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Abstract 

Inverted metamorphism corresponds to the stacking of high-temperature metamorphic 

units structurally on top of lower-temperature units and is commonly observed along main 

thrusts in major orogens. Yet, in spite of many existing models, the origin and preservation of 

the metamorphic inversion in intracontinental collision belts is still debated. In this study, we 

use a crustal-scale 2D thermo-kinematic model in order to investigate the key parameters 

controlling the inversion of the geothermal gradient at crustal scale. Our results confirm that 

the kinematic framework strongly impacts the thermal evolution around the thrust. Erosion 

velocity and thermal conductivity of rocks are two parameters that control the spatial location 

of the thermal perturbation and the intensity of inversion, respectively. However, even in 

extreme kinematic configurations, i.e., convergence velocities > 3cm.yr
-1

 and relatively high 

thrust dip angles ~ 30˚, the thermal inversion is fleeting and thrust temperatures cannot reach 

the high temperature peak values characteristic of natural occurences (> 600˚C) if shear 

heating is not taken into account. Conversion of mechanical energy into heat represents a 

main contribution to the thermal budget along main crustal shear zones. It leads to high 

temperature conditions in the thrust zone and our results attest that it is the only process that 

allows the preservation through time of an intense thermal inversion. Our quantification 

shows that shear heating is much more efficient than other processes such as accretion and 

surface denudation and is compatible with the observations of inverted metamorphism in the 

Himalayan or Variscan belts, for example. This comparison with natural occurrences suggests 

that the formation and preservation of intracontinental inverted metamorphism require shear 

zone viscosity values of the order of 10
20

-10
21

 Pa.s for convergence velocities between 1 and 

3 cm.yr
-1

. 
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1. Introduction and state of the art 

An inverted metamorphic sequence is characterised by an upward intensification of 

metamorphism, typically an increase of the metamorphic peak temperature. Inverted 

metamorphism is mostly related to major thrusts, where convergence velocities are high. The 

major occurrences can be ascribed to one of three distinct geological contexts: (i) 

metamorphic soles beneath ophiolites (e.g., Williams and Smyth, 1973; Jamieson, 1986; 

Hacker, 1991; Abd El-Naby et al., 2000); (ii) oceanic subduction zones (e.g., Toksöz et al., 

1971; Platt, 1975); (iii) major thrusts in continental collision (e.g., LeFort, 1975; Kohn, 2008). 

The present study is focused on the third geological setting. The best documented 

example is the inverted metamorphic sequence associated with the Main Central Thrust 

(MCT) zone in the southern Himalayas (e.g., Frank et al., 1973; LeFort, 1975; Sinha-Roy, 

1982; Arita, 1983; Hubbard, 1989; Jain and Manickavasagam, 1993; Henry et al., 1997; 

Harrison et al., 1997, 1998, 1999; Caddick et al., 2007; Kohn, 2008), but other examples were 

described in the Variscan belt (Burg et al., 1984; Arenas et al., 1995; Štípská and Schulmann, 

1995; Ballèvre et al., 2009; Pitra et al., 2010), in the Caledonian belt (Andreasson and 

Lagerblad, 1980; Mason, 1984; Watkins, 1985; Johnson and Strachan, 2006) or in the 

Appalachian belt (Camiré, 1995). The pressure and temperature conditions within such thrust 

zones attest to a medium pressure, medium-high temperature metamorphism. As an example, 

inverted metamorphic sequences in both the Himalayas and the Variscan belt have recorded 

peak temperatures between 500 and 700˚C and peak pressures between 8 and 11 kbar (e.g., 

Burg et al., 1984; Macfarlane, 1995; Guillot, 1999; Kohn, 2008; Pitra et al., 2010; Corrie and 

Kohn, 2011). Natural intracontinental metamorphic inversions are thus characterised by 

inverted thermal gradients between 10 and 50˚C.km
-1

 (e.g., Kohn, 2008; Pitra et al., 2010). 

Such intense thermal perturbations over a thickness of several kilometres necessarily imply 

geodynamic processes at crustal or even lithospheric scale. Several numerical models have 
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been developed, most of them constrained by or aiming to fit data from the Himalayan belt 

(e.g., Jamieson et al., 1996, 2004; Henry et al., 1997; Bollinger et al., 2006; Kohn, 2008). 

They suggest two alternative hypotheses to explain the metamorphic inversion. 

On the one hand, the inverted zonation is the result of a post-metamorphic 

deformation of a preexisting “normal” metamorphic sequence. This may result from late 

thrusts cutting through the initial metamorphic sequence (e.g., Brunel and Kienast, 1986), 

passive deformation of metamorphic isograds within a ductile shear zone (e.g., Jain and 

Manickavasagam, 1993; Grujic et al., 1996; Gibson et al., 1999) or crustal-scale folding (e.g., 

Searle and Rex, 1989; Stephenson et al., 2000). 

On the other hand, the inverted zonation may result from a temporary spatial 

perturbation of crustal isotherms (LeFort, 1975; Peacock, 1987a; Jamieson et al., 1996, 2004; 

Burg and Schmalholz, 2008). In this hypothesis, metamorphism is synchronous with the 

deformation event. Some authors propose that inverted metamorphism occurs due to a 

diffusive heat transfer across the major thrust from the hotter upper unit to the colder 

subjacent unit (e.g., LeFort, 1975; Shi and Wang, 1987; England and Molnar, 1993). 

Particularly, the thermal inversion may be due to a “channel flow”, i.e., the extrusion of deep 

hot crustal rocks above a colder plate (e.g., Grujic et al., 1996; Jamieson et al., 1996, 2004). 

This model presents the advantage of reproducing the ranges of metamorphic pressures and 

temperatures characterising the outcroping sections of the MCT (Beaumont et al., 2001). 

However, it requires strong erosion localised on the thrust front and specific internal physical 

properties in terms of viscosity and angle of friction. Furthermore, it fails to reproduce some 

important metamorphic and geochronological records on both sides of the MCT (Kohn, 

2008).  

Beyond the first-order role of the kinematic framework and thermal diffusion, several 

studies have specifically focused on the contribution of radiogenic heat, including the 
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accretion of radioactive material across the active thrust, and on the role of erosion (Royden, 

1993; Ruppel and Hodges, 1994; Huerta et al., 1996, 1998, 1999; Bollinger et al., 2006). 

Accretion models allowing the accumulation of highly radioactive material over a duration 

longer than 30 Myr can lead to significant increase of temperature within the hanging wall 

(e.g., Huerta et al., 1996, 1998). However, such studies involve disputable initial assumptions. 

As an example, the orogenic accretionary wedges of these models (e.g., Huerta et al., 1998) 

are deeply rooted at 30 to 60 km depths. Reasonable accretion velocities associated with 

lower, realistic erosion velocities lead to wedges several hundreds of kilometers wide at the 

surface. Outcrouping rocks across such wide zones should consequently be characterised by a 

continuous intense deformation and none of the known frontal thrusts displays a such 

configuration. Moreover, in most cases, strong accretion alone cannot reproduce the high 

temperatures observed in natural inverted metamorphic sequences. On the contrary, accretion 

leads to progressive cooling of the active thrust plane to steady temperatures lower than 

400˚C at 30 km depth with no significant thermal inversion (Royden, 1993). Concomitant 

surface denudation characterised by an erosion velocity greater than the accretion velocity is 

necessary to raise the temperatures in the thrust zones (e.g., Royden, 1993; Bollinger et al., 

2006).  

In the absence of accretion processes, moderate erosion velocities can lead to thrust 

temperatures of the order of 600˚C and to the development of inverted isotherms comparable 

to those observed in natural inverted metamorphic sequences (Royden, 1993). However, these 

conclusions require a thrust activity lasting for more than 70 Myr and exhumation of ultra-

high pressure metamorphic rocks from more than 100 km depth (Royden, 1993). Such 

implications are not compatible with natural cases where rocks recorded metamorphic peak 

pressures of 8 to 11 kbar. From a mechanical approach, erosion catalyses the development of 

main orogenic structures (e.g., Burg and Schmalholz, 2008), and some models highlight the 



 7 

important influence of both the erosion and the exhumation on the thermal perturbation (e.g., 

Jamieson et al., 1996; Beaumont et al., 2004; Bollinger et al., 2006; Kohn, 2008).  

The role of heat production by conversion of mechanical energy into thermal energy in 

a major shear zone (shear heating) was also considered to complete the thermal budget and 

the possible development of thermal inversion around a thrust (Minear and Toksöz, 1970; 

Toksöz et al., 1971; LeFort, 1975; Graham and England, 1976; Scholz, 1980; England and 

Thompson, 1984; Pavlis, 1986; Molnar and England, 1990; England and Molnar, 1993; Burg 

and Gerya, 2005; Burg and Schmalholz, 2008), but without real quantification. Kidder et al. 

(2013) specifically refute the importance of shear heating under high convergence velocity 

(~10 cm.yr
-1

) and attribute the thermal inversion to accretion process.   

The demonstration provided by Kidder et al. (2013) that shear heating is not a cause of 

inverted metamorphism in accretion domains is based on an oceanic subduction beneath an 

active arc (Kidder and Ducea, 2006). The very high convergence velocity (~10 cm.yr
-1

) and 

the high initial geothermal gradients characterising the overriding forearc (Kidder and Ducea, 

2006) and the subducting oceanic plate easily and rapidly lead to intense thermal inversion. 

