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Abstract 21 

 22 

The possibility of establishing an accurate relative chronology of early solar system 23 

events based on the decay of short-lived 26Al to 26Mg (half-life of 0.72 Myr) depends on the 24 

level of homogeneity (or heterogeneity) of 26Al and Mg isotopes. However this level is 25 

difficult to constrain precisely because of the very high precision needed on the determination 26 

of isotopic ratios, typically of ± 5 ppm. In this study, we report for the first time a very 27 

detailed analytical protocol developed for high precision in situ Mg isotopic measurements 28 

(25Mg/24Mg and 26Mg/24Mg ratios, as well as 26Mg excess) by MC-SIMS. As the data 29 

reduction process is critical for both accuracy and precision of the final isotopic results, 30 

factors such as the Faraday cup (FC) background drift and matrix effects on instrumental 31 

fractionation have been investigated. Indeed these instrumental effects impacting the 32 

measured Mg-isotope ratios can be as large or larger than the variations we are looking for to 33 
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constrain the initial distribution of 26Al and Mg isotopes in the early solar system. Our results 34 

show that they definitely are limiting factors regarding the precision of Mg isotopic 35 

compositions, and that an under- or over-correction of both FC background instabilities and 36 

instrumental isotopic fractionation leads to important bias on δ25Mg, δ26Mg and Δ26Mg values 37 

(for example, olivines not corrected for FC background drifts display Δ26Mg values that can 38 

differ by as much as 10 ppm from the truly corrected value). The new data reduction process 39 

described here can then be applied to meteoritic samples (components of chondritic 40 

meteorites for instance) to accurately establish their relative chronology of formation (actually 41 

the time of their isotopic closure). 42 

 43 

1 Introduction 44 
 45 

 Variations of the Mg isotopic composition of meteoritic materials can be understood at 46 

first order to be the sum of (i) mass-dependent isotopic fractionations due to processes such as 47 

evaporation or condensation, and (ii) decay of short-lived 26Al to 26Mg (half-life of 0.72 Myr). 48 

Calcium-, aluminum-rich inclusions (CAIs), that are the oldest dated solids formed in the 49 

accretion disk around the early sun,1-3 display large 26Mg excesses.4 They can be used to 50 

define the initial 26Al/27Al ratio (5.23(±0.13)×10-5,5,6) that anchors the 26Al-based chronology. 51 

However, the 26Al-26Mg system can be used as a chronometer only under the assumption that 52 
26Al and Mg isotopes were homogenized early in the accretion disk.  53 

 The level of homogeneity (or heterogeneity) is difficult to constrain precisely. One 54 

way is to be able to compare 26Mg excesses measured with high precision in samples formed 55 

at various ages in the accretion disk with 26Mg excesses predicted assuming homogeneity. For 56 

a solar 27Al/24Mg ratio of 0.101,7 (this ratio being estimated from CI chondrites, and not the 57 

solar photosphere) 26Mg produced from the total decay of an initial 26Al/27Al ratio of 5.23×10-58 
5 increases the 26Mg/24Mg ratio by ~ 38 ppm. The magnitude of the 26Mg excesses measured 59 

in situ by MC-SIMS (multi-collection secondary ion mass spectrometry) in ferromagnesian 60 

chondrules (chondrules are mm-sized objects which were melted and quenched in the 61 

accretion disk and they constitute the major high-temperature component of primitive 62 

meteorites) from ordinary chondrites does support a ± 10% homogeneous distribution of 26Al 63 

and Mg isotopes at the time of CAI formation in the disk.8 This view has been challenged9 64 

from very high precision bulk analyses (± 2.5 ppm for 26Mg excesses10) of refractory 65 

components of carbonaceous chondrites (CAIs and amoeboid olivine aggregates) by HR-MC-66 
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ICPMS (high-resolution multi-collector inductively coupled plasma source mass 67 

spectrometry). 68 

 One key to the debate is the development of high precision for Mg isotopic 69 

measurements, both bulk and in situ. In fact, the studied objects (i.e. CAIs) underwent, after 70 

their formation from precursors condensed from the gas, several high temperature events 71 

including melting and re-crystallization. If melting/crystallization occurred in closed system, 72 

it did not modify the bulk compositions (Mg and Al isotopes and Al/Mg ratio) so that a bulk 73 
26Al isochron gives theoretically access to the Al and Mg isotopic compositions of the 74 

precursors and thus dates condensation. At variance in situ analysis by MC-SIMS allows to 75 

look for the existence of a 26Al mineral isochron within one object, which would date the 76 

partitioning of Al and Mg between the different constituent minerals during the last 77 

melting/crystallization event. The combination of bulk and in situ data should allow to 78 

reconstruct the history of the high temperature components of meteorites, from early 79 

condensation events to late melting or re-melting processes.  80 

 A high precision Mg isotopic measurements method has already been developed for 81 

HR-MC-ICPMS.10 However bulk analyses by HR-MC-ICPMS require a large sample size 82 

and do not allow to determine mineral isochrons because of the high spatial resolution 83 

required in the case of early solar system objects.  84 

 Here we describe the analytical protocol developed for high precision Mg isotopic 85 

measurements (25Mg/24Mg and 26Mg/24Mg ratios, as well as 26Mg excess) of meteoritic 86 

samples by MC-SIMS on ~ 30-40 µm analytical spots. This protocol is a further refinement of 87 

that developed by Villeneuve et al.8,11. Other groups are developing these measurements12-15 88 

but their procedure is not yet described in full detail. The factors limiting the precision are 89 

assessed. An example of application to the study of several components of chondritic 90 

meteorites is given.  91 

 92 

2 Data acquisition 93 
 94 

Mg-isotope ratios and Al/Mg ratios are measured using the CRPG-CNRS (Nancy) 95 

CAMECA large radius ims 1270 and ims 1280HR2 ion microprobes (some instrument 96 

configuration and capabilities of MC-SIMS can be found in Benninghoven et al.16 and De 97 

