Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis
Abstract
Quantification of the recharge in fractured aquifers is particularly challenging because of the multiscale heterogeneity and the range of temporal scales involved. Here we investigate the hydraulic response to recharge of a fractured aquifer, using a frequency domain approach. Transfer functions are calculated in a range of temporal scales from 1 day up to a few years, for a fractured crystalline-rock aquifer located in Ploemeur (S Brittany, France), using recharge and groundwater level fluctuations as input and output respectively. The spatial variability of the response to recharge (characteristic response time, amplitude, temporal scaling) is analyzed for 10 wells sampling the different compartments of the aquifer. Some of the transfer functions follow the linear reservoir model behavior. On the contrary, others display a temporal scaling at high frequency that cannot be represented by classic models. Large-scale hydraulic parameters, estimated from the low-frequency response, are compared with those estimated from hydraulic tests at different scales. The variability of transmissivity and storage coefficient tends to decrease with scale, and the average estimates converge toward the highest values at large scale. The small-scale variability of diffusivities, which implies the existence of a range of characteristic temporal scales associated with different pathways, is suggested to be at the origin of the unconventional temporal scaling of the hydraulic response to recharge at high frequency
Origin : Publisher files allowed on an open archive
Loading...