With low shear heating (~10
-5

 W.m
-3

 implying very low viscosities of about 10
17

 Pa.s), heat 

advection and conduction dominate the thermal budget: both the overriding plate and the slab 

are rapidly cooled and the subducting material is progressively and slowly heated. 

Consequently, the rocks accumulated in the accretion zone are representative of the thermal 

state of the thrust plane. Understandingly, the thermal peaks are thus colder from the top to 

the base of the accretion area and such thermal inversion is compatible with the 

thermochronologic data from the Pelona Schist of southern California (Kidder et al., 2013). 

Considering a stronger shear heating along the active thrust, which is superposed on the 

overall cooling pattern, decreases the thermal inversion intensity recorded in the accreted 

sediments. Nevertheless, such shear heating assumptions are not generally applicable because 
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very low shear stress and viscosities are involved to balance the high strain rate (10
-12

 to 10
-11

 

s
-1

). 

Previous studies of syn-deformational intracontinental inverted metamorphism used 

various models with very different degrees of complexity (e.g., Shi and Wang, 1987; England 

and Molnar, 1993; Jamieson et al., 2004). However, none of the proposed models is 

commonly accepted to give a general explanation to the development of syn-deformation 

inverted metamorphism. Whereas analytical studies provide good mathematical solutions for 

understanding the respective influence of kinematics and heat diffusion on the thermal 

evolution, the other factors involved (e.g., erosion, various heat sources, variable kinematic 

configuration, thermo-dependence laws) are difficult to address analytically but can be solved 

and quantified numerically.  

In the present paper, our goal is not to fit a particular natural case (e.g., the 

Himalayas). Rather, using a systematic approach, we aim to explore and provide a detailed 

synthesis of the different conditions required for the formation and preservation of crustal-

scale inverted metamorphism along one intracontinental thrust. We define and compare the 

relative importance of each one of the parameters and processes involved: kinematic setting, 

thrust geometry, erosion velocity, rock properties (in particular the thermal diffusivity), 

accretion velocity, radiogenic heat production and shear heating. The goal is to infer (i) the 

conditions required to locally invert the thermal field; (ii) the exact impact of each one of 

these parameters on the intensity, the location and the duration of the inversion and (iii) the 

conditions required to preserve the thermal inversion through time. Finally, we discuss how 

and why shear heating is crucial for the formation and preservation of inverted thermal 

gradients under realistic kinematic settings. 

 

2. Numerical model 
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2.1. Initial setup 

In order to test independently the influence of the various parameters and processes on 

the thermal evolution of a crustal thrust, a simple numerical model is defined in which each 

component can be controlled. The 2D-model setup (Fig. 1a) is focused on the first 80 km of a 

continental lithosphere, which includes a 30 km thick crust. In order to study the thermal 

evolution of a major continental thrust zone, a thrust cutting through the whole continental 

crust with a dip angle θ is simulated by imposing a velocity contrast between the downgoing 

plate and the upper plate, moving with a velocity Vlp and Vup, respectively (Fig. 1). The 

convergence velocity Vth is consequently given by Vth = Vlp + Vup. The thrust is mainly 

represented by a straight segment, the dip angle of which, however, progressively decreases 

towards both the base of the crust and the surface in order to avoid any advection errors due to 

local strong velocity direction contrasts. Since the present study focuses on the slanted part of 

the thrust and because the temperature evolution around the thrust and in the deepest levels of 

the fault is not noticeably affected by the configuration of the lower block velocity field 

beneath the first 30 km (see Appendix A, Fig. A.1), the downgoing plate intentionally lies flat 

under the upper crust to simplify the boundary conditions and the isostasy computation. 

The initial geotherm is defined in the whole model according to the following 

equation: 

 

T(x,z,t
0
) = Tsurface + z⋅

qbase

k
+Tsource (x,z)      (1) 

 

where Tsurface, qbase, k and Tsource are the surface temperature, the mantle heat flux, the thermal 

conductivity and the possible local heat sources, respectively. Initially, the only implemented 

heat source is the radiogenic heat production. It is considered as a permanent property of the 
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material and is defined according to the following decreasing exponential law from Turcotte 

and Schubert (2002): 

 

Q(z,t0) =Q0 + exp
−z

z
r

 

 
 

 

 
         (2) 

 

where Q0 is the surface radiogenic heat production, and zr corresponds to the length scale for 

the decrease in Q with depth (Turcotte and Schubert, 2002) controlling the curvature of the 

vertical profile of Q. Eq. (2) allows to easily test a wide range of possible distributions of 

radiogenic production and both parameters Q0 and zr, were independently tested. In the 

presence of radiogenic heat sources, Eq. (1) is then only z-dependent and becomes: 

 

 T(z,t0) = Tsurface + z⋅
qbase

k
+
Q0 ⋅ zr

2

k
⋅ 1− exp

−z

zr

 

 
 

 

 
 

 

 
 

 

 
      (3) 

 

2.2. Computation methods 

Both kinematic and thermal computations are based on a regular Eulerian grid with a 

space resolution of 1 km. During the thrust activity, at each time step, advection and thermal 

diffusion are realised separately in order to minimise the numerical diffusion of temperature 

inside a non-static environment by using the marker-in-cells method (Gerya, 2010). The 

advection of rock properties and temperature is ensured by a field of initially randomly 

distributed particles (see Appendix A for more details). Three kinematic parameters can be 

distinguished here (Fig. 1b). The first one is the burial velocity Vb of the downgoing plate 

corresponding to the vertical component of the velocity field Vlp and defined by: 

 

Vb = Vlp · sin(θ)         (4) 
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The second parameter defines the vertical accretion velocity a. As in previous studies 

(e.g., Royden, 1993; Huerta et al., 1996, 1998, 1999), accretion is realised at each time step 

by adding a horizontal velocity component a’ (Fig. 1b) in the whole model so that both the 

active thrust position and the convergence velocity remain fixed. Both parameters are related 

according to: 

 

a’ = a · tan(θ)          (5) 

 

The third kinematic parameter corresponds to the maximum erosion velocity Ve linked 

to the upper plate velocity Vup by the following equation: 

 

 Ve = Vup · sin(θ)         (6) 

 

The erosion velocity Ve controls the upper plate velocity Vup in the models (Fig. 1b, see 

Appendix A for more details). 

Compared to the tectonic advection times, the isostatic balance is reached 

instantaneously (Crough, 1977). Thus, at each time step, the isostatic response is calculated in 

the entire model thereby producing a realistic topography associated with the thrust.  

Then, for the thermal part, the following heat equation is solved by using the implicit 

finite difference method on the Eulerian grid. In order to limit numerical diffusion, the 

Eulerian computation is coupled with intermediate thermal interpolations with the Lagrangian 

particles (see Appendix A for more details): 

 

ρ⋅ Cp⋅
∂T

∂t
−
∂

∂x
k
∂T

∂x

 

 
 

 

 
 −

∂

∂z
k
∂T

∂z

 

 
 

 

 
 =Q+Hs      (7) 
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The heat equation (Eq. (7)) is composed by a heat diffusion part where ρ, Cp and k are 

respectively the density, the heat capacity and the thermal conductivity (left side of Eq. (7)) 

and by a heat production part (right side of Eq. (7)) where Q and Hs represent the radiogenic 

heat production and the shear heating, respectively.  

The parameters ρ, Cp, and k define the capacity of the material to diffuse heat. This 

property can be reduced to one parameter, the thermal diffusivity κ, defined as κ = k/(ρ.Cp). 

Each one of these three parameters depends on the lithology, but also on the physical 

environment of the rock (e.g., pressure, temperature). Various empirical laws describe the 

temperature and pressure dependence of these parameters in rocks (e.g., Zoth and Hänel, 

1988; Seipold, 1995, 1998; Abdulagatov et al., 2006; Hofmeister, 2007; Whittington et al., 

2009). In the present study, we tested independently the influence of a range of realistic 

values for each parameter on the thermal evolution around the thrust (see Table 1). First, these 

values were considered constant in the crust and in the mantle. In a second time, their 

temperature and pressure dependence is considered and their influence on the thermal field 

investigated. These results are discussed in section 3.3.2. 

Shear heating Hs results from the transformation of mechanical energy into heat 

during deformation and is recognised as a major component of the total energy budget (e.g., 

Brun and Cobbold, 1980; Lachenbruch and Sass, 1980; Chester et al., 2005). Shear heating is 

a function of the strain rate and stress tensors ( ij and σij respectively) and is computed 

according to the following equation: 

 

 Hs =σ
xx
⋅ ˙ ε 

xx
+σ

zz
⋅ ˙ ε 

zz
+ 2⋅ σ

xz
⋅ ˙ ε 

xz
       (8) 
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The strain rate tensor is defined as ij = 0.5 [(∂Vi/∂j) + (∂Vj/∂i)] where ∂Vi/∂j 

corresponds to the variation of the velocity of the component i in the direction j and the same 

convention applies for ∂Vj/∂i. Because shear zones related to inverted metamorphism can be 

several kilometres thick (e.g., Grugic et al., 1996), ductile rheology is generally attributed to 

the whole thrust (e.g., Searle and Rex, 1989; Jamieson et al., 1996; Kidder and Ducea, 2006). 

