired version of the network.
In Table 1we present for all the equivalent networks and If C(ky, k) < 1 there is an under-representation. Note that the
their average is 0.065, which is smaller than for the rewiredatrix C(ki, k2) is symmetric.
(Erw) and random Erp) versions both having an average of 0.11. In Figure 5we have plotted the average of the ma@ik;, ko)
However the ef ciencyE) is only smaller by a factor of about 2,for all outcrops, wher®gr(ky, ko) is averaged over 10000 realiza-
making E and Erwy ra Of the same order. We would expect thdions. We observe an over-representation of small degree nodes
rewired and random networks to have a high ef ciency, seveitaiking to higher degree nodes, and an under-representation of
orders of magnitude larger than ordered networks, because thexyual degree nodes linking to each other. Such networks are dis-
have a large portion of long-range links. The fact that the equivassortative, and are abundant in naturally occurring networks
lent networks have an ef ciency comparable to that of the rewirgd\maral et al., 2004; Hansen and Hansen, 3007

Table 1 | List of the number of nodes (fractures), links, maximum degree kmax , average degree k, clustering coefbcient C, clustering coefbcient
for rewired networks  Crw , clustering coefbcient for random networks Cra, efbciency E, efbciency for rewired networks  Erw, and efbciency for
random networks Egra for all the outcrop samples.

Sample Nodes Links K max k C Crw Cra E Erw Era
AMS000025 787 858 23 2.18 0.170 0.0048 0.00178 0.046 0.104 0.101
AMS000026 716 520 20 145 0.088 0.0033 0.00087 0.019 0.048 0.032
AMS000205 973 1188 32 2.44 0.193 0.0043 0.00174 0.032 0.122 0.118
AMS000206 737 487 1 132 0.120 0.0013 0.00067 0.004 0.033 0.020
AMS000208 955 1297 31 2.72 0.226 0.0067 0.00213 0.079 0.138 0.138
AMS000209 955 1162 27 2.43 0.177 0.0050 0.00178 0.068 0.119 0.118
AMS100234 946 1549 44 3.27 0.236 0.0138 0.00291 0.133 0.164 0.172
AMS100235 785 1392 44 3.55 0.243 0.0180 0.00394 0.141 0.176 0.192
Average 857 1057 29 2.42 0.182 0.0072 0.00198 0.065 0.113 0.111
Table 2 | List of degree distribution power-law exponents k., clustering coefbcient C, clustering coefbcient for rewired networks Crw »
clustering coefbcient for comparable random networks Cra, efbciency E, efpciency for rewired networks  Egryy, and efbciency for comparable

random networks  Era for various fracture length power-law exponents -

k C Crw Cra E Erw Era
2.00 2.2 0.08 0.019 0.047 0.028 0.042 0.1
2.25 17 0.11 0.013 0.031 0.027 0.049 0.1
2.50 14 0.17 0.013 0.019 0.037 0.083 0.10
2.75 12 0.26 0.014 0.014 0.050 0.134 0.09
3.00 0.9/13! 0.31 0.013 0.008 0.050 0.154 0.07
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The characteristic path lengtlt, is de ned as the averageby PP, - --
distance between any pair of nodes of a network,

P, giving the probability that a fracture line mid-
point is placed in that subsquare. By tuning the probabilities
the desired fractal dimensidby is set, see{avy et al., 20)for
details.

The results of analyzing the equivalent networks of the DFN
model networks are given ifable 2 The data are based on 1000
networks of comparable size to those in the outcrop fracture data
Having a large clustering coef cient indicates a large local cogets. From the table, we see the same trends as those observed in
nectivity, and a small characteristic path length indicates a largigy|e 1 for the eight Outcrop fracture data sets and it is possi-
have a small-world network/{atts and Strogatz, 19pINetworks  them. However, we show iFigure 6 the averaged degree cor-
consisting of more than one disjoint part will haw = relation matrix. This indicates aassortativeetwork structure:
for at least one pair of nodes. Hence, the characteristic pa{Bdes of equal coordination number tend to be connected. This
length is not a good measure for the global connectivity ¢f the opposite of what is observed for the outcrop data sets, see
such networks. However a small valuedyffor most pairs of Figure 5 Hence, the topology of the arti cial networks is quite
nodes will give a large average value fodijlwhich is mea- gifferent from the natural ones. This implies that the topology

_ 1

“NNSD %-

(4)

(LD Ni=j

sured by the ef ciency. Therefore a larges comparable to a

smallL for describing the global connectedness. Since the frac-
ture networks found in the outcrops have been shown to ha\ig kink in the slope aroundt = 60 gives 0.9 when tting for smaller values of

a clustering coef cient signi cantly larger than rewired and ran
dom versions, and an ef ciency of the same order as the rewir

kand 1.3 for larger values.

ed

and random networks we conclude that these are small-world

networks.

We now turn to analyzing the DFN modebgrcel et al., 2003
It is based on the observation that the length of fracture lines
outcrops,l, are distributed according to a power laRegnshaw,
1999; Bonnet et al., 20p1

[S 1

p(l) ®)

with | typically in the range 1.7-3.2B(nnet et al., 2001
The outcrops can be divided into two groups: one with= 3
(ASMO000205 and ASM000206) and one with= 2.3+ 0.2 (the
rest) (Davy et al., 2010 The angular distribution of the direc-
tions of the fractures depends on stress history of the fractu
system. We assume here the simplest, i.e., a uniform distributi
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FIGURE 5 | Plot of the correlation matrix ~ C(k1, k) based on the
quivalent networks generated from the eigth outcrop fracture data

DNets.
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(Astrom, 200Y has measured the angle distribution for some

T
d

the data sets we consider here. They are not uniformly distribut
However, there are clear correlations between fracture length &
direction in the data sets. This is not captured by a single an
distribution function. Introducing a non-uniform angle distri-

bution in the DFN model does not have a signi cant impact.

Lastly, the position of the fractures must be speci ed. The DF
model uses a hierarchical constructiofichertzer and Lovejoy,
1987; Meakin, 1991to place the midpoints of the fractures on
a fractal set characterized by a fractal dimenddenD; lies for
natural fracture in the range 1.5 to 2.B¢nnet et al., 2001 The
outcrop data had, 2 Astrém (2007. In order to generate
the fractal set on which the midpoints of the fracture lines ar
placed, one uses the hierarchical algorithm describétthyrtzer
and Lovejoy (1987and (Meakin, 199): Starting with a square,
this is divided intol? subsections. Each subsection is assigne
probability P; (i.e. a number between 0 and 1) wheémins from
1tol2. This procedure is then repeated for each subsection, wh
is divided intol? sub-subsections, and new probabilitigsare
assigned to each sub-subsection. Repeating this procetiores
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C(k1, k) for different DFN
| and D». This Pgure should be compared with

splits the original square int™" subsquares, each chracterize
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of the fracture network themselves, articial and real, arpresented, this makes it possible to test fracture network
quite different. This difference is not visible from direcmodels on a quantitative level beyond what has been possible
observation. earlier.
In the study byAstrom (2007) the outcrop data set is com-
pared with models based on the physical process behind thEKNOWLEDGMENT
network. The analysis is performed not on the dual network, bWe thank Svensk Karnbrénslehantering AB for outcrop data and
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