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Abstract 19 

Detailed chemical reaction schemes for the atmospheric degradations of the very 20 

short-lived species (VSLS) bromoform (CHBr3) and dibromomethane (CH2Br2) have been 21 

established. These degradation schemes have been implemented in the meteorological/tracer 22 

transport model CATT-BRAMS used in the present case as pseudo one-dimensional model 23 

with chemistry of CH4, CO, HOx, NOx, NOy and Ox. They include the main possible reactions 24 

of the intermediate brominated peroxy radicals RO2 (with R = CH2Br, CHBr2 and CBr3) for 25 

which the most likely reaction pathways with HO2 have been found using ab initio 26 

computational calculations. The full degradation schemes have been run for two well-defined 27 

realistic scenarios, “clean” atmosphere and “moderately” NOy-polluted atmosphere, as 28 

representative of a tropical coastal region where these VSLS natural emissions are expected to 29 

be important. The Henry’s law constants of the brominated organics products have been 30 

estimated by using the Bond Contribution Method (BCM; Meylan and Howard, 1991) or the 31 

Molecular Connectivity Index (MCI; Nirmalakhandan and Speece, 1988). Using these 32 

constants, the least soluble species formed from the VSLS degradation are found to be CBr2O, 33 
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CHBrO, CBr3O2NO2, CHBr2O2NO2, BrO, BrONO2 and HOBr, which leads those to be 1 

potentially transported into the tropical tropopause layer (TTL) in case of deep convection 2 

and contribute to stratospheric bromine additionally to the original substances. For 3 

bromoform and dibromomethane degradation, the moderate NOy pollution increases the 4 

production of the least soluble species and thus approximately doubles the bromine quantity 5 

potentially able to reach the TTL (from 22.5% to 43% for CHBr3 and from 8.8% to 20.2 % 6 

for CH2Br2). The influence of the reactions of the RO2 radicals with HO2, CH3O2 and NO2 on 7 

the nature and abundance of the stable intermediate and end-products has been tested for 8 

CHBr3 degradation. As a result, the reactions of the RO2 radicals with NO2 have no impact. 9 

Taking into account the reaction between RO2 and CH3O2 and modifying the branching ratios 10 

of the reaction between RO2 and HO2 lead to a small impact on the bromoform degradation 11 

by slightly decreasing  (by 10%) the bromine quantity potentially able to reach the TTL. As a 12 

final point, in contrast to CHBr3, CH2Br2 degradation produces negligible quantities of 13 

organics species and the effects of pollution increase only the inorganic species production. 14 

By taking into account the results of these tests, new simplified degradation schemes for 15 

CHBr3 and CH2Br2 are proposed.  16 

 17 

  18 

19 
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1. Introduction 1 

 2 

Until the beginning of the 21st century, stratospheric ozone depletion has been 3 

exclusively explained by reactions of active halogen gases with ozone. The active halogen 4 

gases originated from long‐lived species such as chlorofluorocarbons (CFCs) for chlorine, and 5 

halons and CH3Br for bromine. Recent measurements of total stratospheric inorganic 6 

bromine, Bry (Dorf et al., 2008), and their comparison with the measurements of bromine 7 

derived from halons and CH3Br showed significant discrepancies (Montzka and Reimann et 8 

al., 2011). Actually bromine-containing long‐lived species are not the single source of 9 

stratospheric inorganic bromine as very short‐lived species (VSLS) also contribute (Ko and 10 

Poulet et al., 2003; Law and Sturges et al., 2007; Montzka and Reimann et al., 2011). These 11 

VSLS are substances with atmospheric lifetime shorter than six months, which is generally 12 

too short to reach the stratosphere. However, they may enter the tropical tropopause layer 13 

(TTL) into the tropical region by deep convection, and then the stratosphere by slow radiative 14 

ascent for air having reached at least the level of zero radiative heating (LZRH, 15.5 km or 15 

360 K). Convection can lift VSLS, in the form of their source gases (SGs) or their low 16 

solubility product gases (PGs) within a few hours from the boundary layer into the TTL. In 17 

the tropics, VSLS are mainly emitted by natural marine sources from warm tropical oceans 18 

(Hense and Quack, 2009). Bromoform (CHBr3) and dibromomethane (CH2Br2) are the most 19 

abundant brominated short‐lived SGs, with a global mean lifetime of 26 days and 120 days, 20 

respectively (Ko and Poulet et al., 2003). Research is now focused on the contribution of 21 

VSLS to stratospheric bromine by using modeling calculations (Kerkweg et al., 2008; 22 

Brioude et al., 2010; Pisso et al., 2010; Aschmann et al., 2009; Hossaini et al., 2010), balloon-23 

borne measurements (Dorf et al., 2008) and satellite measurements (Sinnhuber et al., 2005). 24 

This contribution is found to be largely uncertain, varying from less than 1 part per trillion 25 

volume (pptv) mixing ratios up to more than 8 pptv. Most models use simple degradation 26 

schemes for the VSLS, which do not consider the intermediates organic PGs as particular 27 

species with their own physical properties (e.g., solubility) and reactivity toward other 28 

atmospheric species. Only one detailed chemical scheme for degradation of CHBr3 and 29 

CH2Br2 has been proposed, by Hossaini et al. (2010). They used a chemistry reaction scheme 30 

in the three dimensional (3D) TOMCAT/SLIMCAT global chemistry transport model and 31 

concluded on the small influence of the organic products on the global scale. Nevertheless, 32 

neither study considered all the possible degradation pathways.  33 
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The aim of this paper is firstly to propose a full degradation scheme of bromoform and 1 

dibromomethane and to implement it in a meteorological/tracer transport model (CATT-2 

BRAMS; Freitas et al., 2009) used as a pseudo one dimensional model with the atmospheric 3 

chemistry of CH4, CO, HOx, NOx, NOy and Ox. The computations are made under high 4 

sunlight conditions as those prevailing in the tropical regions.  5 

The atmospheric removal of CHBr3 and CH2Br2 is mainly initiated via reaction with 6 

OH radical and photolysis. In the presence of molecular oxygen, the first step (either OH- or 7 

Cl-oxidation reaction, or photolysis) leads to the formation of organic brominated peroxy 8 

radicals RO2 (with R = CH2Br, CHBr2 or CBr3). The chemistry of peroxy radicals closely 9 

depends on the conditions of pollution and in particular on the level of nitrogen oxides (NOx). 10 

In regions with high NOx levels, the chemistry of RO2 radicals is essentially governed by the 11 

reactions with NO, which lead to the exclusive formation of the alkoxy radical (RO) and NO2 12 

for bromine and small size compounds (Mc Givern et al., 2004; Wallington et al., 1997). 13 

However, it is also interesting to study the importance of the reactions between RO2 and NO2, 14 

giving alkyl peroxy nitrates (RO2NO2), compared to the RO2 + NO reactions. Indeed, species 15 

such as CH3O2NO2 are rather unstable, but the substitution of one or more H atoms by 16 

halogen atoms leads to much longer thermal lifetimes (Kirchner et al., 1998, Köppenkastrop 17 

et al., 1991). Consequently, halogenated alkyl peroxy nitrates might be temporary reservoirs 18 

for peroxy radicals. In regions with low NOx levels (less than few tens of pptv) such as the 19 

marine atmosphere, the degradation of peroxy radicals also involves the cross reactions RO2 + 20 

HO2 and RO2 + R’O2, where R’O2 represents the most abundant atmospheric organic peroxy 21 

radicals, i.e. mainly CH3O2, C2H5O2 and CH3C(O)O2. In particular CH3O2 can reach 22 

concentrations as high as HO2 concentrations (Villenave and Lesclaux, 1996) so that the RO2 23 

+ CH3O2 reaction may need to be considered as a significant degradation pathway (Tyndall et 24 

al., 2001). Moreover, these cross reactions between peroxy radicals potentially lead to several 25 

different products. The reactions between alkyl RO2 and HO2 proceed via the formation of a 26 

short-lived tetroxide intermediate ROOOOH, which decomposes to form different products 27 

(Wallington et al., 1997). In most cases, the major product is the hydroperoxide RO2H. 28 

However, for halogenated peroxy radicals, other final products arise, with yields depending 29 

on the nature and the number of the halogen atoms in the RO2 species (Lesclaux et al., 1997). 30 

Another question to properly close the degradation scheme is the fate of the species produced 31 

by the RO2 radical reactions, which can undergo washout (depending on their solubility), 32 

photolysis, or react with OH (or Cl) to form inorganic bromine species (Bry) as end-products. 33 
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The second goal of this paper is to study the influence of these different parameters, 1 

i.e. the oxidant concentration, the level of NOx pollution and the relative importance of the 2 

different peroxy radical cross reactions, on the final chemical product distribution. Especially, 3 

the different mechanisms discussed above, the partitioning between the different PGs 4 

(organics and inorganics) produced in the lower atmosphere and the ability of these PGs to 5 

reach the TTL in the case of convection are studied. For that, the solubility of each species is 6 

determined by attributing an individual Henry’s law constant and only the least soluble 7 

species are considered to potentially reach the TTL. As a conclusion, the importance of each 8 

reaction is discussed and simplified chemical schemes of VSLS degradation are established, 9 

to be more conveniently used in future simulations. 10 

This paper is organized as follows: Section 2 gives a detailed chemical degradation 11 

scheme for bromoform and dibromomethane. Section 3 describes the atmospheric model used 12 

for this study and Section 4 presents the results and the discussion of the atmospheric 13 

simulations.  14 

 15 

2. Chemical mechanisms for the atmospheric degradations of CHBr3 16 
and CH2Br2 17 

 18 

This section presents the different degradation pathways of the main bromine VSL 19 

source gases, bromoform (CHBr3) and dibromomethane (CH2Br2) in the atmosphere, and 20 

tools to establish, on the one hand, the chemical scheme and, on the other hand, the solubility 21 

of the brominated products. The mechanism is based on the general scheme of the 22 

halomethane degradation proposed by Ko and Poulet et al. (2003). The removal of bromine 23 

SGs occurs via OH and Cl reactions and photolysis. The peroxy radicals (RO2) produced in 24 

the first oxidation steps can react with species such as NO, NO2, HO2 and CH3O2 to form 25 

aldehydes, hydroperoxides and alcohols as intermediate organic products.  26 

The reaction scheme of peroxy radicals are complex and depend on the atmospheric 27 

conditions, in particular on the NOx concentration (Tyndall et al., 2001). When the abundance 28 

of NOx is high (more than a few parts per billion volume mixing ratios (ppbv)), the fate of 29 

peroxy radicals is dominated by their reaction with NO. Under conditions of low NOx levels 30 

(less than few tens of pptv), the cross-reactions of RO2 with CH3O2 or HO2 dominate with 31 

respect to the reaction with NO. When the abundance of NOx is moderated (from few tens of 32 

pptv to some ppbv), all these reactions are in competition. Finally, the oxidation scheme of 33 
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VSLS terminates by reactions of the intermediate products with OH and photodissociations, 1 

leading to inorganic bromine production.  2 

The atmospheric reaction mechanisms of analogous chlorinated peroxy radicals, 3 

especially the reactions between RO2 and HO2, are well known from laboratory studies 4 

(Catoire et al., 1994; Catoire et al., 1996; Wallington et al., 1997) or from computational 5 

calculations (Hou et al., 2005), whereas this is not the case for brominated peroxy radical 6 

reactions. Consequently, computational calculations have been performed to help establishing 7 

the most likely chemical mechanisms by determining the standard reaction enthalpies of RO2 8 

+ HO2 reactions. The computational methods and the estimations of Henry’s law constants are 9 

explained below, before presenting the detailed mechanisms of the atmospheric degradation 10 

of the VSLS.  11 

 12 

2.1.  Computational methods for the estimation of the standard reaction enthalpies at 13 

298 K of the RO2 + HO2 reaction 14 

In order to determine the energetically most favorable reaction pathways for the cross 15 

reactions RO2 + HO2, ab initio calculations of the standard reaction enthalpies have been 16 

performed. All calculations used the GAUSSIAN03 (Frisch et al., 2004) and GAUSSIAN09 17 

(Frisch et al., 2009) software packages. Geometric parameters were fully optimized with the 18 

second Møller-Plesset perturbation method (Møller and Plesset, 1934) combined with the 19 

Dunning’s correlation consistent basis set cc-pVTZ (Dunning et al., 1989; Kendall et al., 20 

1992; Woon et al., 1993; Peterson et al., 1994; Wilson et al., 1996). Scaled vibrational 21 

frequencies and scaled Zero-Point Energies (ZPE) were determined within the harmonic 22 

approximation at the same level of theory as that for geometries. The ab initio vibrational 23 

frequencies were multiplied by an appropriate scaling factor (0.95) (Johnson, 2011). 24 