Chambost17). Gold coated or carbon coated polished thick sections of samples are sputtered 98 

by a 13 kV O- static primary beam and positive secondary ions of Al and Mg isotopes are 99 
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extracted and accelerated at 10 kV. The intensity of the primary beam is set to produce the 100 

highest possible count rate for secondary ions (i.e. > 1×109 counts per second (cps) on 24Mg+, 101 

in olivines), while keeping the beam diameter small enough to allow the analysis of individual 102 

mineral phases in chondrules or CAIs: for instance a ~ 30 nA primary beam intensity 103 

corresponds to a ~ 30-40 µm spot size. The secondary ions are analyzed at a mass resolution 104 

M/ΔM = 2500 (using exit slit #1 of the multicollector) in multicollection mode using four 105 

Faraday cups (FCs): L'2, C, H1 and H'2, for 24Mg, 25Mg, 26Mg and 27Al, respectively. Such a 106 

low mass resolution is chosen to maximize the flatness of the three Mg peaks though the 107 

interference of the hydride 24MgH+ on 25Mg (with a vacuum in the sample chamber below 108 

3×10-9 torr, the contribution of 24MgH+ on 25Mg is less than 10-6 relative) is not totally 109 

resolved (a M/ΔM of 3559 would be required). However measurements made at higher mass 110 

resolution (M/ΔM = 6000 using exit slit #2) have shown that the contribution of the hydride 111 

on 25Mg remains < a few cps, i.e. < ~10-8 relative for 25Mg (whose intensity is > a few 108 cps 112 

in olivines) if the vacuum in the chamber is < 3×10-9 torr. 113 

 Each analysis of a new sample mount starts by a manual setting of the Z position of 114 

the mount to keep constant the distance between the sample surface and the front plate of the 115 

immersion lens. When possible, different grains of different international and in-house 116 

standards are included with the sample(s) to analyze in the same mount. In addition, different 117 

mounts containing standards are also analyzed in between mounts containing samples and 118 

standards. Generally, analyses are automatically chained. A chain of analyses can include 119 

both depth profiles (in that case no more than 7 measurements are done at the same spot) and 120 

analyses at different spots on a same grain or on different grains (standard or sample) close to 121 

each other in the mount (in that case the sample stage is moved, only over a short distance, 122 

but allowing much more analyses to be done, the number depending on the spot size). 123 

Whatever the case the primary beam never moves. One typical analysis lasts 425 s, including 124 

a total of 150 s presputtering and 275 s simultaneous counting of the intensities of 24Mg+, 125 
25Mg+, 26Mg+ and 27Al+ (25 cycles of 10 s counting time separated by 1 s waiting time). 126 

During presputtering, the background of each FC is measured (the secondary beam is 127 

deflected from the entrance of the magnet by the deflector Y of the coupling lens LC1C) and 128 

an automatic centering of the secondary beam is performed (using secondary intensity 129 

measured for 24Mg) either in the field aperture (using transfer lenses deflectors LTdefxy) with 130 

the ims 1270 or in both the field aperture and the contrast aperture (using transfer lenses 131 

deflectors DTFAxy and DTCAxy) with the ims 1280HR2. This automatic centering allows 132 
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correction of the secondary beam trajectory for possible small deviations due to imperfect 133 

alignment or flatness of the sample. In addition to these centerings, the charging of the sample 134 

is automatically monitored (and the secondary high voltage readjusted of a few volts if 135 

necessary) by scanning the energy distribution of secondary ions. The nuclear magnetic 136 

resonance (NMR) field sensor is used on the ims 1280HR2 to control and stabilize the 137 

magnetic field since no peak jumping is required because of the use of multi-collection.  138 

 139 

2 Data reduction 140 
 141 

 At the level of precision required for Mg isotope analysis of extraterrestrial materials 142 

(e.g. 10 ppm or better on 26Mg excesses noted Δ26Mg, see section 3.5 for definition) the 143 

procedure of data reduction is critical to avoid introducing any analytical bias in the final 144 

isotopic results. This is particularly critical for MC-SIMS analysis for two major reasons. 145 

First, in MC-SIMS all measurements are direct measurements of isotopic compositions while 146 

in HR-MC-ICPMS, thanks to the standard-sample bracketing technique which cannot be used 147 

for SIMS, only differences of isotopic compositions are measured, thus eliminating most of 148 

the instrumental isotopic fractionations. Second, significant matrix effects are present and 149 

have a major influence on instrumental fractionation. However MC-SIMS has the advantage 150 

of a much lower instrumental fractionation, one order of magnitude less, than HR-MC-151 

ICPMS. The approach developed to calibrate precisely and to correct for instrumental 152 

fractionation is described in the following, as well as the propagation of errors due to these 153 

different corrections.  154 

In the following, Mg isotopic compositions will be expressed either as isotopic ratios 155 

or as delta values. The δ25,26Mg notation is the relative deviation, in per mil (‰), of the 156 
25,26Mg/24Mg ratio from a reference isotopic composition (noted (δxMg)DSM 3 when the DSM 3 157 

international standard is used). 158 
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The reference isotopic composition used to calculate the raw Mg-isotope ratios is that 160 

of SRM 980, with 25Mg/24Mg = 0.12663 and 26Mg/24Mg = 0.13932,18 because the DSM 3 161 

Mg-isotope ratios are determined relative to the SRM 980 international standard. A re-162 
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evaluation of these ratios has recently been published (25Mg/24Mg = 0.126896 and 26Mg/24Mg 163 

= 0.139652,10). However, as explained in the following, because most of the data reduction is 164 

made using isotopic ratios and not delta values, and because instrumental mass fractionation 165 

is calibrated from the analyses of different standards, the final corrected delta values are 166 

independent of the values taken as the reference isotopic ratios. 167 

The capital delta notation (Δ26Mg, in ‰) will also be used hereafter to express 26Mg 168 

excesses or deficits relative to a given mass fractionation law. In the case of a mass 169 

fractionation law for Mg isotopes characterized by a coefficient of 0.521, (see section 3.5 for 170 

more details), the Δ26Mg value is calculated according to: 171 

! 

