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Abstract. The topographic evolution of continents and es-
pecially the growth and dismembering of mountain ranges
plays a major role in the tectonic evolution of orogenic sys-
tems, as well as in regional or global climate changes. A
large number of studies have concentrated on the description,
quantification and dating of relief building in active mountain
ranges. However, deciphering the topographic evolution of a
continental area submitted to recurrent tectonic deformation
over several hundred millions of years remains a challenge.
Here we present a synthesis of the tectonic, geochronolog-
ical and sedimentological data available on the intraconti-
nental Tian Shan Range to describe its general topographic
evolution from Late Palaeozoic to Early Tertiary. We show
that this evolution has occurred in two very distinct geo-
dynamic settings, initiating during the Carboniferous in an
ocean subduction – continent collision tectonic context be-
fore becoming, from Early Permian, purely intra-continental.
We show that during most of the Mesozoic, the topography is
mostly characterized by a progressive general decrease of the
relief. Nonetheless localized, recurrent deformation induced
the formation of small-scale reliefs during that period. These
deformations were driven by far field effects of possibly sev-
eral geodynamic processes in a way that still remains to be
fully understood.

1 Introduction

It is now largely accepted that the tectonic evolution of
mountain ranges, climatic variations and feedback between
the two is intimately linked to the topographic evolution of
orogenic belts (e.g. Molnar and England, 1990; Batt and
Braun, 1999; Whipple and Mead, 2006). Indeed, the topo-
graphic growth of an orogenic relief can influence the re-
gional and sometimes global climate (e.g. Raymo and Ruddi-
man, 1992; Ramstein et al., 1997; Bookhagen and Burbank,
2006; Molnar et al., 2010). In turn, topographic changes due
to climatic variations, which can modify the erosion rate and
pattern in a range, can affect a tectonic evolution by, for ex-
ample, impeding or accelerating the propagation of the de-
formation (e.g. Willett, 1999; Wobus et al., 2003; Thiede et
al., 2004; Whipple, 2009). For those reasons, a large num-
ber of studies recently concentrated on describing the topo-
graphic evolution of active mountain ranges over a period of
time spanning from a few thousands of years (e.g. Vassallo
et al., 2007a; Nissen et al., 2009) to a few tens of million
years (e.g. Metivier and Gaudemer, 1997; Sobel and Strecker,
2003; Yin, 2006; Liu-Zhen et al., 2008). In contrast, deci-
phering the topographic evolution of a mountain range area
over several hundred millions of years remains a challenge
and only a few studies have addressed that issue (e.g. Hen-
drix et al., 1992; Hendrix, 2000; Juez-Larré et al., 2010).
However, understanding the long-term evolution of the to-
pography is of primary interest to understand the relief and
sedimentary basin dynamics in orogenic areas, the structural
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and topographic inheritage in present day mountain ranges,
or regional and global climate evolutions. The Tian Shan is
one of the main intra-continental mountain ranges in Cen-
tral Asia (Fig. 1). It forms a strong orographic barrier block-
ing the fresh and humid air masses coming from Siberia to
the north and northwest, preventing them to reach the Tarim
Basin and the Tibetan Plateau (e.g. Li et al., 2011; Zhao et al.,
2013). The late Oligocene to Present growth of the Tian Shan
Range resulted from crustal shortening related to the ongo-
ing India-Asia collision (e.g. Tapponnier et al., 1986; Yin,
2010). However, the large-scale structure of the Tian Shan
lithosphere was set by complex accretions of island arcs and
amalgamation of continental blocks during the whole Palaeo-
zoic (e.g. Windley et al., 1990; Charvet et al., 2011). This
initial structure that was completely established by Late Per-
mian, and especially the major tectonic boundaries separat-
ing the various terranes played a first order role in the subse-
quent evolution of the range.

The Palaeozoic and Cenozoic tectonic evolutions of the
Tian Shan have been and are still widely studied and dis-
cussed. However, while the Mesozoic tectonic evolution of
the range seems to have a major impact on its Tertiary devel-
opment and topography (e.g. Dumitru et al., 2001; De Grave
et al., 2007; Glorie et al., 2010; Jolivet et al., 2010), many un-
certainties remain on the topographic evolution of the range
during that period separating the two main orogenic events.