Electronic energies were obtained employing the single and double coupled cluster theory 25 

with inclusion of a perturbative estimation for triple excitation (CCSD(T)) (Cizek et al., 1969; 26 

Pople et al., 1987; Purvis et al., 1982; Scuseria et al., 1988; Scuseria et al., 1989) with the 27 

aug-cc-pVTZ basis set. The frozen-core approximation has been applied to the CCSD(T) 28 

calculations. This means that the inner shells are excluded when estimating the correlation 29 

energy. Though the CCSD(T) approach is considered as a “golden standard”, providing a 30 

good balance between cost and accuracy, it is still possible to improve the coupled cluster 31 

energies estimating the effects of higher excitations, i.e. the full configuration-interaction 32 

energies as proposed by Goodson (2002). This is referred to as continued fraction 33 

approximation (cf). We applied the cf-correction in the energetics of the studied reactions. 34 
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Reaction enthalpies at 298 K were computed using the KISTHEP program (Henon et al., 1 

2003). The BSSE was not considered here because the common counterpoise correction is 2 

estimated to be relatively small for a large basis set involving diffuse functions such as the 3 

aug-cc-pVTZ basis set and for reaction enthalpies involving species which are neither adducts 4 

nor Van der Waals molecular complexes. Table 1 lists the reaction enthalpies ΔrH° at 298 K 5 

calculated at the CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ level of theory with and without the 6 

cf-correction. As shown in Table 1, there is little influence of the cf-correction on the 7 

calculated reaction enthalpies at 298 K (< 0.9 kcal mol-1) demonstrating the convergence of 8 

the reported values. 9 

The results obtained indicate that the reactions between CH2BrO2, CHBr2O2, CBr3O2 10 

radicals and HO2 are strongly exothermic with the exception of the reaction pathways (6b’), 11 

(20b’) and (35b’). The exothermicity is observed to increase with increasing bromine 12 

substitution of the reactant. Our calculated values of ΔrH°298K for reaction pathways (6a), 13 

(6b’), (20a), (20b’), (35a), (35b’) are in good agreement with the values obtained by 14 

McGivern et al. (2004) at a different level of theory (CCSD(T)/cc-pVTZ//MP2(Full)/6-15 

311+G(d)). Interestingly, our results are also in very good agreement with the calculations of 16 

Hou et al. (2005) for the channels (a), (b), (b’) and (c) of the analogous chlorine compounds 17 

The chemical model, established in the next sections, takes into account all these results. 18 

 19 

2.2. Estimation methods for the Henry’s law constants 20 

The halogenated organic intermediate products are more or less soluble. The Henry’s 21 

law constants are not known for complex halogenated species. Consequently, we used the 22 

Bond Contribution Method (BCM) (Meylan and Howard, 1991) or the Molecular 23 

Connectivity Index (MCI) method (Nirmalakhandan and Speece, 1988) to estimate them. 24 

These methods attribute a “contribution value” for each different atom and/or each bond 25 

present in the molecule, depending on their chemical nature, and estimate the Henry’s law 26 

constant from these values.  27 

Meylan and Howard (1991; BCM) attributed a contribution value for each bond in the 28 

molecule (C-C, C-H, C-O, C-Br…) and applied some correction factors to certain chemical 29 

classes (alcohols, cyclic alkane …). By summing all the contribution values, the log water to 30 

air partition coefficient (LWAPC) is found, which corresponds to the decimal logarithm of the 31 

unitless Henry’ law constant k°H in the chemical equilibrium for a given species A defined by 32 

the dimensionless ratio of the species concentrations in the two phases:  33 
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A (gas) ↔ A (liquid)  with k°H = CA(liq)/ CA(gas) 1 

Usually, the Henry’ law constant is defined as k°H = CA(liq) / PA(gas), where CA(liq) and PA(gas) are 2 

the concentration of the species in the liquid phase and the partial pressure in the gas phase in 3 

units of mol L-1 and atm, respectively. The unitless Henry’ law constant is converted into mol 4 

L-1 atm-1 by dividing by the temperature (298 K) and the gas constant (8.205746 × 10−2 L 5 

mol−1 atm K−1). 6 

Nirmalakhandan and Speece (1988; MCI) developed an equation to estimate the 7 

unitless Henry’s law constants taking into consideration three different parameters: the 8 

polarizability parameter, the molecular connectivity index and the hydrogen bonding index. 9 

The polarizability parameter is calculated from the different atoms (C, H, Br…) and functions 10 

(aldehyde, ketone…) present in the molecule, the molecular connectivity index characterizes 11 

the bond in the molecule and the hydrogen bonding index is equal to 1 if the molecule 12 

contains an electronegative element attached directly to a carbon atom holding a hydrogen 13 

atom.  14 

Before estimating the Henry’s law constant of our bromine products, we have tested 15 

the two methods by comparisons with well-known Henry’s law constants (referenced by 16 

Sander et al., 1999). Table 2 shows these comparisons. For small peroxides and alcohols, 17 

BCM is better than MCI method, which overestimates the values for peroxides and 18 

underestimates them for alcohols. So we used this method for brominated peroxides and 19 

alcohols (CHnBr3-nOOH and CHnBr3-nOH, with n = 0, 1, or 2). Both methods are in excellent 20 

agreement for the estimation of aldehydes and ketones Henry’s law constants. However, 21 

BCM estimates the constant from the bond between each atom and treats carbonyl groups 22 

(C=O) as single atoms. Their authors (Meylan and Howard, 1991) established the values of 23 

each bond but with no value for the bond CO-Br. MCI method uses the contribution of each 24 

atom of the molecule, i.e. C, O and Br as single atoms, and moreover considers aldehydes and 25 

ketones as subgroups of the molecule for which an additional contribution to the Henry’s law 26 

constant is attributed. Consequently MCI enables the estimate of Henry’s law constants for 27 

brominated aldehydes or ketones, and we used this method in this case. These two estimation 28 

methods allowed us to derive an order of magnitude value for the Henry’s law constants. The 29 

results of the estimated Henry’s law constants for the bromine compounds present in our 30 

model are reported in Table 3. The most soluble organic species are CBr3O2H, CHBr2O2H, 31 

CBr3OH and CHBr2OH with Henry law’s constants higher than 104 mol L-1 atm-1, whereas 32 

the least soluble organics are CBr2O, CHBrO and the brominated methyl peroxynitrates 33 

(RO2NO2) with constants lower than 103 mol L-1 atm-1. Note that HBr is very soluble, even 34 
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with a very low Henry’s law constant, but with a high acidity constant (Ka = 109) leading to a 1 

high effective constant (Yang et al., 2005). Seinfeld and Pandis (2006) proposed that species 2 

with Henry’s law constants lower than 103 mol L-1 atm-1 are considered less soluble, whereas 3 

species with constants between 103 and 104 mol L-1 atm-1 are moderately soluble and species 4 

with constants higher than 104 mol L-1 atm-1 are very soluble. For our study, we considered 5 

only two classes: species with constants higher than 104 mol L-1 atm-1 as very soluble, and 6 

species with constants lower than 104 mol L-1 atm-1 as less soluble, so HOBr, CH2BrO2H and 7 

CH2BrOH join the latter group. Indeed, for a cloud with a typical liquid water content of 1 g 8 

m-3 of air (Seinfeld and Pandis, 2006), a constant of 104 mol L-1 atm-1 corresponds to a mass 9 

aqueous fraction of 20%. 10 

 11 

2.3. Bromoform degradation mechanism 12 

In the atmospheric degradation of CHBr3, the first step is either the reaction with OH, 13 

Cl or photolysis. The different pathways, oxidation or photolysis, do not form the same 14 

intermediate products (CBr3O2 and CHBr2O2). According to Ko and Poulet et al. (2003), 15 

CHBr3 is the only brominated VSLS (with CHBr2Cl) for which photolysis is as important as 16 

the reaction with OH, by comparison with other VSLS for which OH oxidation dominates. 17 

 18 

2.3.1. OH- or Cl-initiated oxidation of CHBr3 19 

The oxidation of CHBr3 by OH or Cl (Ko and Poulet, 2003 and reference therein; 20 

Kamboures et al., 2002) leads to H-abstraction to form CBr3 radical, which is rapidly 21 

converted into CBr3O2 radical in the presence of ambient oxygen: 22 

CHBr3 + OH +O2 → CBr3O2 + H2O        (1) 23 

CHBr3 + Cl +O2 → CBr3O2 + HCl        (2) 24 

Then, depending on the atmospheric conditions the brominated peroxy radical may 25 

react with NO, NO2, HO2 and CH3O2. The reaction of CBr3O2 with NO leads exclusively to 26 

CBr3O radical (Mc Givern et al., 2002 and 2004; Wallington et al., 1997), which dissociates 27 

rapidly by Br-elimination, by analogy with CH2BrO (Chen et al., 1995; Orlando et al., 1996): 28 

CBr3O2 + NO → CBr3O + NO2         (3) 29 

CBr3O → CBr2O + Br         (4) 30 

 The reaction of peroxy radicals with NO2 proceeds exclusively via a termolecular 31 

recombination reaction (Wallington et al., 1997): 32 

CBr3O2 + NO2 + M ↔ CBr3O2NO2 + M       (5) 33 
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The reaction between CBr3O2 and HO2 leads to formation of the hydroperoxide 1 

CBr3O2H and/or the ketone CBr2O: 2 

CBr3O2 + HO2 → CBr3O2H + O2         (6a) 3 

CBr3O2 + HO2 → CBr2O + HOBr + O2        (6b) 4 

Mc Givern et al. (2004) considered another pathway (6b’) corresponding to a different 5 

geometry of the tetroxide intermediate (ROOOOH), but with one same final product (CBr2O) 6 

as (6b) after rapid Br-elimination from CBr3O:  7 

CBr3O2 + HO2 → CBr3O + OH + O2                 (6b’) 8 

The similar reactions for chlorinated peroxy radicals have been well studied by experimental 9 

means under laboratory conditions by Catoire et al. (1994) and Catoire et al. (1996) and by 10 

theoretical calculations by Hou et al. (2005), leading to kinetic data (rate parameters and 11 

branching ratios for the pathways). The brominated organic peroxy radical reactions have 12 

only been studied by Mc Givern et al. (2004) using theoretical Rice-Ramsperger-Kassel-13 

Marcus (RRKM) calculations, but these authors did not consider all the possible pathways as 14 

Hou et al. (2005) did for chlorinated compounds. Our calculations of the reaction enthalpies, 15 

presented in Section 2.1, for the reactions (6a), (6b) and (6b’) are in good agreement with the 16 

work of these authors for the brominated and chlorinated peroxy radicals, as detailed in 17 

Section 2.1 and shown in Table 1. The experimental results of Catoire et al. (1996) for the 18 

equivalent reaction of chlorine compounds showed that CCl2O is the single product under 19 

laboratory conditions. They observed the production of HOCl, suggesting that pathway (b) is 20 

the main pathway. However, our theoretical results, consistent with the previous ones 21 

reported above, suggest that CBr3O2H (from pathway (a)) and CBr2O + HOBr (from pathway 22 

(b)) are the main products of the reaction between CBr3O2 and HO2, being the more 23 

exothermic reactions. In addition, according to Hou et al. (2005), for the study of chlorinated 24 

compounds, the main product is CCl3O2H due to the lower potential energy barrier of reaction 25 

(a) than (b), in addition to its significant exothermicity. They explain the experimental results 26 

of Catoire et al. (1996) by the fact that pathway (a) for chlorine (forming CCl3O2H) is 27 

exothermic enough (-44.2 kcal mol-1) to allow for the dissociation of CCl3O2H into CCl2O 28 

and HOCl (needing 38 kcal mol-1). Therefore, by analogy with chlorine, we consider the 29 

branching ratio for reaction (6a) to be k6a/k6 = 1.  30 

Finally, the cross reaction between CBr3O2 and CH3O2 may occur via two different 31 

pathways (Wallington et al., 1992; Shallcross et al., 2005): 32 

CBr3O2 + CH3O2 → CBr2O + Br + CH2O + HO2        (7a) 33 

CBr3O2 + CH3O2 → CBr3OH + CH2O + O2       (7b) 34 
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In fact, in a first step channel (7a) produces two alkoxy radicals, CBr3O and CH3O, which 1 

rapidly form carbonyl dibromide CBr2O (by Br-atom elimination) and formaldehyde CH2O 2 