In the present study, the shear zone thickness is space resolution dependent and is thus 

approximately of about 1 km. Shear heating is computed in a ductile manner, where stress and 

strain rate are linked by the effective viscosity η of the material constituting the thrust:  

 

σ ij = 2⋅ η⋅ ˙ ε ij           (9) 

 

Viscosity depends on temperature, strain rate and creep parameters (e.g., Goetze and 

Evans, 1979; Carter and Tsenn, 1987; Ranalli and Murphy, 1987). It tends to decrease with 

increasing strain rate and temperature (Meissner and Mooney, 1998). Inversely, both the rock 

deformation and the associated shear heating depend on the viscosity (e.g., Burg and 

Schmalholz, 2008; Hartz and Podladchikov, 2008). However, in order to better define the first 

order role of viscosity, we simplified the problem by using a constant viscosity η all within 

the thrust (see discussion in section 3.4).  

 

3. Model results  

3.1. Burial velocity effects 

In order to test the validity of our numerical model, we first realised a comparative 

study with analytical solutions from England and Molnar (1993). The results are described in 

Appendix B.   
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In extreme kinematic configurations (e.g., Vth = 5 cm.yr
-1

, θ = 30˚), which favour the 

development of thermal inversion, the thermal evolution around the thrust and in the whole 

model can be best characterised. In this case, because the initial geotherm is linear, the 

thermal inversion starts on a large part of the thrust with a relatively homogeneous intensity. 

Then, the affected area progressively deepens and widens and the maximum intensity is 

localised towards the deepest levels of the thrust. On each point of the thrust, the vertical 

temperature gradient ∂T/∂z first decreases, reaches a minimum value (negative when thermal 

inversion occurs) and then increases again until a steady state when the temperature advection 

and the heat diffusion are completely balanced. Nevertheless, even under such extreme 

kinematic settings, none of the (Vth, θ) combinations allows the preservation of the thermal 

inversion in time beyond the first 6 Myr (see Appendix B, Fig. B.2). 

 

 

3.2. Erosion effects 

 In our model, erosion can be activated and is only controlled by the erosion velocity 

Ve (Eq. (6), Fig. 1 and Table 1). In this case, contrary to the previous analysis (section 3.1, 

Appendix B), the thrust velocity Vth is given by a combination of the lower and the upper 

plates velocities (Vlp and Vup, see Fig. 1b). Consequently, in order to test the influence of the 

erosion velocity independently of the kinematic setting, either the downgoing plate velocity 

Vlp or the thrust velocity Vth have to be fixed. Here, we chose to keep constant the thrust 

velocity Vth for two reasons. (i) Kinematic simulations having the same vertical component Vz 

of the thrust velocity (Fig. 1b) are characterised by very similar thermal evolutions (see 

Appendix B). Each given Vz value corresponds to a group of (Vth, θ) combinations. This 

allows us to easily make connections and distinctions between the thermal evolution around 

the thrust and, on the one hand, the erosion velocity, and on the other hand, the convergence 

velocity and the thrust dip angle. In comparison with the MCT in the Himalayas which is 
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characterised by a high downgoing velocity of the Indian plate of ~ 2 cm.yr
-1

 for the last 10 to 

20 Myr (e.g., Bilham et al., 1997; Lavé and Avouac, 2000) and a dip angle of ~ 15 ̊ (e.g., 

Kaneko et al., 2003), Vz values of the order of 0.5 cm.yr
-1

 are realistic and greater values are 

excessive. (ii) A further parametric analysis concerning the shear heating (section 3.4) takes 

into account the velocity contrast on the thrust as a major parameter. Controlling the thrust 

velocity instead of the downgoing plate velocity is thus more practical to compare the 

combined effects of the kinematic setting, the erosion velocity and the shear heating. The 

distribution of the velocity field on both sides of the thrust can be described as the ratio 

between the erosion velocity Ve and the vertical component Vz of the thrust velocity (see Fig. 

1).  

 Erosion and motion of the upper plate, for a constant Vth, does not lead to significant 

variations of the reached intensity (Fig. 2a) and of the thickness of the affected area (Fig. 2b) 

of the thermal inversion during the thrust activity. However, it strongly influences its space 

and time locations. Increasing erosion and hence displacement of the upper plate tends to 

localise the thermal inversion at shallower depths along the thrust (Fig. 2). Taking out crustal 

material by erosion leads to progressive cooling of the remaining shallowest material 

controlled by surface thermal conditions. The maximum thermal inversion intensity is not 

restricted to the base of the slanted part of the thrust but moves to the surface with increasing 

erosion velocities. However, because erosion velocities are not sufficiently high to efficiently 

balance the thermal diffusion, even for extreme cases, thermal inversion cannot occur at very 

superficial levels along the thrust. 

The time of maximum inversion is not significantly changed, even if a slight delay can 

be noticed. The duration of the thermal inversion is widely extended with erosion. However, 

if for extreme kinematic and erosion values thermal inversion can be preserved until the 
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steady state, the most realistic kinematic setting tested (corresponding to Vz = 0.5 cm.yr
-1

) 

never leads to a thermal inversion, whatever the applied erosion velocity (Fig. 2). 

 Hence, when the displacement along the thrust is entirely ensured by the downgoing 

plate (Ve = 0), temperature on each point along the thrust is continually decreasing until the 

steady state. When the upper plate velocity Vup approximates the lower plate velocity Vlp, (i.e., 

Ve  ≈ 0.5Vz), the thermal evolution along the thrust tends to be reversed. Thus, for Ve > 0.5Vz, 

temperature at a given point of the thrust starts to increase in the beginning of the thrust 

activity (Fig. 2a, case Ve = 2Vz/3) due to the fast exhumation of the deep hot portions of the 

upper plate. This trend increases with the vertical component Vz of the thrust velocity. After 

reaching a local temperature peak, maximum thermal inversion is quickly reached and the 

temperature along the whole thrust decreases until the steady state. Actually, the thrust profile 

flattening in depth limits the temperature increase because the deepest rocks involved in the 

thrust come from the base of the upper continental block and cannot thus be hotter than the 

initial Moho temperature. 

To summarise, erosion tends to localise the thermal inversion towards shallower 

depths of the thrust and significantly increases the thermal inversion duration. Nevertheless, it 

does not affect the intensity and the thickness of the thermal inversion. Furthermore, even in 

extreme cases, the initial temperature increase on the thrust is limited (maximum 25˚C) and is 

far from sufficient to account for the high temperatures known in major thrust zones 

associated with inverted metamorphism. 

 

 

3.3. Rock properties effects  

In the lithosphere, conduction is generally the predominant heat transport mechanism 

ahead of convection and radiation (Lachenbruch and Sass, 1980; Abdulagatov et al. 2006). As 

shown previously in section 2.2, ρ, Cp and k constitute the three rocks properties involved in 
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the heat diffusion equation. Moreover, as defined by Eq. (3), the initial geotherm in the 

lithosphere is not only controlled by k and the radiogenic heat sources, but also by the basal 

mantle heat flux qbase. These thermal parameters are here considered independently and the 

impact of the radioactive character of the crust on the thermal evolution around the thrust is 

also discussed.  

 

3.3.1. Heat diffusion properties and the mantle heat flux 

The ranges of realistic values (Table 1) for each thermal parameter depend strongly on 

the lithology. On the one hand, the k values are generally comprised between 2 W.m
-1

.K
-1

 and 

4 W.m
-1

.K
-1

 (Clauser and Huenges, 1995; Turcotte and Schubert, 2002). This high degree of 

variability of more than 100 % proportionally controls the thermal diffusivity κ with the same 

order of magnitude. On the other hand, the heat capacity Cp varies up to ~ 50 %, from 800 to 

1200 J.kg
-1

.K
-1

 (Waples and Waples, 2004), involving maximum differences for κ of ~ 30 %. 

Depending on the lithology, the crustal rock density ρ varies from ~ 2400 kg.m
-3

 for 

sedimentary rocks to ~3300 kg.m
-3

 for basic eclogites as an extreme case, but is generally 

comprised between 2500 and 3000 kg.m
-3

 with an associated variability of ~ 20%. Heat 

diffusion is therefore mainly controlled by the variation of thermal conductivity, and the 

influence of the variations of density and heat capacity are less significant (see Appendix C, 

Fig. C.1). This has two reasons:  

First, the hotter is the geotherm (obtained for a low thermal conductivity in the crust or 

a high mantle heat flux), the higher is the thermal inversion (Fig, 3a, c). The basal heat flux, 

qbase, only involved in the initial and boundary conditions, influences the intensity of the 

thermal inversion proportionally to the magnitude of its variability. For example, between 

qbase = 20 mW.m
-2

 and qbase = 40 mW.m
-2

, the initial thermal gradient is two times higher and 

the thermal inversion intensity reached on each point of the thrust is doubled (Fig. 3c). 



 18 

Proportionally to a qbase increase, the intensification of the inversion with decreasing k is more 

significant. From k = 3 to 2 W.m
-1

.K
-1

, the thermal inversion is approximately two times 

higher (Fig. 3a). Thus, the initial thermal structure of the lithosphere, defined by the 

distribution of both qbase and k, constitutes a key parameter controlling the intensity reached 

by the thermal inversion. Nevertheless, the location of the inversion, both in space and time, 

is mostly insensitive to either qbase or k (Fig. 3). 