Here we present a short synthesis of the available data in
order to draw a general picture of the topographic evolution
of the Tian Shan from Late Palaeozoic to Early Cenozoic.
We aim to describe the main phases of that topographic evo-
lution, but also to point out the remaining inconsistencies
between the various observations and to provide ideas for
further investigations of the Mesozoic topography of Central
Asia.

2 Synthesis of the available tectonic, geochronology,
sedimentology and geomorphology data

A summary of the main data discussed below is presented in
Fig. 2.

2.1 The Carboniferous – Permian evolution

It is commonly admitted that the Palaeozoic construction of
the Tian Shan lithosphere through accretion of various conti-
nents and arc terranes ended during the Carboniferous by the
collision between two blocks: the Yili – Central Tian Shan
block and the North Tian Shan volcano-sedimentary complex
– Junggar block (Figs. 1 and 3a) (e.g. Han et al., 2009; Wang
et al., 2009; Charvet et al., 2011; Xia et al., 2012). However,
the modalities of that last accretion event are still discussed.
Two contrasting types of models are proposed.

The first models imply that the Late Carboniferous – Early
Permian lavas that are widely exposed in the Yili block

were emplaced in a continental rift setting (e.g. Xiao et al.,
1992; Che et al., 1996; Xia et al., 2004, 2008). Based on
geochemical analysis and zircon U/Pb dating of the vari-
ous Early to Middle Carboniferous volcanics and ophiolite
suites occurring in the North Tian Shan block and indicative
of an oceanic domain, Xia et al. (2005) suggested that this
North Tian Shan Ocean was a Early Carboniferous short-
lived ocean which closed before Late Carboniferous gener-
ating the North Tian Shan Middle Carboniferous ophiolite
suite. This closure was followed by post-orogenic extension
and transtension associated to continental rift-type volcan-
ism in the Yili, Turfan and associated basins during the Late
Carboniferous - Permian.

These models have been challenged by a number of tec-
tonic, stratigraphic and geochemical evidences. Wang et
al. (2009) indicated that magmatism in the Tian Shan has
been continuous from Early Carboniferous to Permian with a
magma composition evolving from essentially calc-alkaline
and seldom transitional during the Carboniferous to coex-
isting calc-alkaline, transitional and alkaline during the Per-
mian. Hence, alternative models proposed that the Carbonif-
erous magmas would have been generated during southward
subduction of the North Tian Shan Ocean (in these models a
branch of the wide Paleo-Asian Ocean) underneath the Yili
block (e.g. Wang et al., 2006, 2009; Han et al., 2009; Charvet
et al., 2011). The North Tian Shan ophiolite sequence would
correspond to an accretionary wedge developed in front of a
Carboniferous forearc. This subduction ended with the Late
Carboniferous – Early Permian closure of the North Tian
Shan Ocean and the collision between the Yili block and the
North Tian Shan – Junggar blocks (e.g. Gao et al., 1998,
Wang et al., 2006, Charvet et al., 2007, Shu et al., 2010;
Charvet et al., 2011) (Figs. 2 and 3a). The Permian magmas
were then emplaced in a post-collisional setting and several
authors suggested that slab break-off and lithospheric delam-
ination may explain their mantle signature (Han et al., 1999,
2009; Chen and Jahn, 2004; Zhao et al., 2008; Shu et al.,
2010). By Late Carboniferous – Early Permian, the Junggar
Basin, disconnected from the Palaeo-Tethys ocean (Sha et al.,
2011), initiated as a half-graben structure in a post-collisional
extensional setting (Qiu et al., 2005, 2008; Yang et al., 2012).

All the models agree that during the Permian, the Tian
Shan area was affected by a major transtension episode
(Fig. 3b). Palaeomagnetic data analyses indicate that be-
tween the Upper Carboniferous and the Middle Permian, the
Yili – West Junggar collage rotated counter-clockwise by
46.2◦

± 15.1◦ with respect to the Tarim and 31.6◦
± 15.1◦

with respect to Siberia (Wang et al., 2007b). As those con-
tinental blocks were amalgamated during the Upper Car-
boniferous this rotation has been accommodated by strike-
slip motion along large lithospheric faults such as the North
Tian Shan Fault, the Main Tian Shan Shear Zone, the Narat
Fault or the Nikolaev Line in Tian Shan or the Erqishi shear
zone in the Altay (Fig. 1). The total amount of E-W lateral
displacement between Siberia and the Tarim is estimated at
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Fig. 1.General topographic and tectonic map of the Tian Shan Range and surrounding areas. MTS Z: Main Tian Shan Shear Zone; B. stands
for basin; F. stands for fault. STS: South Tian Shan block. CTS: Central Tian Shan block. NTS: North Tian Shan block. The topography is a
courtesy of S. Dominguez.