(by reaction with O2), respectively. Channel (7b) leads to perbrominated methanol (CBr3OH) 3 

and formaldehyde. For the analogous chlorine cross reaction (CCl3O2 + CH3O2) the 4 

experimental branching ratio k7a/k7 was indirectly found to be 0.5  0.2 (Catoire et al., 1996). 5 

These reactions are not documented for brominated compounds, so we chose to follow the 6 

indication of Madronich et al. (1990) who proposed a method to estimate the branching ratios 7 

for the cross reaction (CH3O2 + CBr3O2) from the self reactions of the two reactants of the 8 

cross reaction, here CH3O2 and CBr3O2. The self reaction of CH3O2 occurs via two pathways 9 

with branching ratios different from zero, k8a/k8 = 0.4 and k8b/k8 = 0.6 (Tyndall et al., 1998): 10 

CH3O2 + CH3O2 → 2 CH3O + O2        (8a) 11 

CH3O2 + CH3O2 → CH3OH + CH2O + O2       (8b) 12 

Most of the self reactions of the halogenated peroxy radicals, such as CF2ClCH2O2, 13 

CFCl2CH2O2 (Tuazon et al., 1994), CH3CHClO2 (Maricq et al., 1993), CH2ClO2 and 14 

CHCl2O2 (Niki et al., 1980; Catoire et al., 1996) and CCl3O2 (Catoire et al., 1996), occur 15 

exclusively via one pathway: 16 

RO2 + RO2 → 2 RO + O2          (9) 17 

with R being this time the substitute organic radical. So we use k9a/k9 = 1.0. If we apply the 18 

method of simple averaging from Madronich et al. (1990) in our cases, we find k7a/k7 = 0.7 19 

and k7b/k7 = 0.3, which we used for our simulations. 20 

Overall the above reactions implying CBr3O2 produce four brominated organics 21 

products: CBr2O, CBr3O2NO2, CBr3O2H and CBr3OH. These compounds are more or less 22 

hydrosoluble and their Henry’s law constants have been evaluated in Section 2.2.  23 

Other possible sinks in the atmosphere are gas phase reactions: 24 

- for CBr2O (Libuda et al., 1991): 25 

CBr2O + h → CO + 2 Br         (10) 26 

- for CBr3O2NO2, based on analogous chlorinated compounds (Köppenkastrop and Zabel, 27 

1991):  28 

CBr3O2NO2 + M → CBr3O2 + NO2 + M       (11) 29 

and by analogy with CH3O2NO2 (Atkinson et al., 2006): 30 

CBr3O2NO2 + h → CBr3O2 + NO2                 (12a) 31 

CBr3O2NO2 + h → CBr2O + Br + NO3                (12b) 32 

- for CBr3O2H, based on the reaction of CH3O2H (Atkinson et al., 2006): 33 
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CBr3O2H + h → CBr2O + Br + OH        (13) 1 

CBr3O2H + OH → CBr3O2 + H2O        (14) 2 

- for CBr3OH:  3 

CBr3OH + OH → CBr2O + Br + H2O       (15) 4 

The overall reaction scheme discussed in this section is summarized in Fig. 1 and all 5 

kinetic data used are given in Table 4. The references for the chosen kinetic data are detailed 6 

in Section 3. 7 

 8 

2.3.2. Photolysis of CHBr3 9 

 The photolysis of CHBr3 leads to the direct elimination of a Br atom and the formation 10 

of the peroxy radical CHBr2O2: 11 

CHBr3 + h → CHBr2O2 + Br        (16) 12 

Similarly to CBr3O2, CHBr2O2 reacts with NO to form CHBr2O (Mc Givern et al., 2004; 13 

Wallington et al., 1997) and then CHBrO: 14 

CHBr2O2 + NO → CHBr2O + NO2        (17) 15 

CHBr2O → CHBrO + Br         (18) 16 

The termolecular reaction of CHBr2O2 with NO2 also occurs: 17 

CHBr2O2 + NO2 +M ↔ CHBr2O2NO2 + M       (19) 18 

For the reaction between CHBr2O2 and HO2 three pathways may take place:  19 

CHBr2O2 + HO2 → CHBr2O2H + O2                 (20a) 20 

CHBr2O2 + HO2 → CHBrO + HOBr + O2                (20b) 21 

CHBr2O2 + HO2 → CBr2O + H2O + O2                (20c) 22 

As previously, Mc Givern et al. (2004) considered another pathway corresponding to a 23 

different geometry in the intermediate:   24 

CHBr2O2 + HO2 → CHBr2O + OH + O2               (20b’) 25 

Mc Givern et al. (2004) studied only pathways (a) and (b’), giving branching ratios of 26 

0.59 and 0.41, respectively. But they did not consider pathway (c), as suggested by 27 

Wallington et al. (1996) for chlorinated compounds, which forms carbonyl dibromide CBr2O. 28 

Our calculations of reaction enthalpies (Section 2.1) give results similar to those for 29 

chlorinated compounds found by Hou et al. (2005), as shown in Table 1. As explained 30 

previously, the cross reaction proceeds via a tetroxide intermediate ROOOOH, and depending 31 

on the geometry of this tetroxide, the final products are different (pathways a, b or b’, c). As 32 

previously stated (Section 2.3.1), Hou et al. (2005) found CHCl2O2H as the main product in 33 

their study of the analogous chlorinated compound reaction, due to the exothermicity and the 34 
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lower potential energy barrier of channel (a) with respect to channels (b) and (c), and 1 

explained the non observation of CHCl2O2H in the experimental results of Catoire et al. 2 

(1996) by the decomposition of CHCl2O2H into CHClO. The branching ratios found for 3 

chlorinated compounds by Catoire et al. (1996) were k20b/k20 = 0.7 and k20c/k20 = 0.3. By 4 

analogy, assuming CHCl2O2H is totally converted into CHClO, due to the exothermicity of 5 

reaction (a) for chlorinated compounds, i.e. the reaction proceeds mainly through channel 6 

(20a) and the realistic branching ratio would be k20a/k20 = 0.7 and k20c/k20 = 0.3. 7 

Consequently, for the brominated compounds, we set k20a/k20 = 0.7 and k20c/k20 = 0.3.  8 

The reaction between CHBr2O2 and CH3O2 can proceed via three pathways. 9 

According to the estimation method of Madronich et al. (1990) again, we can approximate the 10 

branching ratio of the cross reaction, k21a/k21 = 0.7 and k21b/k21 = 0.3 and k21c/k21 = 0: 11 

CHBr2O2 + CH3O2 → CHBrO + Br + CH2O + HO2               (21a) 12 

CHBr2O2 + CH3O2 → CHBr2OH + CH2O + O2               (21b) 13 

CHBr2O2 + CH3O2 → CBr2O + CH3OH + O2               (21c) 14 

Finally, the gas phase removal of CBr2O, CHBrO, CHBr2O2NO2, CHBr2O2H and 15 

CHBr2OH are achieved via OH reaction, thermal decomposition and photolysis: 16 

- for CBr2O (Libuda et al. 1991) : 17 

CBr2O + h → CO + 2Br         (22) 18 

- for CHBrO (Libuda et al. 1991) : 19 

CHBrO + h + O2 → CO + Br + HO2       (23) 20 

- for CHBr2O2NO2, by analogy with chlorinated compounds (Köppenkastrop and Zabel, 21 

1991): 22 

CHBr2O2NO2 + M → CHBr2O2 + NO2 + M       (24) 23 

and by analogy with CH3O2NO2 (Atkinson et al., 2006): 24 

CHBr2O2NO2 + h → CHBr2O2 + NO2                (25a) 25 

CHBr2O2NO2 + h → CHBrO + Br + NO3                (25b) 26 

- for CHBr2O2H, based on the reaction of CH3O2H (Atkinson et al., 2006): 27 

CHBr2O2H + h → CHBrO + Br + OH       (26) 28 

CHBr2O2H + OH → CHBr2O2 + H2O       (27)  29 

- for CHBr2OH: 30 

CHBr2OH + OH +O2 → CBr2O + HO2 + H2O      (28) 31 

The later reaction is assumed to proceed by the same mechanism as methanol (Atkinson et al., 32 

2006).  33 
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All reactions and kinetic parameters are gathered in Table 4 and Fig. 1.  1 

 2 

2.4. Dibromomethane degradation mechanism 3 

For CH2Br2, reaction with OH is generally the major loss process (Ko and Poulet et 4 

al., 2003). The degradation of CH2Br2 is described in a similar way as for CHBr3. 5 

 6 

2.4.1. OH- or Cl-initiated oxidation of CH2Br2 7 

The oxidation of CH2Br2 by OH or Cl leads to the H-abstraction to form CHBr2 and 8 

after reaction with O2, forms CHBr2O2:  9 

CH2Br2 + OH +O2 → CHBr2O2 + H2O       (29) 10 

CH2Br2 + Cl +O2 → CHBr2O2 + HCl        (30)  11 

The peroxy radical formed in this way is the same as from the CHBr3 photolysis and 12 

its degradation kinetics and mechanism have thus been already described in the previous 13 

section. This degradation way of CH2Br2 is summarized in Table 5 and Fig. 1. 14 

 15 

2.4.2. Photolysis of CH2Br2 16 

The photolysis of CH2Br2 leads to the direct elimination of a Br atom and the 17 

formation of the peroxy radical CH2BrO2: 18 

CH2Br2 + h → CH2BrO2 + Br       (31) 19 

CH2BrO2 can react with NO to form CH2BrO (Mc Givern et al., 2004; Wallington et al., 20 

1997) and then CH2O (Chen et al. 1995): 21 

CH2BrO2 + NO → CH2BrO + NO2        (32) 22 

CH2BrO → CH2O + Br         (33)  23 

The reaction of CH2BrO2 with NO2 proceeds via: 24 

CH2BrO2 + NO2 + M → CH2BrO2NO2 + M       (34) 25 

Also, the reaction between CHBr2O2 and HO2 may have three pathways: 26 

CH2BrO2 + HO2 → CH2BrO2H + O2                 (35a) 27 

CH2BrO2 + HO2 → CH2O + HOBr + O2                (35b) 28 

CH2BrO2 + HO2 → CHBrO + H2O + O2                (35c) 29 

Mc Givern et al. (2004) considered pathways (a) and (b’) only. Channel (b’) gives as 30 

product CH2BrO, OH and O2 and then CH2O and Br after CH2BrO rapid decomposition. 31 

As previously stated, the reaction enthalpies we calculated are in agreement with the 32 

theoretical data of Mc Givern et al. (2004) for brominated compounds, and of Hou et al. 33 
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(2005) for chlorinated compounds. We used the branching ratio of the analogous chlorine 1 

compounds, k35a/k35 = 0.2 and k35c/k35 = 0.8 (Catoire et al. 1996). However, experimental 2 

results of Chen et al. (1995) indirectly suggested the quasi exclusive CH2BrO2H formation, 3 

and another theoretical study for CH2ClO2 reaction (Wei and Zheng, 2007) reported that 4 

CH2ClO2H is the predominant product. Consequently, we also tested in another simulation the 5 

branching ratios, k35a/k35 = 0.9 and k35c/k35 = 0.1.  6 

The reaction between CH2BrO2 and CH3O2 may occur via three channels. As 7 

previously stated, we have used the method proposed by Madronich et al. (1990) to estimate 8 

the branching ratio and found k36a/k36 = 0.7, k36b/k36 = 0.3 and k36c/k36 = 0: 9 

CH2BrO2 + CH3O2 → CH2O + Br + CH3O + O2                 (36a) 10 

CH2BrO2 + CH3O2 → CH2BrOH + CH2O + O2               (36b) 11 

CH2BrO2 + CH3O2 → CHBrO + CH2OH + O2               (36c) 12 

Then, CH2BrO2NO2, CH2BrO2H, CHBrO and CH2BrOH are transformed via OH reaction, 13 

thermal decomposition or photolysis: 14 

- for CHBrO (Libuda et al. 1991): 15 

CHBrO + h +O2 → CO + Br + HO2        (37) 16 

- for CH2BrO2NO2, by analogy with chlorinated compounds (Köppenkastrop and Zabel, 17 
1991): 18 

CH2BrO2NO2 + M → CH2BrO2 + NO2 + M       (38) 19 

and by analogy with CH3O2NO2 (Atkinson et al., 2006): 20 

CH2BrO2NO2 + h → CH2BrO2 + NO2                (39a) 21 

CH2BrO2NO2 + h → CH2O + Br + NO3                (39b) 22 

- for CH2BrO2H, based on the mechanism of CH3O2H (Atkinson et al., 2006): 23 

CH2BrO2H + h → CH2O + Br + OH       (40) 24 

CH2BrO2H + OH → CH2BrO2 + H2O       (41) 25 

- for CH2BrOH, based on the mechanism of CH3OH + OH (Atkinson et al., 2006): 26 

CH2BrOH + OH + O2 → CHBrO + H2O + HO2      (42) 27 

Table 5 and Fig. 1 summarize the overall degradation mechanism for CH2Br2 and the 28 

corresponding kinetic data. The choice of the kinetic data is detailed in Section 3. 29 