"
26
Mg =# 26Mg$

# 25Mg

0.521
. 172 

Note that Ogliore et al.19 have recently shown that in SIMS the mean of isotopic ratios 173 

determined from individual measurement cycles at low count rates is biased, yielding a long-174 

run averaged ratio that is systematically higher than the true ratio. However, this effect is 175 

completely negligible at the high count rates used to measure the Mg-isotope ratios discussed 176 

in this paper. 177 

 178 

3.1   Raw data and outlier rejection 179 

 180 

The measured isotopic ratios averaged over 25 cycles and corrected only for the yields 181 

(determined from the Cameca calibration routine20 at the beginning of each analytical session) 182 

and the backgrounds (determined during pre-sputtering) of the four Faraday cups are named 183 

raw data (e.g. (25Mg/24Mg)raw). Several instrumental parameters are automatically registered 184 

with the raw data. Thus for each measurement raw data are accompanied by (i) the x and y 185 

sample positions (in µm) and a picture of the sample in reflected light through the ion probe 186 

microscope at the beginning of sputtering, (ii) the sample chamber pressure (in torr), (iii) the 187 

primary beam intensity (in A), (iv) the transfer deflectors values (LTdefxy for the ims 1270; 188 

DTFAxy and DTCAxy for the ims 1280HR2) which are automatically centered, (v) the drift 189 

of the secondary high voltage (in V) which is determined automatically, (vi) the background 190 

of the four FCs (in cps), (vii) the secondary intensities of 24Mg+, 25Mg+, 26Mg+ and 27Al+ (in 191 

cps), (viii) the 25Mg/24Mg, 26Mg/24Mg and 26Mg/25Mg isotopic ratios, expressed in the δxMg 192 

notation (with x = 25 or 26 for ratios to 24Mg) with their associated 1 sigma error (1 s.e., 193 

n=25), a 2 standard deviation (2 s.d.) threshold being used to reject outliers within the 25 194 

cycles (rejections of δ25Mg, δ26Mg and 27Al/24Mg are independent so that rejected δ25Mg and 195 
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δ26Mg, if any, could correspond to different cycles), (ix) the 27Al/24Mg ratio and its associated 196 

1 sigma error. 197 

Results for which anomalies were observed during the analytical procedure are 198 

systematically discarded. They are identified from any of the following criteria: (i) secondary 199 

intensity normalized to primary beam intensity lower (by 20% or more) than the typical value 200 

observed on standards of similar matrix, (ii) spikes in the background measured for the FCs 201 

during pre-sputtering, (iii) anomalous charge (more than 15 V) of the sample (if any, it likely 202 

results from an incomplete charge compensation due to ageing of the mount metallization or 203 

its local removal when spots are close to each other), (iii) anomalously large re-centering of 204 

the transfer deflectors (in excess of ± 7 V), (iv) low statistic on either the δ25Mg or δ26Mg 205 

values (worse than 0.05‰, 1 s.e.). In addition, the samples are systematically observed after 206 

analyses with optical microscopy (or secondary electron microscopy) to discard analyses 207 

which would correspond to spots not entirely within a grain or spots touching a crack or an 208 

inclusion.  209 

 210 

3.2   FC background drift 211 

 212 

 Significant drifts of FC backgrounds take place, primarily due to cyclic temperature 213 

variations (worst conditions for the air conditioning system result in an amplitude lower than 214 

± 0.4°C over one day) in the ion probe room. As FC backgrounds are measured during the 215 

pre-sputtering at the beginning of each measurement, the raw 25Mg/24Mg and 26Mg/24Mg 216 

ratios are systematically corrected for background drift using a linear interpolation between 217 

two successive analyses. Note that the background variations of L'2, H1 and H'2 are 218 

correlated within each other, whereas they can be anti-correlated with the background 219 

variations of C. 220 

 If n1 and n2 are two count rates (in cps) for two Mg isotopes and Δb1 and Δb2 the drifts 221 

(in cps) estimated for their background variations from linear interpolation (Δ = measured 222 

background - extrapolated background), then the corrected n1/n2 isotope ratio writes: 223 
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It then comes that the per mil variations of the n1/n2 ratio can be expressed as: 225 
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So that finally, the delta values can be corrected for the background instabilities according to: 227 
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$1000, with x = 25 or 26. 228 

Two effects of this correction for drifts of background are significant (Fig. 1). Firstly, 229 

because the magnitude of the correction increases when count rates on the different Mg 230 

isotopes decrease, this correction will have a larger impact for Mg-poor minerals or glasses or 231 

in case of lower Mg secondary yield. This is the case for pyroxene and spinel relative to 232 

olivine. Secondly, because the count rates are about eight times lower on 25Mg and 26Mg 233 

relative to 24Mg, the effect of the correction is non-mass dependent and impacts the 234 

magnitude of the 26Mg excesses that can be calculated from the 25Mg/24Mg and 26Mg/24Mg 235 

ratios (with a maximum of 10 ppm change for olivines, Fig. 1). 236 

  237 

3.3   Instrumental fractionation  238 

 239 

Instrumental isotopic fractionation is produced in SIMS analysis during the extraction 240 

and acceleration of secondary ions from the sample, their analysis (transfer optic, electrostatic 241 

and magnetic sectors) in the mass spectrometer and their counting in the collectors of the 242 

multicollector. Instrumental fractionation resulting from differential breaking of chemical 243 

bonds in the sample depending on their vibration energies is a mass-dependent fractionation. 244 

Some phenomena which are minor contributors to the isotopic fractionation taking place in 245 

the spectrometer can be mass-independent, for example when improper tuning of the transfer 246 

optic results in the 24Mg+, 25Mg+ and 26Mg+ ion beams not to be perfectly centered in the 247 

cross-over plane where they can be cut differently by the entrance slit of the spectrometer. In 248 

addition, improper tuning of the coupling optic (which refocuses the secondary beam between 249 

the electrostatic and magnetic sectors) may result in different off-axis aberrations of the 250 

secondary beam in the focal plane of the magnet (where the collectors are) and thus in slight 251 

differences of peak shapes for the three Mg isotopes and consequently some mass-252 

independent fractionation. Because instrumental isotopic fractionation is primarily mass-253 

dependent, it is generally named instrumental mass fractionation, but one important criteria of 254 
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proper tuning of the spectrometer is to minimize the mass-independent component of 255 

instrumental fractionation, which is indicated by the intercept in its calibration (see below).   256 