1160± 380 km (Wang et al., 2007b). Similar structures, like
the Dalabute Fault to the west or the Kelameili Fault along
the Altay, were also active around the Junggar Basin itself
submitted to significant extension (e.g. Allen et al., 1991,
1995; Allen and Vincent, 1997; Qiu et al., 2005, 2008; Yang
et al., 2012). Those large strike-slip faults have been ac-
tive from Early Permian to Early Triassic (ca. 290–250 Ma;
Laurent-Charvet et al., 2002; Shu et al., 2002; Wang et al.,
2004, 2007a, de Jong et al., 2009) and partially controlled
the emplacement of the Permian granitoids in Tian Shan
(Wang et al., 2009). Zircon (U-Th)/He Permian ages indi-
cate a strong cooling – exhumation phase within the Tian
Shan Range at that time implying the build-up of a ma-
jor positive topography affected by erosion (Jolivet et al.,
2010) (Fig. 3b). Along the southern Junggar margin, de-
trital zircon U/Pb analysis indicate a major source area in
the North Tian Shan block associated to a widening of the
drainage pattern towards the Central Tian Shan block (Yang
et al., 2012), again suggesting the presence of significant re-
liefs. Pull-apart basins formed along those strike-slip fault
zones, sometimes associated to volcanism as along the Dal-
abute Fault (Allen and Vincent, 1997) (Fig. 1). De Jong et
al. (2009) suggested that the continental breakup regime that
allowed the emplacement of the Late Permian – Early Trias-
sic volcanic trapps in Siberia (Courtillot et al., 1999) could
have generated a widespread extensive event within Central

Asia, reaching the Tian Shan area. South of the Bogda Shan
and between the Tarim and South Tian Shan, extension al-
lowed the formation of relatively small-scale but deep basins
that connected with the close-by Palaeo-Tethys Ocean to the
south (in the Tarim) and filled with Permian marine sedi-
ments (Li et al., 2005; Shu et al., 2010) (Fig. 3b). The oc-
currence of these sediments contrasts with the near absence
of post-Carboniferous marine formations within the whole
Altai – Junggar – Tian Shan area to the north that remained
completely disconnected from any marine environment since
the Early Permian. The Permian – Early Triassic closure of
the Palaeo-Tethys and the subsequent Middle Triassic colli-
sion between the Qiangtang and Kunlun blocks to the south
(Fig. 1) (e.g. Roger et al., 2008, 2010, 2011) might have
ended that extension phase (e.g. Allen et al., 1991; Wartes
et al., 2002; De Grave et al., 2007). In the Turfan area, sed-
iments were then deposited in intra-mountain lacustrine and
fluvial environments with a major sediment source from the
Jueluotage Range to the south (Shao et al., 1999) (see Fig. 1
for location).

2.2 Triassic – Jurassic evolution

During the Early Triassic, the tectonic regime in the Tarim –
Tian Shan – Junggar area changed to become clearly com-
pressive (Fig. 2). Apatite fission track data from the Tian

www.adv-geosci.net/37/7/2013/ Adv. Geosci., 37, 7–18, 2013
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Fig. 2. Summary of the main Mesozoic tectonic, geochronological and sedimentological constrains in the Tian Shan Range and the Junggar
and Tarim-Turfan basins. The data indicated in red are apparently in contradiction with the interpretation derived from other available data
at the same time. The data in blue is contradicting the others but can be explained by local mechanisms. Column Topo. indicates the relative
increase (wide black line) or decrease (thin black line) of the Tian Shan general topography. Column Tecto. recalls the major geodynamic
events that affected Central Asia.