 30 

 31 

3. Description of the model used for the atmospheric simulations 32 

 33 



 16

The model used to study the degradation of bromoform and dibromomethane under 1 

atmospheric conditions is the meteorological/tracer transport model CATT-BRAMS (Coupled 2 

Aerosol Tracer Transport-Brazilian Regional Atmospheric Modeling system; Freitas et al. 3 

2009) coupled on-line with the chemistry model described below. CATT-BRAMS is a 3D 4 

limited-area model, which is used here as a “pseudo” one dimensional model. For this, we run 5 

the model on a very small geographical domain and we set the initial conditions for the 6 

meteorological parameters horizontally uniform and vertically from a radiosounding 7 

corresponding to a stable atmosphere. These initial conditions are such that the atmosphere 8 

remains stable for the whole simulation duration. Stable atmospheric conditions are chosen to 9 

allow us studying the chemical degradation of bromoform and dibromomethane regardless of 10 

atmospheric perturbations such as convective transport and subsequent scavenging. A 11 

complementary study was conducted by Marécal et al. (2011) focusing on the impact on the 12 

local scale of tropical deep convection on the bromoform transport and chemical processing, 13 

including aqueous chemistry. Marécal et al. (2011) also used the CATT-BRAMS model with 14 

a fine horizontal resolution (1 km) allowing the cloud scale processes to be explicitly resolved 15 

(i.e. without convection parameterization).  16 

In the present study, we use cyclic boundary conditions for the meteorological and 17 

chemical variables and a small geographical domain leading to 3D-chemical simulation fields 18 

quasi-uniform horizontally in the simulation, as checked a posteriori. With this setup, the 19 

model is not computationally costly. This allows us to run a large set of chemical reaction 20 

mechanism simulations to study in detail CHBr3 and CH2Br2 degradations under realistic 21 

atmospheric conditions from surface to the upper troposphere.  22 

The general setup common to all simulations is given hereafter. The specific 23 

characteristics of the different sensitivity simulations are given in Section 4.1. The model is 24 

set with 33 vertical levels spanning from the surface to 24 km altitude with layer depths 25 

increasing with altitude from 48 m near the surface to 1 km above 5.36 km height. The model 26 

is initialized vertically using the pressure, temperature and relative humidity data from the 27 

radiosounding launched from Darwin (Australia, 12°S–131°E) on 16 November 2005 at 28 

2300UT in the frame of the SCOUT-O3 European Project (http://www.ozone-29 

sec.ch.cam.ac.uk/scout o3/). We chose Darwin because it is located close to a warm ocean and 30 

coastal region where natural bromoform and dibromomethane emissions are expected to be 31 

strong (e.g. Quack and Wallace, 2003). The model starts on the radiosounding date and time. 32 

All simulations are performed for a time period of 10 days for CHBr3 and 50 days for CH2Br2, 33 

corresponding to their estimated lifetime found in this region and season by our model.  34 
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Apart from CHBr3 and CH2Br2 chemical degradation, a simple scheme including the chemical 1 

reaction mechanisms for CO, CH4, total inorganic reactive nitrogen (NOy) and hydrogen 2 

oxide radicals (HOx) taken from Barth et al. (2007) has been used to simulate tropospheric 3 

chemistry. Chlorine chemistry has not been taken into account. Even if the reaction with Cl 4 

atom can be considered as loss mechanism for CHBr3 and CH2Br2, reaction with OH remains 5 

the major loss mechanism. To avoid high increase of OH radicals in the lowest levels, dry 6 

deposition is applied to HNO3 and O3. The detailed bromine chemistry scheme implemented 7 

has been described in Section 2. We take into account 19 bromine-containing products 8 

deriving from the 2 SGs (CHBr3, CH2Br2), including 14 organics PGs (CBr3O2, CHBr2O2, 9 

CH2BrO2, CBr3O2H, CHBr2O2H, CH2BrO2H, CBr3O2NO2, CHBr2O2NO2, CH2BrO2NO2, 10 

CBr2O, CHBrO, CBr3OH, CHBr2OH and CH2BrOH) and 5 inorganic PGs (Br, BrO, 11 

BrONO2, HOBr and HBr).  12 

For the initialization of the chemical species concentrations we have used outputs from 13 

the global Chemistry-Transport model (CTM) MOCAGE (Josse et al., 2004; Bousserez et al., 14 

2007). They provide the background chemical conditions in which the degradation of 15 

bromoform and dibromethane are simulated. MOCAGE is based on the photochemical 16 

scheme RACM (Stockwell et al. 1997) for tropospheric chemistry and on REPROBUS 17 

(Lefèvre et al. 1994) for stratospheric chemistry. It includes a parameterization of convection 18 

representing subgrid scale transport and scavenging by deep convection. It also includes 19 

parameterizations for turbulent diffusion and dry deposition. We initialized CH4, HNO3, NO 20 

and NO2, O3 and CO mixing ratio by MOCAGE outputs from a specific simulation. The 21 

chosen horizontal resolution is a global 2°2°, with 47 vertical levels extending from the 22 

ground up to 5 hPa. Emissions correspond to those given by the former Intergovernmental 23 

Panel on Climate Change (IPCC) exercise, except for biogenic emissions which follow the 24 

inventory Global Emissions Inventory Activity (GEIA, http://www.geiacenter.org/). 25 

MOCAGE being a CTM, external meteorological forcings are necessary. In this simulation, 26 

6-hourly analyses from ARPEGE Meteo-France’s operational meteorological forecast model 27 

have been used. After a one-month spin-up, MOCAGE has been run for November 2005, and 28 

averaged over that month to provide initial conditions for the CATT-BRAMS model.  29 

The present work reports modeling results for 2 scenarios (CLEAN and 30 

MODERATE), with tropospheric conditions ranging from clean to moderately polluted air 31 

masses. All simulations take place at the same latitude and longitude (12°S, 131°E). However, 32 

to initialize the simulation under realistic conditions of moderate pollution and clean 33 

atmosphere, we have used the MOCAGE model outputs for Darwin (12°S, 131°E) and for the 34 
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Pacific Ocean (5°N, 149°E), respectively. Initialization values at 1 km altitude for the 2 1 

scenarios are given in Table 6. In addition, bromoform volume mixing ratio, as shown in Fig. 2 

2, is initialized in two different ways: firstly by using the mean tropical data from ground to 3 

19 km altitude (Fig. 2A) referenced by Montzka and Reimann et al. (2011) and secondly, by 4 

using the maximum values of the experimental data from Yokouchi et al. (2005) at ground 5 

along coasts of tropical islands in Pacific ocean (23.8 pptv for Kiribati, 1.9°N, 157°W) and 6 

the mean value of the observations from 10 km to 17 km altitude referenced by Montzka and 7 

Reimann et al. (2011) (Fig. 2B). Dibromomethane concentrations are initialized by the 8 

maximum values of the observations referenced by Montzka and Reimann et al. (2011) shown 9 

in Fig. 3. The missing data are interpolated from concentration profile observations (reported 10 

by Hossaini et al., 2010). The CHBr3 and CH2Br2 degradations have been studied without 11 

other bromine sources during the simulations. Consequently, the total bromine during the 12 

simulations represents the bromine introduced at the beginning. 13 

Most of the reaction rate constants used are from JPL (Sander et al., 2011), IUPAC 14 

(Aktinson et al., 2006), and MCM (Master Chemical Mechanism; Jenkin et al., 1997). 15 

Photolysis rates are computed on-line using Fast-TUV (Tie et al., 2003) consistently with the 16 

radiative calculations of the meteorological model (Toon et al., 1989). The kinetics 17 

parameters for the brominated VSLS degradation reactions are not well known. 18 

Consequently, we applied the rate constants of the reactions of analogous chlorine-containing 19 

species to the bromine reactions, when available. However, for the reactions CHBr2O2 + NO, 20 

CH2BrO2 + NO, CBr3O2 + OH, CHBr2O2H + OH and CH2BrO2H + OH, the analogous 21 

chlorine rate constants are not known, and thus the generalized reactions RO2 + NO and RO2 22 

+ OH proposed by Jenkin et al. (1997) are used. All the rate constants associated with the 23 

reaction mechanisms described in Section 2 are gathered in Table 4 for CHBr3 and in Table 5 24 

for CH2Br2. The photolysis data of the reactions are from JPL 2011 (Sander et al., 2011), 25 

except for the brominated RO2H and RO2NO2 for which the absorption cross sections of 26 

CH3O2H and CH3O2NO2 have been used, respectively.  27 

 28 

4. Modeling of the atmospheric degradation of CHBr3 and CH2Br2: 29 

results and discussion 30 

 31 

4.1. Chemical mechanism setup of the simulations 32 
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First, the 2 scenarios of clean and moderately polluted atmospheres (Table 6) have 1 

been tested in the reference simulation, including all the reactions for the 2 different 2 

initializations of bromoform (Fig. 2A and 2B). Then, the influences of the reaction RO2 + 3 

NO2 in simulation #1 and of the reaction RO2 + CH3O2 in simulation #2 with respect to the 4 

reference simulation have been tested. In simulation #3, the influence of the branching ratio 5 

values in the cross reactions RO2 + HO2 has been analyzed by comparing the best current 6 

estimates with the values k6a/k6 = k6b/k6 = 0.5 for CBr3O2 + HO2 and k20a/k20 = k20b/k20 = 0.5 7 

for CHBr2O2 + HO2 (Hossaini et al., 2010). All these sensitivity tests have been performed in 8 

clean atmosphere and for the bromoform initialization from Fig. 2B (maximum values). All 9 

the chemical mechanism setups are summarized in Table 7 for CHBr3. 10 

For dibromomethane degradation, both clean and moderately polluted atmosphere 11 

scenarios have been tested in the reference simulation (Table 8). A sensitivity test on the 12 

effect of the branching ratio for the CH2BrO2 + HO2 reaction has been performed under clean 13 

atmospheric conditions (for reasons described in Section 4.3). Indeed, there is some 14 

uncertainty associated to them. The experimental results of Chen et al. (1995) and theoretical 15 

results of Wei and Zheng (2007) suggested the predominant formation of CH2BrO2H for the 16 

reaction between CH2BrO2 and HO2, i.e. k35a/k35 = 1. However, the branching ratios used in 17 

the reference simulation, by analogy to the chlorinated compound, were k35a/k35 = 0.2 18 

(formation of CH2BrO2H) and k35c/k35 = 0.8 (formation of HCHO and H2O). 19 

In addition, the Henry’s law constants for each intermediate degradation product 20 

derived in Section 2.2 have been explicitly taken into account for the interpretation of the 21 

results in each simulation. To assess the effect of the changes in the chemical scheme setup, 22 

the temporal evolution of each species is described and their solubility is discussed. The 23 

vertical profiles of each species are also discussed for altitudes below 6 km. The 6 km altitude 24 

corresponds to the maximum altitude for clouds containing liquid water in general. Indeed, 25 

the solubility regarding the Henry’s law constant does not make sense at higher altitude where 26 

clouds are principally composed of ice. The results above 6 km are used only for the 27 

discussion of the lifetime of the species. Finally, for each case, the quantities of bromine 28 

potentially able to reach the TTL are discussed only in relation to the solubility of each 29 

species, which corresponds to the sum of the least soluble products, that is species with 30 

Henry’s law constants lower than 104 mol L-1 atm-1 (the inorganics Br, BrO, HOBr, and the 31 

organics CBr2O, CHBrO, and for dibromomethane degradation, CH2BrOH and CH2BrO2H), 32 

as detailed in Section 2.2. However even if highly soluble, BrONO2 is included in the 33 
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calculation of Br able to reach the TTL since this species undergoes hydrolysis in clouds and 1 

rain droplets, leading to the release of HOBr (Yang et al., 2005): 2 

BrONO2 + H2O(aq) → HOBr + HNO3       (43) 3 

HOBr has low solubility and may also reach the TTL. 4 

HBr is not taken into account as potentially able to reach the TTL because it has a 5 

high acidity constant Ka = 109 leading to a high effective Henry’s law constant as detailed in 6 

Section 2.2 (Yang et al., 2005). 7 

 8 

4.2. CHBr3 degradation 9 

4.2.1.  Influence of air pollution on the reference simulation 10 

The influence of a moderate increase in the NOy concentration (NOx and HNO3) on 11 