Instrumental fractionation (αinst) is defined for Mg isotopes as: 257 
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where x stands for 25 or 26 and the subscripts bkgcorr and true stand for the ratio corrected 259 

for drifts of FC background and for the true isotope ratio, respectively. A set of terrestrial 260 

reference materials and international standards made of various mantle minerals (San Carlos 261 

olivine; Burma spinel; spinel, orthopyroxene and clinopyroxene from a peridotite xenolith 262 

from the Vitim volcanic field in Siberia21; orthopyroxene and clinopyroxene from pyroxenites 263 

BZCG (also known as BZ-37) and BZ-226, from Zabargad Island in the Red Sea22) and rocks 264 

(CLDR015V, BHVO and BCR2, three terrestrial basalt glasses), and of synthetic glasses 265 

(Bacati; glasses of anorthitic, pyroxenic and melilitic (Åk#70) compositions; two NIST SRM 266 

glasses23) is used to determine αinst (Table 1). Because of the very small variation range of 267 

δ26Mg in mantle rocks and high temperature minerals,24 all standard mantle minerals are 268 

considered to have the same 26Mg/24Mg and 25Mg/24Mg ratios as San Carlos olivine 269 

(δ26MgDSM3 = -0.25(±0.04)‰ (2 s.d., n=29,25), 26Mg/24Mg = 0.1398284(±0.0000010), 270 
25Mg/24Mg = 0.1268705(±0.0000005)), but measurements by MC-ICPMS are going on to 271 

check that for the few synthetic glasses.  272 

Matrix effects on instrumental fractionation have been shown to follow a systematic 273 

often similar to that observed for natural isotopic fractionations between mineral or between 274 

minerals and fluids, as shown for example for D/H in amphiboles and micas.26 By analogy 275 

with the exponential law (

! 

"
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# ) generally used27 to express Mg isotopic 276 

fractionations for terrestrial or meteoritic samples, the instrumental fractionation law is 277 

determined from a linear regression (with the Isoplot 3.00 software28) between     

! 
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26 / 24 ) measured for the different international and in-house standards. The instrumental 279 

law is always of the following form:29 280 
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) # b[ ] $
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                             281 

with βinst varying between 0.51075 and 0.52045 and the intercept b slightly different from 0 282 

with values typically from -0.00058 to -0.00030. Values of βinst and of b appear to vary 283 

independently between different analytical sessions. This instrumental law can be expressed 284 

as: 285 
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! 

"
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= exp(b)# ("
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26 / 24 )$ inst  286 

where it is clear that it differs slightly from a purely mass dependent law because of the term 287 

! 

exp(b) . 288 

For b very close to 0, one can approximate the above equation by: 289 

! 

"
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$
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Large variations of     

! 

"
inst

25 / 24 due to matrix effects, i.e. caused by variations of vibrational 291 

energies of the bonds involving Mg isotopes in minerals or glasses having different chemical 292 

compositions, are present among silicates and oxides (Fig. 2). In the case of olivines for 293 

instance, a similar effect than previously reported for O isotopes30 exists for Mg isotopes. 294 

Values of     

! 

"
inst

25 / 24 increase by ~ 1‰/amu from Fo#79 (olivine from the Eagle Station pallasite) 295 

to Fo#88 (San Carlos olivine), and this trend can be linearly extrapolated to determine     

! 

"
inst

25 / 24 296 

for olivines with Fo# > 88. Similarly for melilite, a change of 1.9‰/amu is observed between 297 

two melilite glasses having different Al/Mg ratios. Matrix effects between silicates and oxides 298 

are of similar magnitude, e.g. ~ 2‰/amu between pyroxene and spinel. 299 

 When the instrumental fractionation law has been properly determined, the 300 

(25Mg/24Mg)bkgcorr ratio of a given sample is corrected for the appropriate value of     

! 

"
inst

25 / 24 301 

determined from the calibration based on standards with different compositions. Then, the 302 

corresponding value of     

! 

"
inst

26 / 24 is calculated from the instrumental fractionation law (using the 303 

values determined for βinst and b) and is used to correct the (26Mg/24Mg)bkgcorr ratio. The two 304 

Mg-isotope ratios obtained are considered as the "true isotopic ratios" of the sample, in the 305 

sense that they are corrected for all ion probe instrumental effects and seem the closest 306 

possible to the true values. 307 

 308 

3.4   Determination of (δ25Mg)DSM 3 and (δ26Mg)DSM 3. 309 

 310 

 The (δ25Mg)DSM 3 and (δ26Mg)DSM 3 values are calculated from the (25Mg/24Mg)true and 311 

(26Mg/24Mg)true ratios respectively (see above), and are expressed with respect to the DSM 3 312 

standard. 313 

The 2 sigma error on the δ25Mg value of an individual measurement 
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calculated as the quadratic sum of (i) the external reproducibility determined from repetitive 315 
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analyses of standards of same matrix than the sample 
  

! 

(2"
(#25Mg )std

)  and (ii) the internal error 316 

due to the counting statistic 

! 

(2"
(# 25Mg)bkgcorr

)  according to: 317 
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)2 . 318 

The component which dominates by far in the error is the external reproducibility (typically 319 

not better than ± 0.150‰ for olivine for instance) which is one order of magnitude higher 320 

than counting statistic error (typically better than ± 0.021‰ for olivine for instance). The 2 321 

sigma error on the δ26Mg value of an individual measurement 

! 