Shan clearly indicate a continuous cooling phase during the
Triassic and Jurassic, even if the cooling rate become ex-
tremely slow during Middle to Late Jurassic (e.g. Dumitru
et al., 2001; De Grave et al., 2007; Jolivet et al., 2010). Base-
ment highs (imaged by seismic lines) that already started
to uplift during the Carboniferous compressive (He et al.,
2005) and Permian transpressive event in the western Jung-
gar Basin continued to grow during the Triassic (Liu et al.,
2006). However, within the Turfan Basin, tectonic extension
still prevailed during the Early Triassic, associated to a strong
thermal subsidence (Shao et al., 1999). Sediments were still
derived from the south. In the northern Tarim Basin, south
to southeasward directed palaeocurrents, as well as detrital
zircon U/Pb dating, indicate a sediment source in the Central
Tian Shan block and along the southern margin of the South
Tian Shan block (Li et al., 2004, Li and Peng, 2010). This,
associated with the occurrence of Lower Triassic conglomer-
ates in the Early Triassic Ehuobulake Formation of the Kuqa
sub-basin (the names of the various sedimentary formations
can be found for example in Hendrix et al., 1992, Shao et

al., 1999; Jin et al., 2008 and Qiu et al., 2008), is consis-
tent with the compression-related exhumation phase recog-
nized by the low temperature thermochronology data within
the range (Dumitru et al., 2001; Li et al., 2004; Jolivet et
al., 2010). Detrital zircon U/Pb dating in the Middle to Late
Triassic along the southern edge of the Junggar Basin (Xiao-
quangou Group) indicate a strong widening of the drainage
system towards the Central Tian Shan block associated to
the progressive erosion of the Permian – Early Triassic to-
pography (Yang et al., 2012). From Middle Triassic, base-
ment highs also started to develop in the Turfan Basin, prob-
ably in a compressional setting (Shao et al., 1999). During
the same period, tectonic subsidence ceased in the Junggar
Basin, which became a slowly subsiding depression (Yang et
al., 2012).

Except in the northern and western edges of the Junggar
Basin, where Late Triassic thrusting occurred (Allen et al.,
1991; Liu et al., 2006), and in the south Junggar, where small
reverse movements took place (Yang et al., 2012), there is
no obvious discordancy between the Upper Triassic and the
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Fig. 3. Reconstitution of the main topographic pattern of the Tian Shan area through time. The brown areas correspond to mountains, the
yellow areas to continental basins and the blue areas to marine basins. On Fig. 2a, NTS Z: North Tian Shan Shear Zone; CTS Z: Central Tian
Shan Shear Zone; STS Z: South Tian Shan Shear Zone. See text for complete discussion.

www.adv-geosci.net/37/7/2013/ Adv. Geosci., 37, 7–18, 2013



12 M. Jolivet et al.: Mesozoic Tian Shan topography

Lower Jurassic series (e.g. Sha et al., 2011). Indeed, from the
Middle Triassic to the Middle Jurassic, a widespread coal-
bearing sediment sequence developed throughout the Tian
Shan and surrounding basins, most probably in a warm hu-
mid climate (Hendrix et al., 1992; Pfretzschner et al., 2005;
Li et al., 2004; Tükten et al., 2004; Ashraf et al., 2010; Pan
et al., 2013.

During the same period, the relative topography between
the range and the northern margin of the Tarim decreased
while the Junggar Basin widened towards the south (Li et
al., 2004; Fang et al., 2005; Li and Peng, 2010; Yang et
al., 2012). In Early Jurassic (Sinemurian Badaowan Fm.), a
brackish-water fauna and flora (Waagenopermabivalve as-
semblages andTasmanitessp. alga) developed in some re-
stricted areas along the southern margin of the Junggar Basin
(Sha et al., 2011). Pan et al. (2013) suggested that small
short-lived transtensional basins formed through reactivation
of the North Tian Shan Fault. A contemporaneous increase
in the water level of the North Tethys Ocean allowed a trans-
gression event from the west along the southern margin of
the Junggar (Fig. 3c). Small-scale tectonic activity, driven by
a Jurassic – Early Cretaceous clockwise rotation of the Jung-
gar block (Hou et al., 2009) is also observed in the northern
and western Junggar during the Early and Middle Jurassic,
both on thrust faults (Allen and Vincent, 1997) and normal
faults (Liu et al., 2006). Seismic data interpretation indicates
that this tectonic activity induced the uplift of topographic
highs in the basin that propagated from south to north. How-
ever, the main driving mechanism for the subsidence of the
Junggar basin would remain the thermal relaxation (Hou et
al., 2009).