CHBr3 degradation has been considered as indicated in Table 6. The overall lifetime of 12 

CHBr3 depends on its reaction with OH and its photolysis. Fig. 4A and Fig. 4B show the 13 

lifetimes due to the reaction with OH (OH) and the photolysis (photolysis) and the total lifetime 14 

total of CHBr3 deduced (1/total=1/photolysis + 1/OH) for the two atmospheric conditions, clean 15 

and polluted atmospheres. We observe the reduction of photolysis and on the contrary, the 16 

increase of OH with altitude because of the decrease of OH concentration (Fig. 5) and the 17 

increase of actinic flux with altitude. That means the contribution of the reaction with OH to 18 

the global lifetime decreases with the altitude and becomes quasi insignificant at 10 km 19 

altitude. So, the photolysis lifetime becomes quasi similar to the global lifetime total at 10 km 20 

height (Fig. 4). The same trend is observed for both atmospheric conditions. However, the 21 

values of the lifetimes diverge, depending on the pollution conditions. The simulation shows 22 

that a moderate pollution leads to higher OH radical concentrations (due to the increase in O3 23 

production) at the lower altitude levels (< 10 km), as seen in Fig. 5 (for 10-days of OH 24 

average concentration). Therefore the CHBr3 lifetime due to OH reaction is reduced in 25 

polluted atmosphere, as shown in Fig. 4. For instance the CHBr3 lifetime due to OH at 5 km 26 

height decreases from 45.2 days in clean atmosphere to 31.8 days in a moderately polluted 27 

atmosphere, and consequently decreases the total lifetime at this altitude from 10.1 to 9.4 28 

days. These lifetimes are lower than the local tropospheric lifetime of CHBr3 of 26 days given 29 

by Ko and Poulet et al. (WMO, 2003) at 5 km. This is due to the higher OH concentration we 30 

used (4  106 molecule cm-3 compared to 1  106 molecule cm-3 in Ko and Poulet, 2003), and 31 
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to the stronger solar actinic flux used in our study, which takes place in November at low 1 

latitude (12.4°S). 2 

Fig. 6 shows the vertical profiles of Br derived for the different species: CHBr3, total 3 

organics, HBr and total inorganics except HBr, at 4 different dates (17 November 2005, i.e. 1 4 

day after the beginning of the simulation, and 20, 23, 26 November 2005) and for the 5 

initializations used, as given in Fig. 2A. Fig. 6 (top panel) shows the decrease of Br contained 6 

in CHBr3 from one day to another, more efficient in polluted atmosphere due to OH increase, 7 

as discussed above. Due to the CHBr3 degradation, the concentration of Br from the organics 8 

(CBr3O2, CHBr2O2, CBr2O, CHBrO, CBr3O2H, CHBr2O2H, CBr3O2NO2, CHBr2O2NO2, 9 

CBr3OH or CHBr2OH) increases and starts to decrease at the end of the simulation, i.e. 10 

between the 23 and 26 November (upper middle panel). In polluted atmosphere, the organics 11 

production and degradation are more efficient than in clean atmosphere, but follow 12 

approximately the same evolution as a function of time. Finally, due to the degradation of 13 

bromoform and organics, the production of inorganics as HBr, BrO, BrONO2, HOBr and Br is 14 

observed (Fig. 6, lower middle and bottom panels). The production of HBr is more efficient in 15 

clean atmosphere, particularly at the end of the simulation. On the contrary, the other 16 

inorganics (BrO, BrONO2, HOBr and Br) are produced most often in a polluted atmosphere 17 

with a maximum occurring at 1.5 km height. HBr is the final product of the PG degradation. It 18 

is formed by the reaction of bromine atom with HO2 and HCHO. The time to reach this final 19 

state closely depends on the formation of the inorganic bromine atom reservoir HOBr and 20 

BrONO2. In a clean atmosphere, HOBr production is more important compared to the 21 

production of BrONO2. In the case of a more polluted atmosphere, inorganic bromine 22 

reservoir is principally composed of BrONO2 because the reaction between BrO and NO2, 23 

leading to the formation of BrONO2, is more efficient than the reaction between BrO and 24 

HO2. BrONO2 lifetime (1.5 h) is larger than HOBr lifetime (15 min). Consequently, HBr is 25 

less rapidly produced in a polluted atmosphere than in a clean atmosphere. The rapid decrease 26 

at low altitude (below 1 km) and the rapid increase observed for all inorganic PGs (except 27 

HBr), which is more evident after the 20 November, is the consequence of the OH profile 28 

(Fig. 5). The OH profile is linked to the O3 and HNO3 profiles. In particular, the lower part of 29 

the OH profile is decreasing because of the dry deposition of O3 and HNO3. All these 30 

conclusions for initialization with the CHBr3 profile shown in Fig 2A are identical when 31 

assuming the Fig. 2B initialization, i.e. the values of all the PGs increase in the same 32 

proportions. For all species, the profile trends are similar as a function of the degradation time 33 
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at all altitudes. In the following, the discussion focuses on the results at 1 km altitude, at 1 

which the maximum values of organics and inorganics are observed. 2 

Fig. 7 shows the sum of the least soluble species (CBr2O, CHBrO, HOBr, Br, BrO and 3 

BrONO2) and the sum of the most soluble species (CBr3O2H, CHBr2O2H, CBr3OH, 4 

CHBr2OH and HBr) for both scenarios (clean and polluted atmospheres) at 1 km height. Fig. 5 

7A corresponds to the initial CHBr3 mixing ratio of Fig. 2A, and Fig. 7B refers to the initial 6 

CHBr3 mixing ratio of Fig. 2B. At the beginning of the simulation, the most soluble species 7 

and least soluble species are in comparable mixing ratios in the clean atmosphere. After three 8 

days of simulation, the most soluble species mixing ratios become more important and keep 9 

increasing in the clean atmosphere. On the contrary, during all the simulations in the polluted 10 

atmosphere, the least soluble species dominate. The concentration of the least soluble species 11 

increases and then becomes quasi stable after a few days of simulation for both scenarios.  12 

Table 9 shows the relative partitioning of Br atom contained in each species after 10 13 

days of simulation (the approximate lifetime of CHBr3). Since mixing ratios of the least 14 

soluble species are quasi stable after a few days of simulation, the following results are 15 

available for this period. Around 48% (45.3 – 49.9%) of the total number of bromine atoms is 16 

in the form of inorganic species for both scenarios (clean and moderately polluted 17 

atmospheres) in the reference simulation. As shown previously, in the clean atmosphere the 18 

inorganic species dominate, mainly in the form of HBr (36% among 45.3%), which is 19 

essentially washed out. In the polluted atmosphere, the contribution of inorganic species 20 

(HOBr, Br, BrONO2, BrO representing 26.4% among the 49.9% of total inorganic products) 21 

is similar to that of HBr (23.5%) and is mainly due to BrONO2. BrONO2 formed via the 22 

reaction between BrO and NO2 is more abundant due to higher NO2 concentrations in the 23 

moderately polluted atmosphere. After 10 days of simulation, for both scenarios around 18% 24 

(17.1-19.2%) of bromine is contained in the organics species. However, a detailed observation 25 

of these organic species shows that the temporal evolution of the least soluble species 26 

(CHBrO, CBr2O, CBr3O2NO2 and CHBr2O2NO2) is different, compared to the most soluble 27 

species (CBr3O2H, CHBr2O2H, CBr3OH and CHBr2OH), depending on the scenario (clean or 28 

moderately polluted atmosphere). The production of the most soluble organic species given 29 

above decreases from 3.9% to 2.6% of the total bromine from clean to polluted atmosphere, 30 

because the cross reactions between peroxy radicals are more important in a clean 31 

atmosphere, as explained in Section 2. In contrast, the production of the least soluble species 32 

(mainly CBr2O and CHBrO) increases from 13.2% to 16.6% of the total bromine from clean 33 
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to polluted atmospheres. Among these species, the production of CBr3O2NO2 and 1 

CHBr2O2NO2 is more important in a polluted atmosphere but remains negligible.  2 

In summary, the production of the least soluble species such as CBr2O and CHBrO for 3 

organics and BrO, HOBr, BrONO2 and Br for inorganics increases from 22.5% of the total 4 

bromine in clean atmosphere to 43% in moderately polluted atmosphere, as seen in Table 9.  5 

 6 

4.2.2. Influence of the peroxy radicals reactions 7 

Table 7 summarizes all the reactions of the peroxy radicals which have been taken into 8 

account in the simulations. The impact of the RO2 + NO2 reactions has been studied in 9 

simulation #1, where these reactions were removed compared to the reference simulation 10 

where they were included. The importance of these reactions depends on the NOx level. For 11 

high NOx level, the reactions between RO2 and NO2 may enter in competition with the 12 

reactions between RO2 and NO. Under our conditions of NOx level (0.036 ppbv and 0.061 13 

ppbv), there is no effect on CHBr3 degradation because the production of RO2NO2 species are 14 

negligible (Table 9).  15 

The RO2 + CH3O2 reactions have also been considered in our reference simulation and 16 

compared when removed in simulation #2. The production of the organic and inorganic 17 

products differs between simulations. The implementation of the RO2 + CH3O2 reactions 18 

(reference simulation) decreases the production yields of CBr3O2H and CHBr2O2H formed in 19 

RO2 + HO2 reactions, as shown in Table 9. The different peroxy radical reactions are indeed 20 

in competition, depending on their relative rates. The rate constant values of the reactions 21 

between CBr3O2 and CH3O2 (reaction (7)) and between CBr3O2 and HO2 (reaction (6)) are 6.6 22 

 10-12 and 5.1  10-12 cm3 molecule-1 s-1 at 298K, respectively. The rate constant values of the 23 

reactions between CHBr2O2 and CH3O2 (reaction (20)) and between CHBr2O2 and HO2 24 

(reaction (21)) are 1.2  10-12 and 5.9  10-12 cm3 molecule-1 s-1 at 298 K, respectively. 25 

Considering the average during 10 days simulation volume mixing ratios of HO2 (10.9 ppt) 26 

and CH3O2 (1.8 ppt) derived from the simulations, the RO2 + CH3O2 reaction is thus around 5 27 

times (for RO2 = CBr3O2) to 30 times (for RO2 = CHBr2O2) slower than the RO2 + HO2 28 

reaction. Nevertheless, its occurrence leads to a decrease of the (RO2 + HO2) product yields, 29 

CBr3O2H and CHBr2O2H. To conclude on the effect of the RO2 + CH3O2 reaction on CHBr3 30 

degradation mechanism, bromine mixing ratio potentially able to reach the TTL decreases 31 

from 23.7% of the total bromine (10.3 pptv) (simulation #2) to 22.5% of the total bromine 32 

(9.3 pptv) (reference simulation) for clean atmosphere, as seen in Table 9. Indeed, the soluble 33 
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species CBr3OH (formed in reaction (7b)) and HBr are produced in more abundant quantities 1 

in the reference simulation, whereas the least soluble species CBr2O and BrONO2 are 2 

produced more often in simulation #2. 3 

We have also investigated the difference between the present chemical scheme and 4 

that proposed by Hossaini et al. (2010) in simulation #3 for the clean atmosphere, in which 5 

the cross reactions (RO2 + HO2 and RO2 + CH3O2) are more important since the NOx level is 6 

lower (Table 6). The difference between simulation #3 and simulation #2 is only in the 7 

branching ratios for the reaction between RO2 and HO2 (reactions (6) and (20)). In simulation 8 

#2 and the reference simulation, reaction between CBr3O2 and HO2 produces exclusively 9 

CBr3O2H (6a), and reaction between CHBr2O2 and HO2 produces 70% CHBr2O2H (20a) and 10 

30% CBr2O (20c). In simulation #3, reaction (6) produces 50% CBr3O2H (6a) and 50% 11 

CBr2O (6b), and reaction (20) produces 50% CHBr2O2H (20a) and 50% CHBrO (20b). Table 12 

9 shows that these branching ratio modifications for simulation #3 reduce the productions of 13 

CBr2O (from 12.8% to 9.6%), CBr3O2H (from 1.0% to 0.6%) and CHBr2O2H (from 1% to 14 

0.8%) but raise the production of CHBrO (from 1.5% to 1.9%), as organics products. By 15 

inspecting the chemical scheme more precisely (Fig. 1), we can notice that for simulation #2 16 

or the reference simulation, the 100% CBr3O2H produced by pathway (6a) subsequently 17 

decomposes in CBr2O and Br, whereas for simulation #3, the 50% CBr3O2H produced by 18 

pathway (6a) gives CBr2O in the same amount, and 50% CBr2O are produced by pathway 19 