(2"
(# 26Mg)ind-meas

) is calculated 322 

similarly. 323 

 324 

3.5   Calculation of 26Mg excess or deficit and error propagation  325 

 326 

The 26Mg excesses or deficits, written in capital delta notation Δ26Mg (in ‰), are 327 

calculated directly from the true isotopic ratios using the following relationship:  328 
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with β = βEarth or βmet (see below), (25Mg/24Mg)DSM3 = 0.126887, (26Mg/24Mg)DSM3 = 0.139863. 330 

These ratios were calculated from 

! 

(" 26Mg)SRM 980

DSM 3  = 3.90(±0.03)‰ (2s.e.), 

! 

(" 26Mg)SRM 980

DSM 3  331 

standing for the δ26Mg of DSM 3, expressed with respect to the SRM 980 international 332 

standard.31-32 However the isotopic homogeneity of the SRM 980 standard has been 333 

challenged.33 Calculation with 

! 

(" 26Mg)SRM 980

DSM 3  = 3.40(±0.13)‰33 result in a 0.007‰ decrease 334 

on Δ26Mg values for extraterrestrial materials (that remains within the error bar of the Δ26Mg 335 

value calculated with 

! 

(" 26Mg)SRM 980

DSM 3  = 3.9‰), whereas no change is seen for terrestrial 336 

materials. This is because the β value used to calculate Δ26Mg values for terrestrial samples is 337 

0.521 (βEarth, corresponding to equilibrium Mg isotopic fractionations34), and 0.514 for 338 

meteoritic olivines (βmet).35 This value of 0.514 for βmet has been shown to describe at best 339 

most cosmochemical Mg isotope fractionations since they are kinetic, occurring mostly 340 

through evaporation and/or condensation processes.36-37  341 

The 2 sigma internal error (2 s.e. or 2σ) on Δ26Mg due to counting statistic errors on 342 

the 26Mg/24Mg and 25Mg/24Mg ratios is given by:  343 
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! 

2"
(#26Mg)

= (2"
($ 26Mg)bkgcorr

)2 +
2

%
&"

($ 25Mg)bkgcorr

' 

( 
) 

* 

+ 
, 

2

. 344 

with β = βEarth or βmet, and 

! 

"
(# 25Mg)bkgcorr

 and 

! 

"
(# 26Mg)bkgcorr

 the errors on the isotope ratios 345 

due to counting statistic, typically for an olivine ± 0.014‰ and ± 0.021‰, respectively. To be 346 

conservative, the correlation of errors between the 26Mg/24Mg and 25Mg/24Mg ratios are not 347 

taken into account since it could tend to artificially decrease the errors. Note that the 348 

relationship between the errors on the isotope ratios and the errors on the delta values is 349 

given, for instance for δ25Mg, by: 350 

  

! 

"
(25Mg/ 24Mg)

=
0.12663

103
# "

($25Mg )
 351 

The 2 sigma error on the Δ26Mg value of an individual measurement 
  

! 

(2"
(#26Mg) ind-meas

)  is 352 

then calculated as the quadratic sum of (i) the external reproducibility determined from 353 

repetitive analyses of standards 
  

! 

(2"
(#26Mg )std

)  which is of ± 0.010‰ for the session shown in 354 

Fig. 2 for example, and (ii) the internal error due to the counting statistic according to: 355 

! 

2"
(#26Mg)ind-meas

= (2"
(#26Mg)std

)2 + (2"
($ 26Mg)bkgcorr

)2 +
2

%
&"

($ 25Mg)bkgcorr

' 

( 
) 

* 

+ 
, 

2

. 356 

 357 

When several measurements (n), e.g. different spots in the same object (such as an 358 

isolated olivine or a chondrule), give Δ26Mg values which are identical within ± 2σ then a 359 

mean Δ26Mg value is calculated for this sample as the weighted mean of the n measurements. 360 

The 2 sigma error associated with this weighted mean is given by: 361 

! 

2"
(# 26Mg)weighted$mean

= 2 %
1

1

("
i

2)
(#26Mg)ind-measi=1

n

&
 362 

Finally an important comment must be made concerning the differences between the 363 

errors on the δ25Mg and δ26Mg values and the error on the Δ26Mg value. Because variations of 364 

mass fractionation follow the instrumental fractionation law (in the three Mg isotopes 365 

diagram) they do not introduce errors on Δ26Mg. Thus for olivines values of 
  

! 

(2"
(#26Mg) ind-meas

)  366 

are typically of 0.06‰ while values of 
  

! 

(2"
(#25Mg) ind-meas

)or 
  

! 

(2"
(#26Mg) ind-meas

)  are of 0.20‰ and 367 

0.39‰, respectively, for the session shown in Fig. 2. An interesting application of this 368 

observation is that several Δ26Mg measurements can be made on a small grain (e.g. < 150 µm) 369 

successively at the same spot (i.e. by depth profiling). This is a way to improve the precision 370 
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on the Δ26Mg value when the grain is too small to make several analyses at different 371 

locations. Fig. 3b shows the results of seven such depth profiles made on San Carlos olivines 372 

(each depth profile corresponds to five to seven successive analyses). Each depth profile gives 373 

Δ26Mg values of 0‰ within their 2 s.e. of typically ± 0.015‰ (the 2 s.d. for each spot varying 374 

from 0.028‰ to 0.034‰) despite a significant change of instrumental fractionation with 375 

depth in the sample, which results in a range of variation for δ25Mg and δ26Mg values of 376 

0.4‰ and 0.8‰, respectively (Fig. 3a and Table 2). 377 

 378 

3.6   Precision reached for the determination of 26Mg excess or deficit  379 

 380 

Fig. 4 shows typical results of Δ26Mg measurements for two international and one in-381 

house standards run during one analytical session. The standards show no significant excess 382 

or deficit in 26Mg, consistent with their terrestrial origin. The external reproducibility is better 383 

than ± 0.04‰ (2 s.d., n=23) and the 2 sigma error on the mean of all analyses of standards is 384 