Second, the strong correlation between κ and k leads the latter to strongly influence the 

heat diffusion through the thrust. A low thermal conductivity decreases the heat diffusion and 

thus favours thermal inversion during thrusting. For this reason, the influence of both k and 

qbase on the thermal evolution around the thrust is different (Fig. 3). A decrease of k induces a 

more significant intensification of the inversion than an increase of qbase (Fig. 3a, c). 

Furthermore, contrary to the intensification of the basal heat flux, a decrease of k induces a 

widening of the thrust part affected by the inversion, a thickening of the area where the 

thermal inversion occurs (Fig. 3b, d) and a continuation in time of the thermal inversion (Fig. 

3).  

 

3.3.2. Temperature and pressure dependences  

Thermal properties also vary as a function of temperature and pressure. Various 

experiments have been realised and some empirical laws have been proposed in order to 

define the thermal dependence of the thermal conductivity k (Zoth and Hänel, 1988; Horai 

and Susaki, 1989; Clauser and Huenges, 1995; Seipold, 1998; Voosten and Schellschmidt, 

2003; Abdulagatov et al., 2006; Whittington et al., 2009) and heat capacity Cp (Waples and 

Waples, 2004; Whittington et al., 2009). Generally, with increasing temperature, k decreases, 

whereas Cp increases. Conversely, thermal conductivity tends to increase with increasing 

pressure (Horai and Susaki, 1989; Seipold, 1992, Kukkonen et al., 1999; Osako et al., 2004; 
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Abdulagatov et al., 2006; Hofmeister, 2007). However, the pressure effect is limited 

compared to the influence of temperature (Abdulagatov et al., 2006).  

The reported variation of each thermal property as a function of temperature and 

pressure lies within the range of constant values tested in our numerical simulations (Table 1). 

Only the variability of k has a significant impact on the thermal evolution around the thrust. 

However, k depends on both the lithology and the physical environment, and this impact is 

difficult to quantify. Indeed, in spite of the numerous laboratory experiments (e.g., Čermák 

and Rybach, 1982; Osako et al., 2004; Abdulagatov et al., 2006), none of the proposed 

empiric laws (Zoth and Hänel, 1988; Clauser and Huenges, 1995; Seipold, 1998; Voosten and 

Schellschmidt, 2003; Abdulagatov et al., 2006; Whittington et al., 2009) appears to be 

undisputable (Fig. 4). Diverse equations relative to the same lithology appear inconsistent 

with one another (Fig. 4c, d). Furthermore, they are associated with large uncertainties (e.g., 

Seipold, 1998, Fig. 4a) and rarely integrate both temperature and pressure dependences in the 

same time (Kukkonen et al., 1999; Abdulagatov et al., 2006).  

Regarding only the vertical distribution of the theoretical lithologies (after Turcotte 

and Schubert, 2002), the thermal conductivity increases from the superficial levels 

(sediments) to the mantle rocks. On the other hand, within each lithology, k decreases 

significantly with temperature (and hence depth; Fig. 4). This progressive drop may reach 30-

50 % from 0 to 600 ˚C. Concerning the pressure influence, k increases with depth in the 

shallowest crustal levels due to the reduction of the pore volume (Abdulagatov et al., 2006).  

Beyond ~ 100 MPa, k tends to reach a linear behaviour (Horai and Susaki, 1989; Clauser and 

Huenges, 1995; Abdulagatov et al., 2006), and is supposed to evolve following the thermo-

dependence law appropriate for the considered lithology. 

To sum up, within the range of realistic values, both Cp and ρ have negligible effects 

on the thermal evolution of the lithosphere, and the diffusive transport of heat is controlled by 
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the variability of k. The temperature and pressure dependences do not change the order of 

variability, but they can lead to different thermal behaviours inside the lithosphere (Maierová 

et al., 2012). In particular, the dependence of the k value on temperature for a given lithology 

and pressures > 100 MPa favours the thermal inversion in depths. These physical and 

lithologic dependences are generally not taken into account in the numerical models although 

the values allocated to the thermal conductivity have to be considered with caution (Nabelek 

et al., 2010).  

 

3.3.3. Radiogenic heat production 

As for the heat diffusion properties (section 3.3.1, Appendix C), numerical simulations 

were realised in an extreme kinematic context (Vth = Vlb = 5 cm.yr
-1

 and θ = 30˚) in order to 

quantify the effect of the radiogenic heat production. They show that although the radiogenic 

heat production contributes to the initial geothermal profile, it does not influence the thermal 

inversion around the thrust in terms of intensity and localisation (Appendix C, Fig. C.2).  

The previous analysis revealed that the burial velocity, the erosion velocity and the 

thermal conductivity of rocks are the main parameters controlling the thermal evolution 

around a crustal scale thrust. Nevertheless, considering realistic kinematic settings (Vth < 3 

cm.yr
-1

), none of these parameters allows the preservation of an established thermal inversion 

in time.  

 

3.4. Shear heating effects 

Shear heating constitutes a part of the conservation of energy and a study of the 

thermal evolution around a thrust during its activity requires to take into account the relative 

displacement between the two crustal blocks as a source of heat (Toksöz et al., 1971; Brun 

and Cobbold, 1980; Pavlis, 1986). By considering shear heating in the viscous way, two 
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parameters have to be examined: the strain rate  and the effective viscosity η within the 

thrust (section 2.2, Eq. (8) and (9)). Since the velocity field is not mechanically computed in 

our numerical models but imposed, both  and η can be considered independently. The initial 

kinematic conditions used here are based on realistic cases for continental collision: the 

maximum dip angle θ of the thrust set to 15˚ and the velocity thrust values between 1 and 3 

cm.yr
-1

, implying strain rates from 3.10
-13

 to 10
-12

 s
-1

. 

In rocks, viscosity is temperature- and strain rate-dependent. Considering an 

undeformed crust, the viscosity field is characterised by a decrease from ~ 10
25

 Pa.s in the 

cold upper crust to ~ 10
21

 Pa.s in the hot lower crust (e.g., Burg and Gerya, 2005). The 

interdependence of strain rate and viscosity tends to a steady state and, as an example, with a 

convergence velocity of 2 cm.yr
-1

, the viscosity drops to values of 10
19

 to 10
21

 Pa.s within 

major shear zones (Burg and Gerya, 2005). Consequently, we chose to apply this range of 

viscosity values, constant in time and space along the thrust. In our kinematic models, the 

strain field is only localised along the thrust (Fig. 1) thus limiting the frictional heat 

production to the shear zone. In order to highlight the effects of shear heating, no additional 

heat source is taken into account, and the erosion is not considered so that the downgoing 

plate only ensures the displacement along the thrust. 

The theoretical amount of heat produced (Eq. (8)) along the thrust is very sensitive to 

even small variations of viscosity (Fig. 5c). Considering the lowest viscosity (η = 10
19

 Pa.s) 

and strain rate (  = 3.17 . 10
-13

 s
-1

), the resulting frictionnal heat produced (Hs ≈ 4 µW.m
-3

) is 

of the same order of magnitude as the maximum realistic radiogenic heat production (Table 

1). A viscosity increase induces a proportional increase of shear heating along the thrust. For 

example, an increase of 10
0.25

 Pa.s will typically result in an elevation of ~ 10
0.25

  = 178 % of 

the produced heat (Fig. 5c). This way, (i) shear heating can efficiently balance the diffusive 

cooling of the overriding plate. For high viscosity values, the thermal gradient above the 
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thrust can be elevated beyond the initial crustal geotherm. Consequently, if the heating 

produced by shearing becomes higher than the cooling driven by the underthrusting of cold 

material, the surface heat flow at the top of the upper block increases during thrusting (Hartz 

and Podladchikov, 2008). (ii) The thermal budget at the top of the downgoing crust has two 

sources: the transfer by diffusion of the heat inherited in the upper block and the shear heating 

along the thrust. Consequently, in presence of shear heating, the maximum thermal 

perturbation appears and develops under the thrust, whereas it straddles the thrust when shear 

heating is not considered (Fig. 5a, b).  

As shown in Fig. 6, the amount of heat produced by shearing leads to an intense 

thermal inversion characterised by a significant thickening of the area affected and to a long 

duration. Unlike the other situations considered, shear heating allows the preservation of the 

thermal inversion in time until the steady state under realistic kinematic settings (Vth = 1-3 

cm.yr
-1

; Fig. 5b and 6). 

Thermal inversion intensities, even at shallow depths, can exceed 100˚C.km
-1

 and 

temperatures extend up to more than 1000˚C (Fig. 7). Both ranges of temperatures between 

500 and 700˚C and of thermal inversion intensities from 10 to 50˚C.km
-1

 are reached between 

20 and 30 km depth for different combinations of viscosity and convergence velocity (Fig. 8). 

Consequently, shear heating alone can reproduce and preserve in time thermal features 

comparable to natural occurences of inverted metamorphic sequences. Furthermore, our 

model suggests that, in these cases, viscosity values within the thrust zone have to range 

between 10
20

 to 10
21

 Pa.s (Fig. 8). 