(6b). Consequently, the production of CBr3O2H decreases in simulation #3 to 0.6%. Similarly, 20 

in simulation #2, the reaction between CHBr2O2 and HO2 produces CBr2O and principally 21 

CHBr2O2H and then CHBrO, whereas in simulation #3, the same reaction produces as much 22 

CHBr2O2H (and then CHBrO) as CHBrO instead of CBr2O in the simulation #2. 23 

Consequently, the production of CHBr2O2H decreases in simulation #3 compared to 24 

simulation #2. Globally, the production of CBr2O decreases and the production of CHBrO 25 

increases in simulation #3. About the inorganic products, some changes are observable 26 

between the two simulations: simulation #3 results in an increase of these products to 46.1% 27 

with respect to 42.9% (#2), as shown in Table 9. Consequently, the change in the branching 28 

ratios in the reaction between RO2 and HO2 decreases the bromine concentration that could 29 

reach the TTL from 23.7% of the total bromine (10.3 pptv) (simulation #2) to 21.5% (8.8 30 

pptv) (#3) mainly because the soluble species HBr is more produced in the simulation #3 and 31 

the less soluble species CBr2O is more produced in simulation #2.  32 

The differences between the reference simulation and simulation #3 are the addition of 33 

the RO2 + CH3O2 (and the negligible RO2 + NO2) reaction in the reference simulation and the 34 
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changes in the branching ratio of the reactions between RO2 and HO2. The changes in 1 

simulation #3 reduce mainly the production of organic products (from 17.1% the reference to 2 

12.9% for simulation #3), mainly in the form of the highly insoluble species CBr2O and 3 

consequently reduce the total bromine that could reach the TTL from 22.5% (9.3 ppt) for the 4 

reference simulation to 21.5% (8.8 ppt) for simulation #3. 5 

To conclude, as seen in Table 9, changes in the cross reactions have weak influences 6 

on the distribution of the organic and inorganic products. The bromine volume mixing ratio 7 

that could reach the TTL is around 22.5% of the total initial bromine.  8 

These sensitivity tests permit the establishment of a simplified chemistry scheme for 9 

bromoform degradation. The reaction between RO2 and NO2 is not taken into account because 10 

it produces negligible mixing ratios of RO2NO2. Only pathways (a) and (c) are considered for 11 

the reaction between RO2 and HO2 and the reaction between CHBr2O2 and CH3O2 can be 12 

neglected because the product ratios from this reaction are 0 to 0.2% of the total bromine. The 13 

simplified chemical scheme is shown in Fig. 8. However, even if the previous tests on the 14 

degradation scheme have shown weak influence, the production of organic products remains 15 

important. The simplification of the CHBr3 degradation scheme by the direct production of 3 16 

Br atoms leads to underestimate the bromine potentially able to reach the TTL by 20% to 17 

50%, depending on the NOy atmospheric pollution. 18 

 19 

4.3. CH2Br2 degradation  20 

  The influence of a moderate increase in the NOy concentration (NOx and HNO3) on 21 

CH2Br2 degradation in the reference simulation has been tested. Then, some changes in the 22 

branching ratios in the reaction between CH2BrO2 and HO2 have been tested in simulation #1.  23 

According to Montzka and Reimann et al. (2011), CH2Br2 has a total lifetime longer 24 

than CHBr3. The change in the atmospheric conditions from a clean to a polluted atmosphere 25 

increases the OH concentration and significantly influences the global lifetime of CH2Br2, 26 

decreasing from 72 days in a clean atmosphere to 53 days in a polluted atmosphere at 5 km 27 

height. Again, the higher CH2Br2 tropospheric lifetime of 120 days given by Ko and Poulet et 28 

al. (WMO, 2003) at 5 km height is due to the lower OH concentration used for their 29 

calculations (1  106 molecules cm-3) and to the stronger solar actinic flux used in our study, 30 

which takes place in November at low latitude (12.4°S).  31 

 Fig. 9 shows the time evolution (during 50 days from 17 November to 5 January) of 32 

the vertical profiles of Br contained in several species. Br mixing ratio from CH2Br2 decreases 33 
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with time (top panel), less rapidly at the end of the simulation due to the decrease in the OH 1 

concentration. Br mixing ratio from organics increases during the first four days of the 2 

simulation and then decreases to form inorganics species. HBr is formed as a major product 3 

and keeps increasing during the simulation until the 20 December and then start decreasing. 4 

The other inorganic species increase and then become stable. CH2Br2 mixing ratio decreases 5 

more rapidly in the moderately polluted atmosphere (Fig. 9B). The production of organics 6 

species is more efficient in the moderately polluted atmosphere at the beginning of the 7 

simulation. The production of HBr is also more efficient in moderately polluted atmosphere. 8 

HBr is the final product of the PG degradation and the CH2Br2 degradation is more rapid in 9 

the moderately polluted atmosphere. The difference in lifetime between the polluted 10 

atmosphere and the clean atmosphere is more pronounced for CH2Br2 degradation (by 20 11 

days) than for CHBr3 degradation (by 1 day). Consequently, the more rapid degradation of 12 

CH2Br2 in the polluted atmosphere produces more rapidly the other inorganic species and 13 

then HBr, compared to the CHBr3 degradation. Finally, the inorganic species mixing ratios 14 

are more important in the polluted atmosphere. As for CHBr3, the results are only discussed at 15 

1 km altitude. 16 

Fig. 10 shows the sum of the least soluble species (CBr2O, CHBrO, CH2BrO2H, 17 

CH2BrOH, HOBr, Br, BrO and BrONO2) and the sum of the most soluble species 18 

(CHBr2O2H, CHBr2OH and HBr) for both scenarios (clean and polluted atmosphere) at 1 km 19 

height. At the beginning of the simulation, the most soluble and least soluble species have 20 

comparable mixing ratios in the clean atmosphere. After 3 days of simulation, the soluble 21 

species become more important and keep increasing, and the least soluble species become 22 

quasi stable in clean atmosphere. On the contrary, during 21 days of simulation in the polluted 23 

atmosphere, the least soluble species dominate and then the soluble species become more 24 

important and keep increasing.  25 

As for CHBr3, the total bromine produced from CH2Br2 degradation that could reach 26 

the TTL has been calculated from the least soluble species (CBr2O, CHBrO, Br, BrO, 27 

BrONO2 and HOBr), resulting in an important increase of the total bromine, from 8.8% (0.19 28 

pptv) in the clean atmosphere to 20.2% (0.42 pptv) in a moderately polluted atmosphere. The 29 

latter value is mainly due to the more efficient degradation of CH2Br2 giving principally 30 

inorganic products, including species other than HBr, with low solubility, as seen in Fig. 10 31 

and Table 10.  32 

Modification in the branching ratios for the reaction between CH2BrO2 and HO2 has 33 

also been tested in simulation #1. The experimental results of Chen et al. (1995) are tested, 34 
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with k35a/k35 = 0.9 (formation of CH2BrO2H) and k35c/k35 = 0.1 (formation of HCHO and 1 

H2O). Significant changes in the degradation products are not observable when the branching 2 

ratios are changed since all the species produced by the photolysis of CH2Br2 (leading to 3 

CH2BrO2) are totally negligible.   4 

The atmospheric degradation scheme of CH2Br2 can be simplified. The photolysis 5 

pathway can be neglected and the OH or Cl pathway to form CHBr2O2 is similar to the CHBr3 6 

photolysis pathway, leading to the degradation mechanism from Fig. 8.   7 

 8 

 9 

5. Conclusions 10 

 11 

Detailed atmospheric degradation schemes for bromoform (CHBr3) and 12 

dibromomethane (CH2Br2) have been established and implemented into a pseudo 1D model 13 

including the atmospheric chemistry of CH4, CO, HOx, NOx, NOy and Ox.  14 

To help to set up the degradation schemes, standard reaction enthalpies at 298 K for 15 

the different pathways of the peroxy radical (RO2 with R = CH2Br, CHBr2 or CBr3) reactions 16 

with HO2 have been calculated using quantum chemistry tools. These calculations, combined 17 

with previous results, have helped to estimate the relative importance of the different 18 

pathways. Brominated methyl hydroperoxides (RO2H) are suggested to be the main products 19 

of these reactions. 20 

Two empirical methods have been used to estimate the brominated organics Henry’s 21 

law constants. The results show that the least soluble organic species resulting from the VSLS 22 

degradations are CBr2O, CHBrO (and negligible CBr3O2NO2 and CHBr2O2NO2, and 23 

negligible CH2BrO2H, CH2BrOH and CH2BrO2NO2 for CH2Br2 degradation). The potential 24 

ability of the product gases (PGs) to be transported in the TTL in regard to their solubility in 25 

case of deep convection has been computed in the 1D model under high sunlight conditions. 26 

The least soluble PGs can contribute to bromine in the stratosphere additionally to the original 27 

substances. 28 

CHBr3 and CH2Br2 concentrations have been initialized at the beginning of the 29 

simulations and then the degradation of these species has been studied without other bromine 30 

sources during the simulations. Consequently, the total bromine during the simulations 31 

represents the bromine introduced at the beginning. The full degradation scheme of CHBr3 32 

and CH2Br2 has been performed for two well defined scenarios of a clean and moderately 33 
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polluted atmosphere, as representative of a tropical coastal region where natural bromoform 1 

and dibromomethane emissions are expected to be important. For CHBr3 degradation in a 2 

clean atmosphere, it is shown that approximately 22% of the total initial bromine is 3 

transformed into low solubility inorganic (Br, BrO, HOBr, BrONO2: 9%) and organic 4 

(CBr2O, CHBrO: 13%) species, and thus able to reach the TTL. A moderate rise in pollution 5 

(increase of NOx by a factor of 2 and HNO3 by a factor of 3) has been tested. When this type 6 

of pollution is considered, the total bromine potentially able to reach the TTL increases to 7 

43% (26% of inorganics and 17% of organics). 8 

According to the simulations the reactions between RO2 and NO2 have no effect on 9 

the bromoform degradation in clean and moderately polluted atmospheres. The importance of 10 

RO2 + CH3O2 reactions has been tested in one sensitivity study in a clean atmosphere. It has a 11 

negligible effect on bromoform degradation, with the production of more soluble species and 12 

consequently a decrease in the amount of bromine potentially able to reach the TTL from 13 

23.7% (without the CH3O2 reaction) to 22.5% (with the CH3O2 reaction). 14 

Modifications in the branching ratios for the reaction between RO2 and HO2 have also 15 

been tested in a clean atmosphere. 100% for the CBr3O2H formation (k6a/k6 = 1) in the case of 16 

CBr3O2 + HO2 reaction, and 70% for the CHBr2O2H formation (k20a/k20 = 0.7) and 30% for 17 

the CBr2O formation (k20c/k20 = 0.3) in the case of the CHBr2O2 + HO2 reaction have been 18 

used as they are the best current estimates. These branching ratios are used instead of the 19 

values used until now, k6a/k6 = 0.27 or 0.5, k6b/k6 = 0.73 or 0.5, and k20a/k20 = 0.59 or 0.5, 20 

k20b/k20 = 0.41 or 0.5 (Mc Givern et al., 2004; Hossaini et al., 2010). This results in a small 21 

impact for the total bromine originating from CHBr3 potentially able to reach the TTL: 23.7% 22 

in our simulation, instead of 21.5% for the previous used branching ratio values, as shown in 23 

Table 9.  24 

The full CH2Br2 degradation scheme has been tested in a clean atmosphere and shows 25 

that approximately 8.8% (1.3% of organics and 7.5% of inorganics) of the total bromine 26 

potentially is able to reach the TTL. As observed for CHBr3 degradation, a pollution rise 27 

induces the production of less soluble species and consequently increases significantly the Br 28 

quantity that could reach the TTL to 20.2 % (1.3% of organics and 18.9% of inorganics).   29 

From this study, degradation schemes for bromoform and dibromomethane have been 30 

derived for modeling clean and moderately polluted atmospheres, as shown in Fig. 8. 31 

According to the simulations, dibromomethane degradation by photolysis is considered 32 

insignificant. The reactions between peroxy radicals and NO2 produce species with negligible 33 

mixing ratios and have been removed in the final chemical scheme. Thus, only the pathways 34 
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of the reactions for RO2 with HO2, NO and CH3O2 are considered. Moreover, the formation of 1 

CHBr2OH and CHBrO from the reaction between CHBr2O2 and CH3O2 appeared to be 2 

negligible (< 0.2% production) and has been removed in the final scheme. Finally, in contrast 3 

to CHBr3, the production of organics species from CH2Br2 degradation could be neglected 4 

and the degradation scheme could also be reduced to the simple reaction CH2Br2 + OH or Cl 5 

 2 Br.   6 

In this paper we do not study the effect of more polluted urban atmosphere on 7 

bromoform and dibromomethane degradations and in particular, the importance of the 8 

reaction between RO2 and NO2 when the level of NOx is very high. More complex chemistry 9 

(including volatile organic compounds) should be integrated to the modeling system in order 10 

to simulate an urban atmosphere in the vicinity of the tropical western Pacific, like the 11 

Singapore atmosphere.  12 

 13 
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Table 1: Standard reaction enthalpies at 298 K calculated at the CCSD(T)/aug-cc-1 

pVTZ//MP2/cc-pVTZ level of theory with and without the cf-correction involved in the 2 

reaction between the brominated methyl peroxy radicals and HO2. 3 

Reactiona

rH°298K (kcal mol-1)

This workb 

McGivern 

et al. 