± 0.018‰ (2 s.e., n=23).   385 

The major source of errors on Δ26Mg values that can be identified in the procedure 386 

described here, if an improper treatment of the data is performed, is the correction for 387 

instrumental fractionation. Because the instrumental fractionation law is always slightly 388 

different from the cosmochemical mass fractionation law and from the terrestrial mass 389 

fractionation law, an over-correction or an under-correction of instrumental fractionation (due 390 

to a poor calibration of matrix effects) will result in an error on Δ26Mg value (Fig. 5). For 391 

instance, correcting for an improper Fo content (e.g Fo#100 instead of Fo#88 for San Carlos 392 

olivines) leads to an absolute error on Δ26Mg value of ~ ± 5 ppm. Similarly, using an 393 

improper β value (e.g. βmet instead of βEarth for San Carlos olivines) can lead to a maximum 394 

absolute error of ~ ± 30 ppm on Δ26Mg (Fig. 5 and Table 3).  395 

 396 

3.7   Al and Mg relative ion yields 397 

 398 

When the 26Mg excesses in meteoritic samples are presumed to be due to the in situ 399 

decay of short-lived 26Al, isochron diagrams are built to determine the 26Al/27Al ratio at the 400 

time of isotopic closure. For that, the 27Al/24Mg ratios must be determined very precisely in 401 

order to minimize the error on the 26Al/27Al (e.g. an error of ± 1.3% (see below) in a CAI with 402 
26Al/27Al = 5×10-5 introduces an error of ~ ± 1.3% on the 26Al/27Al ratio). Because elemental 403 
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secondary ion yields show strong differences between different elements (and different 404 

matrices) that cannot be predicted precisely enough from theoretical grounds,38 they must be 405 

calibrated precisely using a set of standards that covers the chemical variability of the samples 406 

to analyze.  407 

The Al/Mg relative yield is defined by the ratio between the measured and the true 408 

Al/Mg (or 27Al/24Mg) ratios: 409 

  

! 

Yield(Al/Mg) =

27 Al
24Mg

" 

# 
$ 

% 

& 
' 

meas

27 Al
24Mg

" 

# 
$ 

% 

& 
' 

true

 410 

Thus the Al/Mg yield is determined from analyses of international and in-house standards and 411 

can then be used to correct measurements of samples. Results of the calibration of the Al/Mg 412 

yield for various silicates and oxides are then shown in Table 1. Note that all silicates and 413 

oxides such as spinels show (for this analytical session) an averaged Al/Mg yield of 414 

0.77(±0.05, 2 s.d.) with an associated 2 s.e of 1.3% (n=28), while oxides such as hibonites 415 

show significantly different yields (0.629(±0.001, 1 s.e.) in this session). Minerals that contain 416 

trace amounts of Al, such as olivine, show the same Al/Mg yield than Al-rich silicates within 417 

error (1.00(±0.30, 1 s.e.) for olivine from the Eagle Station pallasite, having a Al2O3 content 418 

of ~ 0.0027 wt%).  419 

 The 2 sigma error on the 27Al/24Mg ratio is calculated for an individual measurement 420 

by summing in a quadratic way the counting error (typically ± 2% (2 s.e.) relative in an 421 

olivine and ± 0.2% (2 s.e.) in a mineral like spinel where Al and Mg are major elements) and 422 

the two sigma external reproducibility on the standards (typically ± 8% (2 s.e.) in an olivine 423 

and ± 1.2% (2 s.e.) in an Al-rich mineral). 424 

 425 

4 Examples of the implications of high precision Mg isotopic analyses of  426 

components of chondritic meteorites 427 

 428 

Using this method, the construction of high precision 26Al isochrons for chondrules 429 

and CAIs is within the reach of in situ analysis by ion microprobe. Both the slope (from 430 

which the initial (26Al/27Al)0 ratio is deduced) and the (δ26Mg*)0 intercept (this notation 431 

standing for 26Mg excesses or deficits linked to 26Al in situ decay) can be precisely 432 

determined. This gives theoretically access to the crystallization age (calculated from the 433 

(26Al/27Al)0 ratio), and to the 26Al model age of the precursors (calculated from the (δ26Mg*)0 434 

value with an appropriate evolution model). 435 
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Fig. 6 shows as an example two 26Al isochrons measured for one CAI from the 436 

Efremovka CV3 carbonaceous chondrite (data from Mishra and Chaussidon39) and for one 437 

chondrule from the Semarkona LL3 ordinary chondrite.8 The CAI isochron has a (26Al/27Al)0 438 

of 4.72(±0.10)×10-5 and a (δ26Mg*)0 of 0.16(±0.06)‰, while the chondrule isochron has a 439 

(26Al/27Al)0 of 8.92(±0.91)×10-6 and a (δ26Mg*)0 of -0.0024(±0.0075)‰. If interpreted in a 440 

simple model considering that there was a time zero when the inner accretion disk was 441 

homogenized to (26Al/27Al)i = 5.23×10-5 and (δ26Mg*)i = -0.038‰,5,6,8 the two isochrons 442 

imply that the last melting/crystallization event for the CAI and the chondrule took place 443 

! 

0.11"0.02
+0.02  Myr and 

! 

1.86"0.10
+0.11  Myr, respectively, after the time zero. A 1.2 to 4 Myr age 444 

difference between CAIs and chondrules is a general conclusion of 26Al studies interpreted 445 

under the assumption of an homogeneous distribution of 26Al in the inner solar system,8 446 

which would be consistent with latest accretion models considering progressive gravitational 447 

collapse of mm-sized particles concentrated by turbulence in the nebular gas (see review by 448 

Dauphas and Chaussidon40).  449 

The different (δ26Mg*)0 observed for the CAI and the chondrule can be understood as 450 

reflecting different origins and histories for their precursors. The simplest model would be for 451 

the chondrule that the precursors were condensed from the nebular gas at 1.86 Myr (age given 452 

by the (26Al/27Al)0 of the chondrule isochron): 26Al decay in the nebular gas with a 27Al/24Mg 453 

of 0.101 for 1.86 Myr would result in a δ26Mg* of -0.007‰. For the CAI, the simplest model 454 

is that its precursors were condensed at time zero and then evolved in closed system with the 455 

bulk 27Al/24Mg ratio of the CAI of 7.10, leading to the build up of a δ26Mg* of 0.16‰ in 0.08 456 