In short, for small variations of viscosity or strain rate across a thrust (constant width 

of the sheared area), the thermal inversion is strongly influenced by shear heating in terms of 

intensity, space and time location. Although shear heating does not necessary imply an 

inversion, it plays a major role in the preservation of the perturbation in time. 
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3.5. Shear heating, accretion and radiogenic heat production competition 

 Accretion processes were implemented while keeping shear heating in action along 

the active thrust. As previously, the thrust dip angle θ was set to 15˚. The convergence 

velocity Vth was fixed at 2 cm.yr
-1

 and no erosion process was considered. The vertical 

accretion velocities a tested were 1 and 2 mm.yr
-1

 and are comparable to the values used in 

previous works (Royden, 1993; Huerta et al., 1996, 1998, 1999; Bollinger et al., 2006; Kidder 

et al., 2013). In order to evaluate the thermal influence of accumulation of radioactive 

material in the accretion prism, an elevated accretion velocity (a = 2 mm.yr
-1

) was considered 

and two radiogenic profiles (Eq. (2) and (3)) characterised by a common surface radiogenic 

heat production Q0 = 2 µW.m
-3

 but differing in the specific depth zr were tested : (i) a realistic 

configuration with zr = 15 km and (ii) an extreme case with zr = 30 km such that the whole 

continental crust is highly enriched in radioactive elements. Mantle flux was adapted to each 

thermal configuration in order to ensure a realistic initial temperature at the base of the crust 

between 420 and 500˚C.  

 Results are synthesised in Fig. 9 in terms of maximum thermal inversion intensity and 

maximum temperatures reached in the thrust zone after the thermal steady state is attained. 

Whether we take into account accretion and radiogenic heat production or not, no significant 

thermal inversion occurs if the viscosity η is lower than 10
20.25

 Pa.s. Low viscosity implying 

low amounts of shear heating (Eq. (8) and (9)), it follows that, in the framework of realisitc 

kinematic and thermal settings, it is impossible to reproduce metamorphic inversions 

comparable to natural observations by considering accretion processes only. Conversely, if η 

exceeds 10
21

 Pa.s, temperatures and geothermal gradients within the thrust zone are 

excessively elevated whatever the depth considered. Thus, under a given kinematic context, 
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the range of viscosities leading to realistic thermal inversions is relatively narrow, of the order 

of 10
20

 to 10
21

 Pa.s (Fig. 8 and 9). 

 The concomitance of accretion and shear heating implies that material previously 

deformed and warmed within the thrust zone is accumulated in the hanging wall while 

subjacent volumes are in turn sheared and heated. For low amounts of shear heating, upward 

heat transfert by accretion leads to a smaller pertubation on the geothermal gradient around 

the active thrust (Fig. 9a) and no change in the maximum temperatures (Fig. 9b). Conversely, 

when shear heating is significant, accretion of hot material efficiently reduces the heat 

diffusion from the thrust zone to the overriding plate. Thermal inversion in the active thrust 

zone is consequently more intense and this trend is more pronounced in depth. However, 

because the material heated in the shear zone is continuously moved upwards out of the active 

shear zone, the maximum temperatures are significantly lower (e.g., about 50˚C lower with a 

2 mm.yr
-1

 accretion velocity and η = 10
20.5

 Pa.s. and almost 100˚C lower with a 1 mm.yr
-1

 

accretion velocity and η = 10
20.75

 Pa.s.) (Fig. 9b).  

 Accretion of radioactive material associated with shear heating has no significant 

effect on the maximum intensity of thermal inversion, even if extremely radioactive crustal 

material is considered (Fig. 9a). Because the top of the downgoing plate is highly radioactive, 

the maximum temperatures reached along the thrust are obviously hotter than without 

radiogenic heating. 

In short, whatever the accretion velocity or the radiogenic heat production, even in 

extreme cases, none of these processes can lead to thermal inversion without shear heating in 

the framework of realistic kinematic and thermal settings. Furthermore, maximum thermal 

features in the thrust zone are more influenced by small viscosity variations than by high 

changes of the accretion velocity and of the amount of radiogenic heating. 
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3.6. Shear heating and erosion 

 On the one hand, surface denudation enhances the localisation of the thermal inversion 

at shallower depths and can lead to increased temperatures along the thrust (see section 3.2). 

On the other hand, shear heating strongly influences the crustal thermal budget and highly 

intensifies the thermal inversion (see sections 3.4 and 3.5). Consequently, numerical 

simulations taking into account both processes are necessary to complete our parametric study 

(Fig. 9). Here again, tests were performed with a thrust dipping 15˚ and a convergence 

velocity Vth of 2 cm.yr
-1

. Accretion and radiogenic heat production were switched off. 

Viscosities ranged between 10
19

 and 10
21

 Pa.s and erosion velocity was set to Ve = 2 mm.yr
-1

. 

This results in 38% of the thrust velocity Vth being ensured by the upper plate velocity Vup.   

 When the hanging wall velocity partially ensures the convergence (i.e., erosion is 

taken into account), maximum temperatures attained in and along the thrust zone are 

significantly rised (Fig. 9b). As an example, at 20 km depth, a 2 mm.yr
-1

 erosion velocity 

induces an increase of the maximum temperature of 80˚ for η = 10
20.25

 Pa.s, of 110˚ for η = 

10
20.5

 Pa.s and of 140˚ for η = 10
20.75

 Pa.s. This thermal jump increases with the viscosity. 

More generally, the maximum temperatures recorded along the thrust for a such erosion 

velocity (Ve = 2 mm.yr
-1

) show an increase of 10 to 18% at 30 km depth, of 20 to 25% at 20 

km depth and 19 to 32% at 10 km depth.Thermal influence of erosion is thus significantly 

intensified when shear heating is important, whereas it is almost negligible at low frictionnal 

heat production. However, if exhumation of the overthrusting rocks favours the thermal raise, 

its influence is inconsiderable with regard to the thermal perturbation intensity (Fig. 9a). 

Erosion velocities greater than 2 mm.yr
-1

 yield similar results and follow the same trend. 

 To sum up, concomitance of erosion processes with shear heating along a major thrust 

in realistic configurations (i.e., Ve < Vb) does not lead to significant variations in the 
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maximum thermal inversion intensity. But the maximum temperatures reached along the 

thrust are highly increased by several tens of degrees.  

 

4. Discussion and conclusions 

Through the present parametric study, we tested and compared the relative influences 

of the different processes and parameters involved in the thermal evolution in space and time 

of the continental crust around a major thrust zone:  

(i) the kinematic configuration of the thrust, i.e., the thrust dip angle, the 

convergence velocity, and the distribution of the thrust velocity on both 

sides of the shear zone (expressed here as the erosion velocity);  

(ii) the thermal rock properties controlling the heat diffusion across the rocks, 

i.e., the thermal conductivity, the heat capacity and the density;  

(iii) the heat sources, i.e., the basal mantle flux, the internal radiogenic heat 

production, including the accretion of radioactive material, and the 

mechanical energy converted into heat along the thrust during its activity 

(shear heating).  

The initial kinematic configuration plays a major role. Whereas the thermal 

perturbation around the thrust increases in depth with increasing burial velocity of the 

downgoing plate, erosion localises the perturbation towards shallower depths of the crust and 

significantly increases its duration. However, for identical convergence velocities, any 

changes in the erosion velocity do not impact the intensity and the thickness of the thermal 

inversion contrary to the thermal conductivity. Nevertheless, whereas a limited and transient 

thermal inversion can be achieved in extreme kinematic configurations, inversion is never 

observed in the range of reasonable (reported from nature) values of these parameters. Among 
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all the processes and parameters tested, only shear heating allows the preservation of an 

intense thermal inversion through time under realistic kinematic schemes.  

 

4.1. The thermal conductivity problem 

The thermal conductivity, in the range of realistic values (i.e., between 2 and 4 W.m
-

1
.K

-1
), has a major influence on the heat transfer by diffusion and on the initial geothermal 

gradient. Consequently, it strongly influences the local thermal gradient during the thrust 

activity, and when thermal inversion occurs, the intensity of this perturbation (Appendix C). 

As a rule, the initial thermal structure of the lithosphere is an important parameter to take into 

account in the models. However, tests comparing the thermal evolution of crusts with an 

identical initial temperature field but different thermal conductivities (the slope of the initial 

geotherm is thus balanced by the amount of mantle heat flux) attest to the significant effect of 

k on the intensity and duration of the thermal inversion (Appendix C). 

Whereas the thermal conductivity (or thermal diffusivity) is generally considered to be 

constant in numerical models, it strongly depends on both the lithology and the physical 

environment, more particularly the temperature. The choice of the k values (Nabelek et al., 

2010; Maierová et al., 2012) and corresponding empirical laws chosen in the numerical 

thermal models are capital and can lead to significant differences of the thermal behaviour of 

the lithosphere. For pressures higher than 100 MPa, the pressure effect is negligible and the 

thermal influence dominates with a strong decrease of k of ~ 1 W.m
-1

.K
-1

 for temperatures 

ranging from the surface to the base of the crust. Empirical thermo-dependence laws for 

various rock types were developed for atmospheric pressures. Empirical laws describing the 

evolution of k as a function of temperature under pressures higher than 100 MPa should give 

a better estimation of the thermal conductivity field in the crust for a given lithology. 

Furthermore, metamorphic reactions occurring along and across the thrust, the varying 
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amount of fluids in the rocks and the possible associated chemical changes linked to their 

circulation and/or chemical diffusion have also an impact on the evolution of the thermal 

conductivity of a given rock. These parameters are difficult to integrate in the models at 

present, but may have significant effects. 