(2004) 

analogous chlorinated 

compounds  

(Hou et al., 2005) 

CBr3O2 + HO2  CBr3O2H + O2 6a -44.3 (-44.2) -44.2 -44.2 

CBr3O2+ HO2  CBr2O + HOBr + O2 6b -77.2 (-77.2)  -71.8 

CBr3O2 + HO2  CBr3O + OH + O2 6b’ -3.7 (-3.6) -6.5 -6.2 

CHBr2O2 + HO2  CHBr2O2H + O2 20a -43.5 (-43.4) -43.8 -43.6 

CHBr2O2+ HO2  CHBrO + HOBr + O2 20b -68.2 (-68.2)  -63.2 

CHBr2O2+ HO2  CHBr2O + OH + O2 20b’ -0.3 (-0.2) -2.7 -5.5 

CHBr2O2+ HO2  CBr2O + H2O + O2 20c -107.7 (-107.0)  -109.9 

CH2BrO2 + HO2  CH2BrO2H + O2 35a -42.7 (-42.6) -39.2 -42.7  

CH2BrO2+ HO2  CH2O + HOBr + O2 35b -55.0 (-54.1)  -47.7 

CH2BrO2+ HO2  CH2BrO + OH + O2 35b’ 1.3 (1.4) 1.6 -5.8 

CH2BrO2+ HO2  CHBrO + H2O + O2 35c -101.7 (-101.1)  -103.6  
a The molecular oxygen is in its electronic ground state.  4 
b the values in parentheses correspond to the CCSD(T)/aug-cc-pVTZ energies without the cf-correction. 5 

 6 

 7 

8 
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Table 2: Comparisons of well-known Henry’s law constants (mol L-1 atm-1) (referenced by 1 

Sander et al. 1999) with estimated Henry’s law constants using the two methods, Bond 2 

Contribution Method (BCM) and Molecular Connectivity Index method (MCI). 3 

 BCM MCI 
Experimental  

(Sander et al., 1999) 

Aldehydes 

CH3CHO 15 15 17 

C2H5CHO 11 12 13 

C4H9CHO 4.8 7.5 6.4 

Ketones 

CH3COCH3 20 18 27 

C2H5COCH3 15 15 20 

Peroxides 

CH3O2H 147 1501 310 

C2H5O2H 110 1327 340 

OHCH2O2H 4.0106 7.5106 1.7106 

Alcohols 

CH3OH 235 195 230 

C2H5OH 176 167 160 

C3H7OH 132 131 130 

Compounds with bromine 

CHBr3 8.9 2.4 2.1 

CH2Br2 1.0 1 1.1 

C2H4Br2 0.8 0.8 1.5 

4 
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Table 3: Henry’s law constants (k°H) of the intermediate products gases (PGs). 1 

Species 
k°H (298 K) 

(mol L-1 atm-1) 

HBr 0.71 a 

HOBr 6.1103 a 

CBr3O2H 1.9105 b 

CHBr2O2H 2.24104 b 

CH2BrO2H 2.58103 b 

CHBrO 74 c 

CBr2O 21.5 c 

CBr3O2NO2 401 b  

CHBr2O2NO2 304 b 

CH2BrO2NO2 35 b 

CBr3OH 1.5105 b 

CHBr2OH 1.73104 b 

CH2BrOH 2.0103 b 
a Sander et al., 1999.  2 
b Bond Contribution Method (BCM: Meylan and Howard, 1991). 3 
c Molecular Connectivity Index (MCI: Nirmalakhandan and Speece, 1988). 4 

5 
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Table 4: Summary of the kinetic data used for the degradation of bromoform. 1 

N° Reactions 
Rate constants  

(cm3 molecule-1 s-1) 
Comments References 

1 CHBr3 + OH 1.3510-12 exp(-600/T)  Sander et al.(2011) 

3 CHBr3 + Cl 4.8510-12 exp(-850/T)  Kambanis et al. (1997) 

16 CHBr3 + hν  Absorption Cross Section Sander et al.(2011) 

4 CBr3O2 + NO 7.310-12 exp(270/T) From k(CCl3O2 + NO) Dognon et al. (1985) 

5 CBr3O2 + NO2 
k0=2.910-29 (T/300)-6.8 

k∞=1.310-11 (T/300)-1 
 From k(CCl3O2 + NO2) Caralp et al. (1988) 

6 CBr3O2 + HO2 4.810-13exp(706/T) 
 From k(CCl3O2 + HO2) 
Branching ratio section 2.3.1 

Catoire et al. (1996) 

7 CBr3O2 + CH3O2 6.610-12 

k(CCl3O2 + CH3O2) at 298 K, 
assumed constant with 
temperature 

Catoire et al. (1996) 

17 CHBr2O2 + NO 3.8110-12exp(360/T) 
From k(CHCl2O2 + NO) 

(from k(RO2 + NO)1.5) 
 Jenkin et al. (1997) 

19 CHBr2O2 + NO2 
2.910-29 (T/300)-6.8 

1.310-11 (T/300)-1 
From k(CCl3O2 + NO2) Caralp et al. (1988) 

20 CHBr2O2 + HO2 5.610-13exp(700/T) 
From k(CHCl2O2 + HO2) 
Branching ratio section 2.3.2 

Catoire et al. (1996) 

21 CHBr2O2 + CH3O2 1.210-12 

k(CHCl2O2 +CH3O2) at 298 
K, assumed constant with 
temperature 

Shallcross et al. (2005) 

10 CBr2O +  hν  Absorption Cross Section Sander et al.(2011) 

11 CBr3O2NO2 + M 
k0=6.310-3 exp(-10235/T)[N2] 

k∞=1.421016exp(-1500/T) 
From k(CCl3O2NO2+M) 

Köppenkastrop and 
Zabel (1991) 

12 CBr3O2NO2 + hν  
Absorption Cross Section of 
CH3O2NO2  

Atkinson et al. (2006) 

13 CBr3O2H + hν  
Absorption Cross Section of 
CH3O2H 

Vaghjiani and 
Ravishankara (1989) 

14 CBr3O2H +OH 1.910-12exp(190/T) From RO2H + OH  Jenkin et al. (1997) 

23 CHBrO + hν  Absorption Cross Section Sander et al.(2011) 

24 CHBr2O2NO2 + M 
k0=6.310-3 exp(-10235/T)[N2] 

k∞=1.421016exp(-1500/T) 
From k(CCl3O2NO2+M) 

Köppenkastrop and 
Zabel (1991) 

25 CHBr2O2NO2 + hν  
Absorption Cross Section of 
CH3O2NO2 

Atkinson et al. (2006) 

26 CHBr2O2H + hν  
Absorption Cross Section of 
CH3O2H 

Vaghjiani and 
Ravishankara (1989) 

27 CHBr2O2H + OH 1.910-12exp(190/T) From RO2H + OH  Jenkin et al. (1997) 

15 CBr3OH+OH 3.610-14 

k(CCl3O2 + OH) at 298 K, 
assumed constant with 
temperature 

 Jenkin et al. (1997) 

28 CHBr2OH+OH 9.3410-13 

k(CHCl2O2 + OH) at 298 K, 
assumed constant with 
temperature 

 Jenkin et al. (1997) 

2 
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Table 5: Summary of the kinetic data used for the degradation of dibromomethane. 1 

N° Reactions 
Rate constants  

(cm3.molecule-1.s-1) 
Comments References 

29 CH2Br2 + OH 210-12 exp(-840/T)  Sander et al.(2011) 

30 CH2Br2 + Cl 6.310-12 exp(-800/T)  Sander et al.(2011) 

31 CH2Br2 + hν  Absorption Cross Section Sander et al.(2011) 

17 CHBr2O2 + NO 3.8110-12exp(360/T) 
From k(CHCl2O2 + NO) 

(from k(RO2 + NO)  1.5) 
Jenkin et al. (1997) 

19 CHBr2O2 + NO2 
9.210-29 (T/300)-6 

1.510-11 (T/300)-0.7 
From k(CCl3O2 + NO2) Caralp et al. (1988) 

20 CHBr2O2 + HO2 5.610-13exp(700/T) 
From k(CHCl2O2 + HO2) 
Branching ratio section 2.4.2 

Catoire et al. 
(1996) 

21 CHBr2O2 + CH3O2 1.210-12 

From k(CHCl2O2 +CH3O2) at 
298 K, assumed constant with 
temperature 

Shallcross et al. 
(2005) 

32 CH2BrO2 + NO 410-12exp(300/T) 
 Temperature dependence from 
k(RO2 + NO) 

Sander et al.(2011) 

34 CH2BrO2 + NO2 
9.210-29 (T/300)-6 

1.510-11 (T/300)-0.7 
From k(CCl3O2 + NO2) Caralp et al. (1988) 

35 CH2BrO2 + HO2 3.310-13exp(822/T) 
From k(CH2ClO2 + HO2) 
Branching ratio section 2.3.2 

Catoire et al. 
(1994) 

36 CH2BrO2 + CH3O2 2.5110-12 

From k(CH2ClO2 +CH3O2)At 
298 K, assume constant with 
temperature 

Villenave et al. 
(1996) 

22 CBr2O +  hν  Absorption Cross Section Sander et al.(2011) 

38 CH2BrO2NO2 + M 
k0=6.310-3exp(-10235/T)[N2] 

k∞=1.421016exp(-1500/T) 
From k(CCl3O2NO2+M) 

Köppenkastrop and 
Zabel (1991) 

39 CH2BrO2NO2 + hν  
Absorption Cross Section of 
CH3O2NO2 

Atkinson et al. 
(2006) 

40 CH2BrO2H + hν  
Absorption Cross Section of 
CH3O2H 

Vaghjiani and 
Ravishankara 
(1989) 

41 CH2BrO2H +OH 1.910-12exp(190/T) From RO2H + OH  Jenkin et al.(1997) 

23 CHBrO + hν  Absorption Cross Section Sander et al.(2011) 

24 CHBr2O2NO2 + M 
k0=6.310-3exp(-10235/T)[N2] 

k∞=1.421016exp(-1500/T) 
From k(CCl3O2NO2+M) 

Köppenkastrop and 
Zabel (1991) 

25 CHBr2O2NO2 + hν  
Absorption Cross Section of 
CH3O2NO2 

Atkinson et al. 
(2006) 

26 CHBr2O2H + hν  
Absorption Cross Section of 
CH3O2H 

Vaghjiani and 
Ravishankara 
(1989) 

27 CHBr2O2H + OH 1.910-12exp(190/T) From RO2H + OH  Jenkin et al.(1997) 

42 CH2BrOH+OH 1.810-12 

From k(CH2ClO2 + OH) 
at 298 K, assumed constant with 
temperature 

 Jenkin et al.(1997) 
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28 CHBr2OH+OH 9.3410-13 

From k(CHCl2O2 + OH) 
at 298 K, assumed constant with 
temperature 

Jenkin et al. (1997) 

Table 6: Initial volume mixing ratios in parts per billion (ppbv) used in the model for the two 1 

simulation scenarios, from MOCAGE CTM outputs (see text for details). 2 

Model Parameter 

at 1000 m 

Scenario 

CLEAN MODERATE 

O3 26 29 

NOx 0.036 0.061 

HNO3 0.78 2.5 

CO 62 64 

CH4 1590 1557 

 3 

4 
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Table 7: Reactions tested in the different simulations for CHBr3.  1 

Simulation Scenario 
CHBr3 

initialization 

RO2+ 

NO2 

RO2+ 

CH3O2 

RO2 + HO2 

(a) (b) (c) 