Myr. However more complicated scenarios are possible13,35 depending on the model 457 

considered.  458 

 High precision Mg-isotope measurements are also possible for Mg-rich and Al-poor 459 

phases (i.e. phases with a low Al/Mg ratio). This is the case for Mg-rich refractory olivines 460 

(either isolated olivines or olivines in porphyritic type I chondrules), whose 26Al model ages 461 

could be constrained. These Mg-rich olivines may have various origins. Because they are 462 

virtually devoid of Al no radiogenic in-growth of 26Mg takes place, so that their Mg isotopic 463 

composition will reflect that of their source, i.e. the nebular gas from which they condensed, 464 

the chondrule melt from which they crystallized,41-43 or the planetesimal mantle from which 465 

they crystallized.44-48 For a given model, the precision on the 26Al model age calculations of 466 

these Mg-rich refractory olivines is highly dependent on the precision on both the Δ26Mg 467 

value and the 27Al/24Mg ratio. For instance for a parent melt with a 27Al/24Mg ratio of 2.5, a 468 
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precision of ± 0.016‰ on Δ26Mg leads to a precision on the age of ± 0.02 Ma (data from Luu 469 

et al.49). 470 

 471 

5 Conclusion 472 

 473 

The analytical protocol and data reduction process described in this study allow high 474 

precision to be reached for Mg isotopic measurements (25Mg/24Mg and 26Mg/24Mg ratios, as 475 

well as 26Mg excess) by MC-SIMS. This method minimizes analytical bias on the final Mg-476 

isotope results, that is very important at the level of precision targeted in cosmochemistry 477 

(better than 10 ppm absolute error on the calculation of the final 26Mg excess or deficit). 478 

This new possibility of reaching very high precision for Mg-isotope analyses opens new 479 

perspectives in geo- and cosmochemisty fields. For instance natural processes such as 480 

biomineralization could be better understood by more accurately constraining the induced 481 

fractionation.  482 

 483 
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Tables 566 
 567 
Table 1: Chemical composition for some major elements, and Al/Mg yield, of the terrestrial 568 

reference materials and international standards used in this study. 569 
 570 
Standards SiO2 * Al2O3 * MgO * 27Al/24Mg * 27Al/24Mg ** Al/Mg yield  
  (wt%) (wt%) (wt%) (atomic) (ion microprobe)   
San Carlos olivine 1 40.33 0.03 48.87 6.14 × 10-4  4.67 × 10-4 0.76 
Eagle Station (MNHN) olivine 1 39.29 2.72 × 10-3 42.69 6.37 × 10-5 6.36 × 10-5 1.00a 
Clinopyroxene BZCG (Zabargad) 2 50.35 7.05 14.11 0.50 0.38 0.76 
Clinopyroxene BZ 226  (Zabargad) 2 51.36 4.49 15.35 0.29 0.23 0.80 
Clinopyroxene 313-3 (Vitim) 3 52.84 5.81 15.52 0.37 0.28 0.75 
Orthopyroxene BZ 226  (Zabargad) 2 54.14 3.85 31.20 0.12 0.10 0.78 
Orthopyroxene 313-3 (Vitim) 3 55.16 3.73 32.94 0.11 0.09 0.77 
Spinel (Burma) 1 0.02 71.66 27.88 2.57 1.86 0.72 
Spinel 86-1 (Vitim) 3 0.06 57.33 20.9 2.75 2.07 0.75 
Basaltic glass MORB CLDR015V 1 50.43 15.83 8.43 1.88 1.41 0.75 
Basaltic glass BHVO (Hawaii) 1 49.90 13.50 7.23 1.87 1.41 0.75 
Basaltic glass BCR2 (Columbia river) 1 54.10 13.50 3.59 3.76 2.97 0.79 
Synthetic anorthitic glass 1 44.05 34.66 1.79 19.41 14.83 0.76 
Synthetic melilitic glass 1 41.00 11.00 7.00 1.57 1.10 0.70 
Synthetic pyroxenic glass 1 44.38 14.78 11.21 1.32 1.04 0.79 
Synthetic glass Bacati 1 31.01 30.74 10.29 2.99 2.41 0.81 
Synthetic glass Al20 1 48.68 20.09 9.52 2.11 1.66 0.79 
Synthetic glass Al10 1 55.05 10.41 11.37 0.92 0.74 0.81 
Synthetic glass Al5 1 58.31 5.11 11.17 0.46 0.38 0.83 
Synthetic glass NIST SRM 614 4 71.83 2.29 0.01 435.85 336.90 0.77 
Synthetic glass NIST SRM 610 4 69.06 2.20 0.08 28.84 21.82 0.76 
Hibonite (Madagascar) 1 0.88 73.70 2.91 25.35 15.95 0.63 

 571 
1,2,3,4 stand for chemical composition data coming from this study, Decitre (2000), Ionov et al. 572 

(1993) and Gao et al. (2002), respectively. 573 

* indicates that the 1 sigma error is typically ± 2% for SiO2, Al2O3 and MgO analyses and for 574 

the resulting (27Al/24Mg)atomic ratio. 575 

** indicates that the 1 sigma error is typically better than ± 1.5% for (27Al/24Mg)ion microprobe 576 

measurements 577 
a the 1 sigma error on the Al/Mg yield of Eagle Station olivine is ± 0.30. 578 

 579 

580 
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Table 2: Mg isotopic compositions of olivines from the San Carlos terrestrial reference 580 

material (Fo#88). 581 
 582 
Name Description δ25Mg (‰) 2 s.e δ26Mg (‰) 2 s.e Δ26Mg (‰) 2 s.e n 

SC 1 

SC 2 

average 

separated grain 

separated grain 

 

- 0.180 

- 0.058 

0.103 

0.059 

- 0.343 

- 0.118 

0.206 

0.126 

0.017 

- 0.006 

0.007 

0.020 

0.023 

0.015 

10 

7 

17 

SC P1 

SC P2 

SC P3 

SC P4 

SC P5 

SC P6 

SC P7 

average 

separated grain - profile n°1 

separated grain - profile n°2 

separated grain - profile n°3 

separated grain - profile n°4 

separated grain - profile n°5 

separated grain - profile n°6 

separated grain - profile n°7 

- 0.514 

- 0.522 

- 0.493 

- 0.346 

- 0.379 

- 0.552 

- 0.694 

 