 

4.2. Shear heating, the key parameter 

Shear heating, as defined in this paper and in the majority of other numerical models, 

considers that the whole energy required to overcome the fault friction is converted into 

thermal energy. However, this is a simplification and other energy transfers should be taken 

into account and their influence on the formation and preservation of the inverted thermal 

gradient tested. (i) The energy dissipated during a continuous deformation is not entirely 

converted into heat but can also be used to change the physical properties of the rock inside 

the sheared area (e.g., the rock microstructure; Brun and Cobbold, 1980). (ii) Metamorphic 

reactions occurring within and astride the shear zone can significantly consume or release 

heat (Oxburgh and Turcotte, 1976; Anderson et al., 1978; DeVore, 1983; Peacock, 1987a, b, 

1990). (iii) Potential strain and gravitational energy (Kanamori and Rivera, 2006) can be 

transformed into pressurisation heat without displacement along the fault. Although these 

aspects should be taken into account in order to refine the general picture, they are not 

expected to modify the first-order message delivered by the modelling presented here. 

Indeed, our results show that without shear heating, the occurence of thermal 

inversion requires extreme kinematic configurations (e.g., Kidder et al., 2013), is 

systematically transient (a few million years) and the inversion paroxysm is reached astride 

the thrust. In such a case, in order to preserve the trace of the thermal inversion in 

metamorphic parageneses (i.e., to avoid that any other metamorphic event significantly 

overprints the inverted record), exhumation of the whole sequence needs to be initiated during 
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the short period of time concerned by the inversion (some Myr) and to be extremely fast with 

a very high associated erosion velocity. On the other hand, under realistic kinematic 

configurations for intracontinental thrusts (up to 3 cm.yr
-1

), shear heating is the only 

parameter which allows the preservation of the thermal inversion in time until the thermal 

steady state. It also significantly influences the spatial location and extent of the thermal 

inversion: (i) frictionnal heating along the thrust causes the localisation of the inversion area 

under rather than astride the thrust, within the uppermost levels of the lower plate, and (ii) the 

more frictionnal heat is produced, the thicker is the area affected by the thermal inversion 

leading to inversion zones up to tens of kilometers thick. The amount of heat produced 

depends on the local strain rate and the shear zone viscosity (Eq. (8)). The values of both 

parameters, and particularly the effective viscosity, strongly influence the crustal scale 

thermal perturbation, especially in terms of thermal inversion intensity.  

The present study attests that shear heating is the key-parameter and allows to 

reproduce thermal features coming from natural inverted metamorphic sequences (Fig. 8). 

Both the high metamorphic peak temperatures (500-700˚C at 8-11 kbar; e.g., Guillot, 1999; 

Pitra et al., 2010; Corrie and Kohn, 2011) and the thermal inversion intensities (generally 

comprised between 10 and 50˚C.km
-1

; e.g., Kohn, 2008; Pitra et al., 2010) can be reproduced. 

In parallel, our results suggest that the development and preservation of such inverted 

metamorphic zoning in realistic kinematic and thermal setting requires that the viscosity of 

the material involved has to be between 10
20

 and 10
21

 Pa.s. 

 

4.3. Applicability to the Himalayan inverted metamorphism 

The MCT in the Himalayas is characterised by a dip angle of 15˚ (e.g., Kaneko et al., 

2003) and a downgoing velocity of the Indian plate of 2 cm.yr
-1

. (e.g., Bilham et al., 1997; 

Lavé and Avouac, 2000). High metamorphic temperature peaks within the MCT reach 600 to 
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650˚C and pressure peaks are of 8 to 11 kbar (e.g., Macfarlane, 1995; Guillot, 1999; Corrie 

and Kohn, 2011), corresponding to depths of about 30-40 km (assuming that these pressures 

correspond to lithostatic pressures). In agreement with the kinematical constraints, Fig. 8 

shows that shear zone viscosity of 10
20.5

 to 10
20.6

 Pa.s is required to reproduce such maximum 

temperatures. The corresponding steady state thermal inversion intensity is 20 to 30˚C.km
-1

, 

hence matching the estimates extracted from Kohn (2008).  

By taking into account erosion and accretion of radioactive rocks, as proposed by 

previous studies (e.g., Huerta et al., 1998; Bollinger et al., 2006) the range of consistent 

viscosities is slightly extended to 10
20.35

 to 10
20.65

 Pa.s and the corresponding maximum 

thermal inversion intensity spreads between 20 and 40˚C.km
-1

 (Fig. 9). Whether or not 

accretion and surface denudation are considered, the thermal features of the inverted 

metamorphic zoning across the MCT can simply be reproduced by using shear heating and 

involving viscosities in the shear zone close to those commonly expected (e.g., Burg and 

Gerya, 2005). 

Hence, our model, without pretending to explain the inverted metamorphism related to 

the MCT, shows that the downgoing of the Indian plate under the Himalayan belt with 

kinematical constraints from previous works associated with shear heating can reconcile: (i) 

the simultaneous increase of pressure and temperature conditions within the lower unit; (ii) 

the metamorphic temperature peaks recorded within the thrust zone as maximum 

temperatures reached and representative of the thermal steady state; (iii) the order of thermal 

inversion intensity and (iv) the location of such a thermal inversion mainly below and across 

the thrust zone. Furthermore it does not contradict the possible concomittance of accretion 

processes and suface denudation that, in a very lesser extent compared to shear heating, 

modify the characteristics of the thermal inversion.  
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Appendix A: Computation methods complements 

Continental collision vs. continental subduction: The velocity field configuration of 

the downgoing plate beneath the first 30 km has a negligible influence on the thermal 

evolution around the thrust (Fig. A.1).  

Interpolation computations between nodes end particles: They are realised by using a 

weight interpolation scheme (Gerya, 2010) between the Lagrangian particles and the Eulerian 

nodes. The interpolation from particles to nodes is realised on 1 cell by using at least 25 

particles per cell. This constitutes a good compromise between the time needed for 

interpolation calculations and the generated numerical error (Yamato et al., 2012).  

Advection computations: At each time step, the velocity field corresponding to the 

tectonic advection (both Vlp and Vup) is computed on each particle. The velocity direction of 

each particle is defined as parallel to the nearest segment of the thrust. In order to avoid a 

sharp variation of the velocity field on particles, the thrust profile was intentionally smoothed 

at the border of its slanted part (Fig. 1). The magnitude and the sign of each particle velocity 

are defined by its location relatively to the thrust. Particles are then advected by using the 

Runge-Kutta method. A Courant criterion maximising the advection to a half-cell by time 

step associated with the second-order Runge-Kutta method leads to an accurate advection 

while limiting the computation time (Fig. A.2). The differences between the fourth, third and 

second orders of the Runge-Kutta method are negligible. 

Erosion computation: To simulate erosion, each particle advected above the 

topography is then numerically considered as part of the atmospheric domain by changing 

each one of the properties it carries. This way, erosion does not perturb the topography and 

consequently the crustal thickness that controls the vertical displacements linked to the 

isostatic balancing. The mass balance is assured by adding the corresponding amount of 

material laterally to the upper plate. 
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Thermal computations: heat diffusion equation (7) is solved by using the implicit 

finite difference method on the Eulerian grid. Then, the computed temperature difference on 

nodes ∆T between the current and the previous time step is interpolated from the grid to the 

particles. Finally, the new temperature is computed by adding the interpolated ∆T to the 

previous particle temperature. By ensuring the advection by particles, this method has the 

advantage of defining precisely the new temperature field directly on the particles. 

 

Appendix B: Numerical model validation 

Molnar and England (1990) and England and Molnar (1993), by using a series of 

simplifications, proposed mathematical derivations of the fundamental equations controlling 

the heat transfer in the lithosphere. This way, without additional heat sources, they defined the 

tectonic conditions for the occurrence of a thermal inversion on each point of the thrust such 

as: 

 

 
Z f ⋅ Vth ⋅ sin(θ )

π ⋅ κ
≥1        (B.1) 

 

where Zf is the depth of the considered point on the fault. This can be used to provide the 

minimum depth Zmin where thermal inversion appears: 

 

 Zmin =
π ⋅ κ

V
th
⋅ sin(θ )

=
π ⋅ κ

Vz
       (B.2) 

 

Considering a point in the downgoing plate located at the thrust front, it will reach the depth 

Zmin after a time tzmin:  
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 tz
min

=
Z
min

Vz
=
π ⋅ κ

Vz
2

        (B.3) 

 

Whereas England and Molnar considered θ constant along the entire slanted part of the 

fault, θ represents here the maximum dip angle of the thrust and an exact fit with the 

analytical solutions (B.2) and (B.3) cannot be expected and the thermal inversion is slightly 

underestimated.  

The numerical minimum depth Zmin and start time tmin of the thermal inversion as a 

function of Vth and θ show a good agreement with the general trend of the analytical values 

given by or deduced from England and Molnar (1993) (Fig. B.1a, c). This consistency is 

confirmed by the linear regressions (Fig. B.1b, d) resulting from the set of numerical values. 

In spite of an overestimation of the minimum depth Zmin of about 5 km, the slope of the linear 

regression law between Zmin and Vz
-1

 is very close to the coefficient π·κ from Eq. (B.2) (Fig. 

B.1b). In the same way, the numerical times tmin show also a good agreement with the trend 

defined by the analytical solutions for tzmin (Eq. (B.3) and Fig. B.1c, d). Shifts between the 

analytical laws and linear regressions are essentially due to the smoothed thrust profile we 

used (Fig. 1).  