Reference 
CLEAN and 

MODERATE 
Fig. 2A and 2B included included 

1a 0 a / 

0.7 b 0 b 0.3 b 

#1 
CLEAN and 

MODERATE 
Fig. 2B 

not 

included 
included 

1 a 0 a / 

0.7 b 0 b 0.3 b 

#2 CLEAN Fig. 2B 
not 

included 

not 

included 

1 a 0 a / 

0.7 b 0 b 0.3 b 

#3 CLEAN Fig. 2B 
not 

included 

not 

included 

0.5 a 0.5 a / 

0.5 b 0.5 b 0 b 

(a), (b), (c): branching ratios for the channels of RO2 + HO2 reaction as defined in Table 1 or Fig. 1. 2 

/: Channel not possible 3 
a: RO2 = CBr3O2 4 
b: RO2 = CHBr2O2  5 

 6 

  7 
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Table 8: Reactions tested in the different simulations for CH2Br2. 1 

n° Scenario RO2+NO2 RO2+CH3O2 
RO2 + HO2 

(a) (b) (c) 

Ref 
CLEAN and 

MODERATE 
included included 

0.7a 0 a 0.3a 

0.2b 0b 0.8b 

#1 CLEAN included included 
0.7a 0 a 0.3a 

0.9b 0b 0.1b 

(a), (b), (c): branching ratios for the channels of RO2 + HO2 reaction as defined in Table 1 and Fig. 1. 2 

/: Channel not possible 3 
a: RO2 = CHBr2O2 4 
b: RO2 = CH2BrO2  5 

6 
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Table 9: Relative partitioning of Br atom at the end of the simulation (i.e. after 10 days), at 1 1 

km altitude, in CHBr3 degradation for the source gas, organic and inorganic species: for the 2 

reference simulation, simulation #2 and simulation #3 in the clean atmosphere and for the 3 

reference simulation in the moderately polluted atmosphere (for the simulation conditions, see 4 

Tables 6 and 7). 5 

  Clean atmosphere 
Moderate 
pollution 

 
Reference 
simulation 

Simulation # 2 Simulation # 3 
Reference 
simulation 

Source gas     
CHBr3 37.5 % 40.9 % 40.9 % 31 % 
Organic products 17.1 % 16.3 % 12.9 % 19.2 % 
CBr2O 11.8 % 12.8 % 9.6 % 15.3 % 
CHBrO 1.4 % 1.5 % 1.9 % 1.3 % 
CBr3O2H 0.6 % 1.0 % 0.6 %  0.4 % 
CHBr2O2H 0.8 % 1.0 % 0.8 % 0.3 % 
CBr3OH 2.3 % / / 1.8 % 
CHBr2OH 0.2 % / / 0.1 % 
CBr3O2 < 0.01 % < 0.01 % < 0.01 % < 0.01 % 
CHBr2O2 < 0.01 % < 0.01 % < 0.01 % < 0.01 % 
CBr3O2NO2 < 0.01 % / / < 0.01 % 
CHBr2O2NO2 < 0.01 % / / < 0.01 % 
Inorganic products 45.3 % 42.9 % 46.1 % 49.9 % 
HBr 36 % 33.5 % 36.1 % 23.5 % 
BrO 1.1 % 1.0 % 1.0 % 1.6 % 
HOBr 3.0 % 2.9 % 3.1 % 5.2 % 
BrONO2 5.1 % 5.4 % 5.8 % 19.5 % 
Br 0.1 % 0.1 % 0.1 % 0.1 % 

Brmax
a 

(pptv) 

22.5 % 23.7 % 21.5 % 43 % 

(0.9 – 9.3) 
(Fig. 2A – 2B) 

(10.3) 
(Fig. 2B) 

(8.8) 
(Fig. 2B) 

(1.6 – 17.7) 
(Fig. 2A – 2B) 

a: Maximum Br (in %) potentially able to reach the tropical tropopause layer (TTL).  6 

7 
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Table 10: Relative partitioning of Br atom at the end of the simulation (i.e. after 50 days), at 1 1 

km altitude, in CH2Br2 degradation for the source gas, organic and inorganic species: for the 2 

reference simulation in clean atmosphere and for the reference simulation in polluted 3 

atmosphere (for the simulation conditions, see Table 8).  4 

 5 

 
Clean 

atmosphere 
Moderate 
pollution 

 
Reference 
simulation 

Reference 
simulation 

Source gas   
CH2Br2 54.4 % 39.5 % 
Organic products   
CBr2O 1.0 % 1.0 % 
CHBrO 0.3 % 0.3 % 
CHBr2O2H 0.3 % 0.2 % 
CHBr2OH 0.1 % 0.1 % 
Inorganic products   
HBr 36.3 % 40.1 % 
BrO 1.5 % 2.8 % 
HOBr 3.3 % 8.6 % 
BrONO2 2.6 % 7.4 % 
Br 0.1 % 0.1 % 

Brmax
a 

(pptv) 
8.8 % 20.2 % 

(0.19) (0.42) 
a: Maximum Br (in %) potentially able  to reach the TTL.  6 
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 1 

Fig. 1: Chemical mechanisms of bromoform (CHBr3) and dibromomethane (CH2Br2) 2 

degradations. A: Initial steps reaction (OH, Cl and photolysis). B: Brominated peroxy radical 3 

reaction degradation mechanism, B.1: CBr3O2, B.2: CHBr2O2 (common to both molecules) 4 

and B.3: CH2BrO2. Stable intermediate products are enclosed in dotted line boxes and final 5 

inorganic bromine inside full line boxes. The decomposition reactions are indicated by dashed 6 

arrows. 7 

Fig. 2: Bromoform vertical profiles used for the initialization of the simulations (see Section 8 

3). A: mean tropical data, and B: maximum tropical data, given by Montzka and Reimann et 9 

al. (2011; open diamonds), Yokouchi et al. (2005; full triangles) and Hossaini et al. (2010; 10 

dashed lines). 11 

 12 

Fig. 3: Dibromomethane vertical profile used for the initialization of the simulations (see 13 

Section 3) from Montzka and Reimann et al. (2011; open diamonds) and dashed line is an 14 

interpolation from observed mixing ratio profiles (Hossaini et al., 2010). 15 

 16 

Fig. 4: CHBr3 total lifetime total (bold line) in the overall simulated domain due to the 17 

reaction with OH (dot-dashed line) and due to the photolysis (dotted line) in the clean 18 

atmosphere (left panel) and in the moderately polluted atmosphere (right panel).  19 

   20 

Fig. 5: 10-days simulation average for OH vertical profiles (molecules cm-3) in the clean 21 
atmosphere (full line) and in the moderately polluted atmosphere (dashed line). 22     23 
 24 
Fig. 6: Vertical profiles of Br contained in CHBr3 (top), in the total organics (upper middle), 25 
in HBr (lower middle), and in the total inorganics (bottom) except HBr, on 17 November 26 
(open circle), on 20 November (open square), on 23 November (cross) and on 26 November 27 
(open triangle), for the clean atmosphere (left panels) and the polluted atmosphere (right 28 
panels) for the bromoform initialization from Fig. 2A.    29 
 30 

Fig. 7: Time dependence of Br partitioning between the most soluble species (CBr3O2H, 31 
CHBr2O2H, CBr3OH, CHBr2OH, HBr) and the least soluble species (BrO, BrONO2, Br, 32 
HOBr, CBr2O, CHBrO, CBr3O2NO2 and CHBr2O2NO2) for the reference simulation (see 33 
Table 7) in the clean atmosphere (top panels) and in the polluted atmosphere (bottom panels). 34 
A: CHBr3 initialization from Fig. 2A (Montzka and Reimann et al., 2011), and B: CHBr3 35 
initialization from Fig. 2B (Yokouchi et al., 2005 and Montzka and Reimann et al., 2011)).  36 
 37 

Fig. 8: Simplified chemical mechanism of bromoform (CHBr3) and dibromomethane 38 
(CH2Br2) degradations. Stable intermediate products are enclosed in dashed line boxes for the 39 
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least soluble species, in dotted line boxes for the most soluble species, and the final inorganic 1 
bromine in full line boxes.  2 
  3 
 4 

Fig. 9: Vertical profiles of Br contained in CH2Br2 (top), in the total organics (upper middle), 5 
in HBr (lower middle) and in the total inorganics (bottom) except HBr on 17 November (open 6 
circle), on 03 December (open square), on 20 December (cross) and on 05 January (open 7 
triangle), for the clean atmosphere (left panels) and the polluted atmosphere (right panels).  8 
 9 

Fig. 10:  Time dependence of Br partitioning between the most soluble species (CHBr2O2H, 10 

CH2BrO2H, CHBr2OH, CH2BrOH, HBr) and the least soluble species (BrO, BrONO2, Br, 11 

HOBr, CBr2O, CHBrO, CHBr2O2NO2 and CH2BrO2NO2) for the reference simulation in  the 12 

clean atmosphere (left panel) and in the polluted atmosphere (right panel). 13 

 14 

  15 
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 1 

Fig. 1: Chemical mechanisms of bromoform (CHBr3) and dibromomethane (CH2Br2) 2 

degradations. A: Initial steps reaction (OH, Cl and photolysis). B: Brominated peroxy radical 3 

reaction degradation mechanism, B.1: CBr3O2, B.2: CHBr2O2 (common to both molecules) 4 

and B.3: CH2BrO2. Stable intermediate products are enclosed in dotted line boxes and final 5 

inorganic bromine inside full line boxes. The decomposition reactions are indicated by dashed 6 

arrows. 7 
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 1 

Fig. 2: Bromoform vertical profiles used for the initialization of the simulations (see Section 2 

3). A: mean tropical data, and B: maximum tropical data, given by Montzka and Reimann et 3 

al. (2011; open diamonds), Yokouchi et al. (2005; full triangles) and Hossaini et al. (2010; 4 

dashed lines). 5 
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 1 

Fig. 3: Dibromomethane vertical profile used for the initialization of the simulations (see 2 

Section 3) from Montzka and Reimann et al. (2011; open diamonds) and dashed line is an 3 

interpolation from observed mixing ratio profiles (Hossaini et al., 2010). 4 
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Fig. 4: CHBr3 total lifetime total (bold line) in the overall simulated domain due to the 1 

reaction with OH (dot-dashed line) and due to the photolysis (dotted line) in the clean 2 

atmosphere (left panel) and in the moderately polluted atmosphere (right panel).  3 

  4 
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   1 

Fig. 5: 10-days simulation average for OH vertical profiles (molecules cm-3) in the clean 2 
atmosphere (full line) and in the moderately polluted atmosphere (dashed line). 3 
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    1 

 2 
Fig. 6: Vertical profiles of Br contained in CHBr3 (top), in the total organics (upper middle), 3 
in HBr (lower middle), and in the total inorganics (bottom) except HBr, on 17 November 4 
(open circle), on 20 November (open square), on 23 November (cross) and on 26 November 5 
(open triangle), for the clean atmosphere (left panels) and the polluted atmosphere (right 6 
panels) for the bromoform initialization from Fig. 2A.    7 

8 
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 1 

 2 

 3 

Fig. 7: Time dependence of Br partitioning between the most soluble species (CBr3O2H, 4 
CHBr2O2H, CBr3OH, CHBr2OH, HBr) and the least soluble species (BrO, BrONO2, Br, 5 
HOBr, CBr2O, CHBrO, CBr3O2NO2 and CHBr2O2NO2) for the reference simulation (see 6 
Table 7) in the clean atmosphere (top panels) and in the polluted atmosphere (bottom panels). 7 
A: CHBr3 initialization from Fig. 2A (Montzka and Reimann et al., 2011), and B: CHBr3 8 
initialization from Fig. 2B (Yokouchi et al., 2005 and Montzka and Reimann et al., 2011)).  9 
  10 
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 1 

 2 

Fig. 8: Simplified chemical mechanism of bromoform (CHBr3) and dibromomethane 3 
(CH2Br2) degradations. Stable intermediate products are enclosed in dashed line boxes for the 4 
least soluble species, in dotted line boxes for the most soluble species, and the final inorganic 5 
bromine in full line boxes.  6 
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  1 

 2 

Fig. 9: Vertical profiles of Br contained in CH2Br2 (top), in the total organics (upper middle), 3 
in HBr (lower middle) and in the total inorganics (bottom) except HBr on 17 November (open 4 
circle), on 03 December (open square), on 20 December (cross) and on 05 January (open 5 
triangle), for the clean atmosphere (left panels) and the polluted atmosphere (right panels).  6 
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 1 

 2 

Fig. 10:  Time dependence of Br partitioning between the most soluble species (CHBr2O2H, 3 

CH2BrO2H, CHBr2OH, CH2BrOH, HBr) and the least soluble species (BrO, BrONO2, Br, 4 

HOBr, CBr2O, CHBrO, CHBr2O2NO2 and CH2BrO2NO2) for the reference simulation in  the 5 

clean atmosphere (left panel) and in the polluted atmosphere (right panel). 6 

 7 

 8 