During the Early Jurassic (Badaowan Fm.), the Turfan
Basin was also affected by extension that controlled its sed-
imentation during most of the Jurassic (Fig. 2). The sedi-
ments were still deposited in an environment influenced by
surrounding topographic highs. Their main source area re-
mained in the south (Qoltag and Jueluotage Ranges, Fig. 1),
but small alluvial fans also formed on the northern edge of
the basin, along the Bogda Shan. However, the topography
of that range remained low (Shao et al., 1999, 2003). Normal
faulting also affected the northern Tarim margin during the
Jurassic (Allen et al., 1991).

By Middle Jurassic, a widespread planation surface started
to develop over most of Central Asia, extending proba-
bly from Northern Tibet to SE Siberia (e.g. Allen et al.,
2001; Vassallo et al., 2007b; Jolivet et al., 2007, 2009, 2010,
2013a). Remnants of that surface are still preserved in the
central and northern part of the Tian Shan Range (e.g. Jolivet
et al., 2010) (Fig. 3d). Over the same period, the apatite fis-
sion track data obtained from the central Chinese Tian Shan
show a slow erosion period (isothermal to very slow cooling
pattern compatible with a tectonically quiet phase) through-
out the whole range (Dumitru et al., 2001; Jolivet et al.,
2010; Glorie et al., 2010). However, further west in Kyrgys-
tan, De Grave et al. (2007) indicate continuous cooling from

180 to 110 Ma. In the Junggar Basin, the long-lasting gen-
eral retrogradation phase that initiated in the Late Carbonif-
erous ended with the lacustrine facies of the Middle Juras-
sic Xishanyao Formation. The late Middle Jurassic change to
a progradation phase suggests a renewed topography build-
ing in the Tian Shan or a strong climate change (Yang et al.,
2012). However, the warm humid climate conditions that pre-
vailed since Middle Triassic did not change until the onset of
a strong aridification during the Late Jurassic (Qigu Forma-
tion) (Allen et al., 1991; Hendrix et al., 1992; Parrish, 1993;
Shao et al., 2003; Li et al., 2004; Pan et al., 2013). Detrital
zircons U/Pb dating still suggest a wide drainage system en-
compassing the North Tian Shan and the Central Tian Shan
blocks but local recycling of the Early Mesozoic cover may
have also occurred (Yang et al., 2012). The Middle and Up-
per Jurassic series of the southern Junggar are also marked by
the occurrence of widely distributed volcanic ashes of intra-
continental basaltic composition interbedded within the sed-
iments (Wang and Gao, 2012; Yang et al., 2012).

As previously said, the Late Jurassic period is marked
by a strong aridification and the widespread occurrence of
the conglomeratic Kalaza Formation in the Junggar, northern
Tarim and Turfan basins (Fig. 2). In the south Junggar and
north Tarim, conglomerates are derived from the Tian Shan
Range while in the Turfan Basin, southward thinning of the
Kalaza Formation from the northern edge of the basin indi-
cates a source in the Bogda Shan then forming a topographic
high (e.g. Hendrix et al., 1992, 2000; Shao et al., 1999; Sha et
al., 2011). Detrital zircons U/Pb dating in the southern Jung-
gar indicates, that recycling of the Mesozoic cover sequence
associated to some topographic growth initiated during Mid-
dle Jurassic (Yang et al., 2012). In the Kuqa sub-basin, simi-
lar detrital zircons U/Pb dating indicates a sediment source in
the South Tian Shan where the sediment cover was progres-
sively eroded. This front of the range progressively migrated
towards the south, increasing the difference in topography
between the basin and the uplifting range (Li et al., 2004).

Finally, at least in the Junggar Basin, the Lower Creta-
ceous series are described as unconformably lying on the
Kalaza Formation (Sha et al., 2011), this again indicating
a Late Jurassic tectonic activity (e.g. Hendrix et al., 1992,
2000; Shao et al., 1999; Sha et al., 2011). However, these
tectonic movements are not or only poorly recorded by the
low temperature thermochronology data in the central part
of the Chinese Tian Shan (Dumitru et al., 2001; Jolivet et
al., 2010). Contemporaneous cooling is only observed in the
Kyrgyz Tian Shan further west (e.g. De Grave et al., 2007).
Consequently, this near absence of cooling evidences in the
low temperature thermochronology record, like the forma-
tion and the extensive preservation of the Jurassic planation
surface within the range, are difficult to reconcile with Mid-
dle to Late Jurassic topographic growth and erosion revealed
by the sedimentological and detrital zircon U/Pb data.