Advection effects on the thermal evolution within a thrust zone can be thus described 

as a function of the vertical component of the thrust velocity Vz (Fig. 1). In Fig. B.1e, g, the 

results for a range of numerical simulations with different (Vz, k) combinations are treated in 

the same way as previously. Even if the slopes a relative to the linear regression laws 

corresponding to the minimum depth Zmin and time tmin (Fig. B.1f, h) of the beginning of the 

thermal inversion are rather far from the coefficient π predicted by England and Molnar 

(1993) (Eq. (B.2) and (B.3)), both the high similarity between our two regression slopes a and 

the very good correlation coefficients r confirm the tendencies of the analytical equations.  
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Appendix C: Rock thermal properties, mantle heat flux and radiogenic heat production 

effects 

Heat capacity Cp crustal scale thermo-dependence law, from Whittington et al. (2009) 

(T in K): 

 

 
Cpcrust (T < 846K) = 899.54 + 0.3864⋅ T − 2.25⋅ 10−5 ⋅ T −2

Cpcrust (T > 846K) =1034.0 + 0.1456⋅ T − 21.59⋅ 10−5 ⋅ T −2

 
 
 

   (C.1) 

 

Thermal conductivity k thermo-dependence laws as a function of the lithology, from 

Zoth and Hänel (1988) and Clauser and Huenges (1995) (T in ˚C): 

 

 

kcrust (T) = kmetamorphic (T) =
705

T + 350
+ 0.75

kmantle (T) = kultra−basic (T) =
1293

T + 350
+ 0.73

 

 
 

 
 

     (C.2) 
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Figure Captions: 

Fig. 1. a) Model setup showing the initial morphology, the imposed velocity field and the 

thermal boundary conditions. Lower and upper continental blocs are converging at fixed 

velocities of Vlp and Vup respectively. θ is the maximum thrust dip angle. The compensation 

depth for isostatic balancing corresponds to the base of the model. Both surface temperature 

and mantle heat flux qbase are constant. k corresponds to the thermal conductivity. Lateral heat 

flux are considered to be nil. Rx represents the ratio between the distance to the thrust front 

and the width of the area concerned by the slanted part of the thrust. b) Terminology of the 

velocity fields used in this study. Vth, Vb, Ve and Vz correspond to the convergence velocity, 

the burial velocity of the lower plate, the erosion velocity and the vertical component of the 

thrust velocity, respectively. Accretion is defined by the vertical accretion velocity a. In order 

to keep the thrust zone fixed with respect to the reference frame, accretion is simulated by 

imposing an horizontal accretion velocity a’ to the entire model. The dashed line represents 

the theoretical active thrust shifting due to accretion. 

 

Fig. 2. Thermal evolution along the thrust as a function of the vertical component Vz of the 

thrust velocity and the relative erosion velocity Ve. a) Vertical thermal gradient and isotherms 

along the thrust. b) Vertical thickness of the area affected by the thermal inversion at each 

point of the thrust.  

 

Fig. 3. Thermal evolution along the thrust as a function of the vertical component Vz of the 

thrust velocity and the thermal conductivity k (a and b) and the mantle heat flux qbase (c and 

d). Erosion is switched off and no internal heat sources are taken into account. a) and c) 

Vertical thermal gradient and isotherms along the thrust. b) and d) Vertical thickness of the 

area affected by the thermal inversion at each point of the thrust.  
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Fig. 4. Empirical thermo-dependence laws for k for various lithologies. a) Seipold (1998). 

Fine lines show the variations of the uncertainty for each rock type as a function of 

temperature.  b) Clauser and Huenges (1995), after the relation proposed by Zoth and Hänel 

(1988). Uncertainties are unknown. c) and d) Comparison of thermo-dependence laws 

illustrated in (a) and (b) for two rock types: basic (c) and acid (d). Grey band is the 

uncertainty from (a). 

 

Fig. 5. a) Influence of the shear heating Hs on the spatial evolution of the geothermal gradient 

and isotherms, and on the location of thermal inversion. [Left] Without shear heating and 

under extreme kinematic conditions (θ = 30˚ and Vth = 5 cm.yr
-1

). Thermal evolution 1 Myr 

after the thrust activity starting, i.e., at the maximum thermal inversion. [Right] Thermal 

evolution with shear heating at viscosity η = 10
20.5

 Pa.s after 5 Myr, when the thermal steady 

state has been reached (kinematic conditions are: θ = 15˚ and Vth = 2 cm.yr
-1

, i.e.,  = 6.34 . 

10
-13

 s
-1

). S is the cumulative shortening. b) Temporal evolution of the geothermal gradient 

along a vertical profile located in the center of the model (Rx = 50 %, Fig. 1) according to 

three different constant viscosities: η = 10
20

 Pa.s, η = 10
20.25

 Pa.s and η = 10
20.5

 Pa.s.  c) 

Corresponding thermal increment by shear heating along the thrust during its activity. 

 

Fig. 6. Impact of shear heating on the thermal evolution along the thrust during the 

convergence as a function of strain rate  and viscosity η. a) Vertical thermal gradient (colour 

scale) and isotherms (black lines) at 1 km under the thrust, i.e., close to the maximum thermal 

inversion for each vertical profile across the crust. b) Vertical thickness of the area affected by 

the thermal inversion on each point of the thrust. 
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Fig. 7. a) Maximum thermal inversion intensity reached beneath the thrust zone in presence of 

shear heating and after the thermal steady state has been reached (10 Myr). Mantle heat flux is 

set to 40 mW.m
-2

 and no radiogenic heating is considered such as the initial Moho 

temperature is 420˚C. The thrust dip angle is defined to 15˚. Results are given as a function of 

convergence velocity Vth, viscosity η and depths (10, 20 and 30 km). b) Maximum 

temperature. Hatched areas indicate the combinations (Vth, η) for which no thermal inversion 

occurs. 

 

Fig. 8. Combination of maximum thermal inversion intensity and maximum temperature from 

results presented in Fig. 7 at 20 and 30 km depth. Ranges of values are selected with respect 

to the reported thermal characteristics of intracontinental inverted metamorphic sequences. 

Maximum temperatures are drawn for values of 500, 600 and 700˚C (continuous lines). 

Maximum inverted geothermal gradients are represented from 10 to 50˚C.km
-1

 (dashed lines). 

Dark green areas represent the combinations (Vth, η) for which both thermal characteristics are 

in the range of values considered as “realistic”. Hatched areas indicate the combinations (Vth, 

η) for which no thermal inversion occurs. 

 

Fig. 9. a) Maximum thermal inversion intensity and b) maximum temperature from the thrust 

zone in presence of shear heating, accretion processes and/or radiogenic heat production or 

surface denudation after 10 Myr (thermal steady state is reached). Results are given as a 

function of the viscosity η and are plotted for 20 km (dashed lines) and 30 km depth 

(continuous lines). The numerical simulations were realised at a convergence velocity Vth set 

to 2 cm.yr
-1

, with a thrust dip angle θ = 15˚ and a mantle heat flux qbase = 40mW.m
-3

. The 

grey areas correspond to the ranges of inverted thermal gradients and metamorphic peak 

temperatures characterising natural intracontinental inverted metamorphic sequences (see 
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sections 3.5 and 3.6 for details about the radiogenic, accretion and erosion conditions). 

Hatched area in (a) delimits the range of geothermal gradients not inverted. 

 

Fig. A.1. Comparison between two velocity field configurations: “Collision mode”, in which 

the downgoing plate lies flat under the crustal part of the upper plate, and “Subduction mode”, 

in which it subducts into the mantle without change of direction. Isostatic balance is switched 

off. In order to highlight the thermal characteristics differences between both models, 

computations were realised under extreme kinematic conditions: Vth = 5 cm.yr
-1

 and θ = 30˚. 

[top] Snapshots and corresponding isotherms (in ˚C) of both models after a 1 Myr 

convergence (amount of shortening S = 50 km), i.e., when the thermal inversion reached its 

paroxysm. [bottom] Differences of characteristic values of the thermal evolution along the 

thrust between the “Collision mode” and the “Subduction mode”: temperature, vertical 

thermal gradient and thickness of the thermal inversion, respectively from left to right. For 

each characteristic value, the difference between both models is minor compared to the 

absolute values. 

 

Fig. A.2. Influence of the computation mode of the velocity field on particles mode and of the 

Courant criterion on total advection. a) Initial test setup and corresponding velocity field. The 

dimensionless 2D-model represents a disc composed by regularly emplaced particles. The 

imposed velocity field is circular in order to make the disc rotate around its center. Time step 

is defined according to the Courant criterion applied on the maximum local velocity, i.e., on 

the disc border. For example, a Courant criterion of 3 thus maximises the advection to a third-

cell by time step. A reference marker is localised on this border. Velocity field on particles 

was computed according to four different modes: on the one hand, direct computation is only 

characterised by linearly interpolating the velocity field from the nodes to the particles, while 
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on the other hand, advection is realised according to the Runge-Kutta approximations of order 

2, 3 or 4. Tests were also realised for a range of particles amount, from 1 to 100 per cell. 