0.029 

0.032 

0.049 

0.025 

0.024 

0.026 

0.042 

- 0.912 

- 0.939 

- 0.862 

- 0.582 

- 0.631 

- 0.969 

- 1.263 

0.067 

0.078 

0.092 

0.043 

0.035 

0.048 

0.079 

- 0.007 

- 0.015 

0.002 

0.004 

0.015 

0.013 

- 0.011 

0.003 

0.012 

0.012 

0.014 

0.012 

0.013 

0.012 

0.014 

0.005 

6 

6 

6 

5 

6 

7 

6 
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Average      0.002 0.009  

 583 

 584 

Table 3: Effect on the instrumental fractionation of an improper matrix effect correction on 585 

San Carlos olivines (Fo#88). The use of an improper Fo content and/or an improper β (βEarth 586 

or βmet) value both impacts the final Δ26Mg value (see text). The 2 s.e. on Δ26Mg values is ± 587 

0.024‰ whatever the case. Fo# =MgO/(FeO+MgO) (wt%/wt%). 588 
 589 

 δ25Mg (‰) Δ26Mg (‰) 

   βEarth = 0.521 βmet = 0.514 

Fo#79 -0.997 -0.010 0.016 
Fo#88 -0.058 -0.006 -0.004 
Fo#100 1.199 -0.001 -0.031 

 590 

591 
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Figure captions 591 

 592 

1) The correction for drifts of Faraday cup backgrounds using a linear interpolation between 593 

two successive analyses impacts both δ25Mg (black dots) and δ26Mg values (not shown), 594 

with a more important effect on Mg-poor minerals (spinel, pyroxene) compared to Mg-rich 595 

minerals (olivines for instance). The background correction also affects Δ26Mg values 596 

(open squares): this non-mass dependent correction is due to lower count rates on 25Mg 597 

and 26Mg compared to 24Mg, with a maximum of 10 ppm change for olivines for instance. 598 

2) Example of a Mg isotopic instrumental fractionation law, calibrated using reference 599 

materials with different compositions (San Carlos olivine, Burma spinel and synthetic 600 

pyroxene). Slope and intercept are calculated using the Isoplot 3.00 software.28 Large 601 

variations of 

! 

ln("
inst

25 / 24
)  values are present among silicates and oxides, and are linked to 602 

matrix effects which result from variations of vibrational energies of the bonds involving 603 

Mg isotopes in minerals or glasses having different chemical compositions.  604 

3) Mg isotopic compositions of San Carlos olivines (Fo#88) measured using two different 605 

protocols: either single measurements at different spots (black (SC1) and open (SC2) 606 

diamonds, corresponding to two different separated San Carlos olivine grains) or depth 607 

profiles (black dots). All data are corrected for matrix effect. The true Mg-isotope 608 

composition of San Carlos olivines is also plotted (open star). a) Three Mg-isotope 609 

diagram showing that the two types of data follow the same fractionation law (even if the 610 

fractionation is in average stronger for depth profiles). Error bars, typically better than ± 611 

0.11‰ on δ25Mg values and ± 0.22‰ on δ26Mg values for this analytical session, are not 612 

shown for simplicity. b) Averages of analyses made by depth profiles at different spots (n 613 

is the number of analyses in a given depth profile, black dots) compared to the average of 614 

the single analyses (n=10) made at different spots (open diamond). Both types of 615 

measurements show Δ26Mg values correctly determined at 0‰ within 2 s.e. Thus, depth 616 

profiles can be used in small samples to obtain a precision on Δ26Mg values similar to that 617 

obtained from averaging several analyses made at different locations. 618 

 4) 26Mg excess or deficit (expressed with the Δ26Mg notation, see text) obtained for three 619 

reference materials with different chemical compositions (the same as in Fig. 2) measured 620 

within one analytical session (n=23). They show no significant excess or deficit in 26Mg, 621 

consistent with their terrestrial origin. The typical external reproducibility (2 s.d.) is better 622 

than ± 0.04‰ while the 2 sigma error of each individual measurement is typically better 623 
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than ± 0.06‰. The 2 sigma error on the mean of all analyses of reference materials (2 s.e.) 624 

is better than ± 0.02‰. 625 

5) Schematic effect in a three Mg isotope diagram of an improper correction for instrumental 626 

isotopic fractionation on the determination of the Δ26Mg value of meteoritic samples. The 627 

open dot stands for the isotopic composition after appropriate corrections (see text). In this 628 

example no 26Mg excess is obtained since the open dot is sitting on the cosmochemical 629 

fractionation line (see text). The two black dots represent wrong corrections of 630 

instrumental fractionation in which matrix effect was under- or over-estimated: this results 631 

in "wrong" apparent 26Mg excess or deficit relative to the cosmochemical line (dark grey 632 

field). Using erroneously the terrestrial line instead of the cosmochemical line also results 633 

in "wrong" 26Mg excess or deficit (light grey field). 634 

6) Two 26Al isochrons measured for one CAI from the Efremovka CV3 carbonaceous 635 

chondrite (MSWD = 1.15, data from Mishra and Chaussidon, 2012) and for one chondrule 636 

from the Semarkona LL3 ordinary chondrite (MSWD = 0.71, data from Villeneuve et al., 637 

2009). A gap ranging from 1.2 to 4 Myr between the 26Al ages of CAIs and chondrules is 638 

generally deduced from 26Al studies assuming a homogeneous distribution of 26Al and Mg 639 

isotopes in the accretion disk.  640 

 641 

642 
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FIGURE 1 647 
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FIGURE 2 652 



 25 

 653 
 654 

 655 
 656 

FIGURE 3 657 
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FIGURE 4  660 
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FIGURE 5 663 
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FIGURE 6 666 