Adv. Geosci., 37, 7–18, 2013 www.adv-geosci.net/37/7/2013/



M. Jolivet et al.: Mesozoic Tian Shan topography 13

2.3 Cretaceous – Early Palaeogene evolution

Sediment analysis and detrital zircon U/Pb dating indicate
that tectonic uplift continued during the Early Cretaceous
along the southern edge of the Junggar Basin (Fang et al.,
2006; Yang et al., 2012). An increase in the amount of detri-
tal zircons derived from the North Tian Shan block suggests
a noticeable uplift and denudation of this block. This uplift
potentially formed a barrier to the sediments coming from
further south. The southern edge of the basin was slightly up-
lifted and migrated northward to approximately its present-
day position (Fang et al., 2006). The clockwise rotation of
the Junggar block continued and intra-basin highs, which
initiated during the Jurassic, reached their climax in Early
Cretaceous with relative topographies up to 600 m based on
erosion surfaces imaged by seismic data (Hou et al., 2009).
A similar basin margin uplift is observed in the north Tarim
Basin margin. Indeed, detrital zircon U/Pb analysis indicate
an increase in denudation of the Central Tian Shan and South
Tian Shan blocks associated to an increase of the differential
topography between the basin and the range (Li and Peng,
2010).

Several authors suggested that the Early Cretaceous de-
formation around the Tian Shan Range resulted from the
collision of the Lhasa block to the south (Figs. 1 and 2)
(e.g. Hendrix et al., 1992; Gu, 1996; Fang et al., 2006a;
De Grave et al., 2007). However, the absence of Late Juras-
sic – Early Cretaceous cooling episode in the Songpan –
Garze area (East Tibet), immediately north of the Ban-
gong – Nujiang suture Zone between the Lhasa and Qiang-
tang blocks suggests that this accretion generated only a
very limited deformation (Coward et al., 1988; Roger et al.,
2008, 2010, 2011). Nonetheless, further to the north, be-
tween the Kunlun Ranges and the Tarim Basin, low temper-
ature thermochronology and sediment analysis do indicate
some small-scale Cretaceous vertical movements potentially
linked to the Lhasa collision (e.g. Vincent and Allen, 1999;
Jolivet et al., 1999, 2001; Marshallsea et al., 2000). Within
the Chinese part of the Tian Shan Range, the low tempera-
ture thermochronology data indicate that the near isothermal
stage that started during the Middle Jurassic still prevailed
during the Cretaceous (e.g. Jolivet et al., 2010). In Kyrgys-
tan, this phase is also recorded from late Early Cretaceous
up to the Palaeogene (e.g. De Grave et al., 2007; Glorie et
al., 2010). As for the Middle and Late Jurassic, this contra-
dicts the sedimentological (occurrence of conglomerates in
the Cretaceous series) as well as recycling observed in the
detrital zircon U/Pb data. However, Zhang et al. (2009), us-
ing apatite fission track analysis, reported evidences of Late
Cretaceous exhumation near Aksu, along the northern mar-
gin of the Tarim Basin.

Eventually, the late Late Cretaceous – Early Palaeogene
marks the onset of a new deformation phase that will culmi-
nate with the ongoing orogeny (Figs. 2 and 3e). Within the
range, the low temperature thermochronology data show that

localized and rapid deformation and uplift occurred as early
as 65 to 60 Ma on large inherited structures such as the Niko-
laev line (Jolivet et al., 2010). Apatite fission track analysis
in the Bogda Shan Range also show an onset of cooling and
uplift around 65 Ma (Wang et al., 2008). The geodynamic
mechanism driving those localized, Early Cenozoic defor-
mations is still poorly known and might correspond either to
far-field effects of the closure of the Mongol-Okhotsk Ocean
in SE Siberia (Wang et al., 2008; Jolivet et al., 2009, 2010)
or to terranes accretions such as the Kohistan-Dras Arc or
the Kabul Block to the west in Afghanistan and northwestern
Pakistan (Searle, 1991; Hendrix et al., 1992; Jolivet et al.,
2010).