Number of particles does not impact on the effective advection. b) Offset after a complete 

revolution. Every test leads to a certain numerical error, i.e., the reference marker does not 

keep constant its distance to the disc center. While direct computation is characterised by a 

terminal offset of about 10 to 40 %, the Runge-Kutta methods allow a significant 

improvement of the particles advection leading to total offset of about 10
-2

 to 10
-3

 % for the 

order 2 and 3, and for less than 10
-4

 % for the order 4. In the present test, the offset is positive 

for the direct computation and the 2
nd

 order of Runge-Kutta methods, i.e., the disc tends to 

dilate, whereas it is negative for the other two Runge-Kutta orders. This explains why the 2
nd

 

and 3
rd

 orders are very similar in absolute. The Courant criterion also plays a main role in 

numerical advection. In the present test, increasing it with a factor 2 assures the reduction of 

the space error (offset) of a factor 2 for the simple computation, of a factor 8 for the Runge-

Kutta methods of order 2 and 3, and of a factor 32 for the 4
th

 order. c) Relative time of 

computations normalised to the maximum time (i.e., for the 4
th

 order of the Runge-Kutta 

approximation, with a Courant criterion of 4 and 100 particles/cell). Results are given in 

percents. Time of computation linearly increases with the Courant criterion, with the amount 

of particles and also with the order of the used Runge-Kutta method. Even if there is an 

important gap between the calculation times of the direct computation and the 2
nd

 order of the 

Runge-Kutta approximation, the benefit of space advection precision significantly prevails. 

The present test reveals an advection error (offset) of only 0.0098 % and an associated 

computation time more than 2 times lower than for the 3rd order and approximately 4 times 

better than for the 4
th

 order. Consequently, these observations lead us to use a Courant 

criterion of 2 associated with the 2
nd

 order of the Runge-Kutta method for a good compromise 

between the advection approximation and the computation time. 
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Fig. B.1. Role of the kinematic conditions (Vth and θ) and the thermal conductivity k: 

validation of the numerical model with respect to analytical developments. Erosion and 

accretion are switched off. Rock thermal properties are set to the reference values (Table 1). 

a) Minimum depth Zmin of thermal inversion reached during the thrust activity as a function of 

Vth and θ. Comparison between our numerical results (coloured circles) and the analytical 

solution from England and Molnar (1993) (Eq. (B.2)) (background). Small circles: real 

computed depth. Gray points correspond to the cases where no thermal inversion occurs. 

Large circles: real computed depth minored by 5.168 km (see text for details). b) Numerical 

Zmin as a function of Vz
-1

 (coloured circles). The linear regression is represented by the 

continuous line. The straight dashed line corresponds to the analytical linear law from 

England and Molnar (1993). c) Time tmin of the thermal inversion start as a function of Vth and 

θ. Comparison between our numerical results (coloured circles) and the analytical solution for 

tzmin developed after England and Molnar (1993) (Eq. (B.3)) (background). d) Numerical tmin 

as a function of Vz
-2

 (coloured circles). The linear regression is represented by the continuous 

line. The dashed straight line corresponds to the analytical linear law after England and 

Molnar (1993). e) Minimum depth Zmin in function of Vz and k. Comparison between our 

numerical results (coloured circles) and the analytical solution from England and Molnar 

(1993) (Eq. (B.2)) (background). Small circles: real computed depth. Gray points correspond 

to the cases where no thermal inversion occurs. Large circles: real computed depth minored 

by 5.168 km (see b). f) Numerical Zmin as a function of κ.Vz
-1

 (coloured circles). The linear 

regression is represented by the continuous line. The dashed straight line corresponds to the 

analytical linear law from England and Molnar (1993).g) Time tmin of the thermal inversion 

start in function of Vz and k. Comparison between our numerical results (coloured circles) and 

the analytical solution for tzmin developed after England and Molnar (1993) (Eq. (B.3)) 
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(background). h) Numerical tmin as a function of κ.Vz
-2

 (coloured circles). The linear 

regression is represented by the continuous line. The dashed straight line corresponds to the 

analytical linear law after England and Molnar (1993).  

 

Fig. B.2. Thermal evolution for an extreme kinematic setting: Vth = 5 cm.yr
-1

, θ = 30˚. a) 

Evolution during the thrust activity: geometry of the lithosphere and isotherms (left) and 

vertical thermal gradient (right). S is the amount of shortening. b) Temporal evolution of the 

geothermal gradient along 3 profiles corresponding to Rx = 25 %, 50 % and 75 % (Fig. 1). 

Steady state is more rapidly reached in the shallowest part of the thrust, and thermal inversion 

duration in depths does not exceed 6 Myrs. 

 

Fig. C.1. Rock thermal properties and mantle heat flux effects on the thermal inversion under 

extreme kinematic conditions (Vth = 5 cm.yr
-1

, θ = 30˚). a) and e) Heat capacity Cp effects. b) 

and f) Thermal conductivity effects. c) and g) Mantle heat flux qbase effects. d) and h) 

Combined k and qbase effects, considering identical initial geotherms. [Top] Thick lines are 

geotherms after a 1 Myr convergence (amount of shortening S = 50 km) along the central 

crustal profile, i.e., Rx = 50 % (Fig. 1). Fine lines represent the corresponding initial 

geotherms. [Bottom] Evolution of the maximal intensity of the thermal inversion reached 

along the thrust. Solid blue lines (and numbers) show the variation of Cp and k with depth 

(and hence with temperature) for the initial geotherm. Dashed blue lines are the results of the 

corresponding simulations. 

 

Fig. C.2. Radiogenic heat production effects on the thermal inversion under extreme 

kinematic conditions: Vth = 5 cm.yr
-1

 and θ = 30˚. a) and d) Surface radiogenic heat 

production Q0 effects. b) and e) Specific depth zr effects. c) and f) Combined Q0 and zr effects 

such as the initial mean crustal radiogenic heat productions are the same. [Top] Thick lines 
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are geotherms after a 1 Myr convergence (amount of shortening S = 50 km) along the central 

crustal profile, i.e., Rx = 50 % (Fig. 1). Fine lines represent the corresponding initial 

geotherms. [Bottom] Evolution of the maximal intensity of the thermal inversion reached 

along the thrust.  

 

Table Captions: 

Table 1. Parameters tested in the model.  
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Figure 5
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Figure 6
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Figure 8
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Figure 10: Appendix Figure A.1
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Figure 11: Appendix Figure A.2
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Figure 13: Appendix Figure B.2
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Figure 14: Appendix Figure C.1

30

20

10

0

D
e
p
th

 [
k
m

]

k = 2 W.m-1.K-1

k = 3 W.m-1.K-1

k = 4 W.m-1.K-1

Heat Capacity Cp effect Thermal Conductivity k effect

800 J.kg-1.K-1

1000 J.kg-1.K-1

1200 J.kg-1.K-1

qbase = 20 mW.m-2

qbase = 30 mW.m-2

qbase = 40 mW.m-2

Mantle Heat Flux qbase effect

k = 2 W.m-1.K-1, qbase = 20 mW.m-2

k = 3 W.m-1.K-1, qbase = 30 mW.m-2

k = 4 W.m-1.K-1, qbase = 40 mW.m-2

Combined k and qbase effect

Cp =

Cp =

Cp =

Cp = f(T)*

50 100 150 200 250 300

Temperature [˚C]

50 100 150 200 250 300

Temperature [˚C]

50 100 150 200 250 300

Temperature [˚C]

50 100 150 200 250 300

Temperature [˚C]

80 90
T [˚C]

5

0

10

15

20

m
a
x
. 
th

e
rm

a
l 

in
v
e
rs

io
n

in
te

n
si

ty
 [

˚C
.k

m
-1
]

1 2 3 4 5 6 7 80

time [Myr]

1 2 3 4 5 6 7 8

time [Myr]

1 2 3 4 5 6 7 8

time [Myr]

1 2 3 4 5 6 7 8

time [Myr]

0 0 0

350

70 80 90
T [˚C]

thrust thrust thrust thrust

initial geotherm*C
p (T

)

1000 1050 1100 1150

70

k = f(T)*

21.5 2.5 3

*k
 (

T
)

a

e

b c d

hgf

59



Figure 15: Appendix Figure C.2
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Figure 16: Table 1

Symbol Parameter Range of tested values Unit 

Kinematic parameters:   

 Thrust dip angle 10 - 35 ˚ 

Vth Thrust velocity (convergence rate) 0.5 - 5 cm.yr-1 

Vz Vertical component of Vth Vth  sin( ) cm.yr-1 

Vlp Lower plate velocity 0.5 - 5 cm.yr-1 

Vb Burial velocity Vlp  sin( ) cm.yr-1 

Vup Upper plate velocity Vth - Vlp cm.yr-1 

Ve Erosion rate Vup  sin( ) cm.yr-1 

a Vertical accretion rate 0 - 0.2 cm.yr-1 

a’ Horizontal accretion rate a’  tan( ) cm.yr-1 

Rock thermal properties:   

c Crust density 2800 kg.m-3 

m Mantle density 3300 kg.m-3 

Cp Heat capacity 800 - 1200 

J.kg-1.K-

1 

k Thermal conductivity 2 - 4 

W.m-

1.K-1 

 Thermal diffusivity in the crust k/( c.Cp) m2.s-1 

Heat sources:   

qbase Mantle heat flux 20 - 40 mW.m-2 

Q Radiogenic heat production  µW.m-3 

Q0 Surface radiogenic heat production 0 - 4 µW.m-3 

zr Specific depth where Q = Q0.e
-1 5 - 20 km 

Hs Shear heating  µW.m-3 

 Thrust effective viscosity 1019 - 1021 Pa.s 

 

60