3 Discussion

Many evidences – tectonic, geochemical, geochronological
and sedimentological – are in favour of the Late Carbonifer-
ous subduction – collision model (e.g. Gao et al., 1998, Wang
et al., 2006, Charvet et al., 2007, Shu et al., 2010; Charvet et
al., 2011). While the alternative rift model (e.g. Xiao et al.,
1992; Che et al., 1996; Xia et al., 2004, 2008) would have
generated a relatively low-relief topography distributed over
most of the present day Chinese Tian Shan area, the subduc-
tion – collision model probably gave birth to a dissected, high
relief, Andean- to Alpine-type topography (Fig. 3a). This
kind of topography is consistent with the Late Palaeozoic –
Early Mesozoic erosion of metamorphic basement rocks (e.g.
Yang et al., 2012).

The Permian transtension event and the formation of large
pull-apart basins along major strike-slip faults was certainly
one of the main tectonic events in the geodynamic history of
the range. The Late Carboniferous – Early Permian collision-
related topography was dissected as strike-slip motion cre-
ated the Yili, Bayanbulak, and Turfan basins. This event
set up the tectonic framework of the Mesozoic and Tertiary
Tian Shan (Fig. 3b). Continuous tectonic and/or thermal sub-
sidence prevailed in the Junggar Basin during all that pe-
riod. It was possibly linked to the general extensional set-
ting that affected the northern part of Central Asia (De Jong
et al., 2009), and allowed the deposition and preservation
of the sediments issued from the widespread denudation of
the adjacent areas as recorded by the low temperature ther-
mochronology data (e.g. Dumitru et al., 2001; Jolivet et al.,
2010).

The onset of renewed compression marked by basin inver-
sion and basement cooling during the Early Triassic marks
the end of the strike-slip phase (e.g. Dumitru et al., 2001; Liu
et al., 2006; Jolivet et al., 2010). This Early Triassic event,
probably linked to the final closure of the Palaeo-Tethys
Ocean to the south (e.g. Roger et al., 2008, 2010, 2011), was
followed by a general decrease in relief and the progressive
formation of the flat topography that will characterize Cen-
tral Asia during the Mesozoic. Local extension such as in the
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Turfan Basin and thermal subsidence in the Junggar Basin
maintained active sedimentation areas filled with sediments
derived from erosion of remaining topographic highs.

Except for the development of basement highs within the
Junggar Basin, flattening of the topography further continued
during the Early and Middle Jurassic. The development of a
flat topography is consistent with the widespread occurrence
of a coal system throughout the whole area (e.g. Sha et al.,
2011) (Figs. 3c and 2d). The relief between the Tian Shan
area and the surrounding basins probably decreased through
erosion. This phase of slow erosion is clearly recorded by
the low temperature data that show a protracted isothermal
stage during the whole Jurassic period (e.g. Dumitru et al.,
2001; Jolivet et al., 2010; Glorie et al., 2010). However, tec-
tonic activity probably still occurred along some of the ma-
jor Permian tectonic structures, creating reliefs. For exam-
ple, the formation of small-scale extensional (probably pull-
apart) basins along the southern edge of the Junggar Basin,
associated with volcanism, suggest strike-slip faulting along
the North Tian Shan Fault zone (Pan et al., 2013). Evidence
for local relief building is further attested by the observed,
progressive recycling of the Mesozoic sediments along the
southern margin of the Junggar (Yang et al., 2012). How-
ever, topographic highs were certainly not important and the
peneplanation phase probably reached its maximum during
the Middle or Late Jurassic like in most of Central Asia (e.g.
Vassallo et al., 2007b; Jolivet et al., 2001, 2007).

The occurrence of the major alluvial fan system of the Late
Jurassic Kalaza Formation seems to mark the onset of a new
tectonic and topographic phase. While the low temperature
thermochronology data obtained on basement rocks in the
Chinese Tian Shan still indicate slow, erosion-driven cooling
(Dumitru et al., 2001; Jolivet et al., 2010), sedimentological
and tectonic evidences imply tectonic changes of topogra-
phy. The Late Jurassic period is also marked by aridification
(Allen et al., 1991; Hendrix et al., 1992; Parrish, 1993; Shao
et al., 2003; Pan et al., 2013). The formation of the Kalaza
alluvial fan could be linked to this climate change but relief
building is also attested by the uncomformity between the
Late Jurassic and Lower Cretaceous sediments in the Tarim
and Junggar basins (e.g. Hendrix et al., 1992, 2000; Shao et
al., 1999; Sha et al., 2011). Similarly, Late Jurassic – Early
Cretaceous basement cooling observed in the Kyrgyz Tian
Shan suggest tectonic activity (De Grave et al., 2007). Alto-
gether this tectonic phase remains poorly understood. Once
again, relief building during that period must have been lim-
ited both in magnitude and extend. Widespread formation of
relief is not compatible with the preservation – up to now – of
the Mesozoic planation surface within the range. It has been
suggested that the deformation observed in the Tian Shan
was linked to the Early Cretaceous collision between the
Lhasa block and the southern margin of Eurasia (e.g. Hen-
drix et al., 1992; Gu, 1996; Fang et al., 2006; De Grave et al.,
2007). However, if the Late Jurassic Kalaza Formation marks
the onset of the tectonic phase, it initiated prior to the colli-

sion. Furthermore this collision generated only a very lim-
ited amount of deformation and exhumation along the south-
ern margin of the Qiangtang block (e.g. Coward et al., 1991;
Roger et al., 2008, 2010, 2011). Why then did this collision
affect the Central Asian crust several thousands of kilometers
to the north? Another major geodynamic event, the closure
of the Mongol-Okhotsk Ocean, affected Central Asia during
the Mesozoic (e.g. Zonenshain et al., 1990a, b; Nie et al.,
1990; Zorin et al., 1990; Metelkin et al., 2007, 2010). While
the age of the final closure is still largely discussed (see Jo-
livet et al., 2009, 2013b and references therein), it probably
occurred during the Cretaceous in southern Siberia. The far-
field effects of that oceanic closure (combined or not with
the effects of the Lhasa collision) could also be the driving
mechanism for the Late Mesozoic deformations in the Tian
Shan area.

Finally, the Late Cretaceous – Early Palaeogene reacti-
vation of the Palaeozoic (mainly Permian) major strike-slip
structures initiated the building of the present day Tian Shan
topography (Fig. 3e). The relief first formed in highly local-
ized zones along strike-slip faults like the Narat Fault (Jo-
livet et al., 2010). The preservation of large remnants of the
Mesozoic planation surface implies that exhumation and ero-
sion within the present day Tian Shan is still low and remains
localized along discrete inherited tectonic structures.

4 Conclusions

The Late Palaeozoic and Mesozoic topographic evolution of
the Tian Shan Range has been controlled by two, very differ-
ent mechanisms:

– During the Late Carboniferous – Early Permian,
oceans are still present around the Palaeo-Tian Shan
and the topography is controlled by subduction and
collision events. This probably first generated an
Andean-type topography followed by an Alpine-type
topography after the final closure of the Palaeo-Asian
Ocean.

– After this final oceanic closure and up to now, the
Tian Shan became an intra-continental area, only af-
fected by the far field effects of continental collisions
and oceanic closures that happened several thousands
of kilometers away. During this second phase, the
Middle-Permian – Early Palaeogene topographic evo-
lution has been marked by the Middle to Late Permian
dislocation of the Late Carboniferous relief and its pro-
gressive planation.

Indeed, several small-scale tectonic deformations affected
the Tian Shan area during the Mesozoic. However the as-
sociated topographic changes remained limited and proba-
bly localized. While the Cimmerian collisions certainly in-
duced the Triassic compressive event that ended the major
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Permian strike-slip movements, the Late Jurassic and Creta-
ceous phase is still poorly understood. If the Cretaceous col-
lision of the Lhasa block might have generated some of the
stress that induced Late Mesozoic deformation in the Tian
Shan, the effects of the Mesozoic closure of the Mongol-
Okhotsk ocean should also be considered.

Finally, the synthesis of all the available data, and es-
pecially the discrepancy between the low temperature ther-
mochronology data and the sedimentology data during the
Late Mesozoic period demonstrates the need of combining
both methods to decipher in details the topographic evolu-
tion of a region.
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