Skip to Main content Skip to Navigation
Journal articles

Neural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils

Abstract : The statistical variation of soil properties and their stochastic combinations may affect the extent of soil contamination by metals. This paper describes a method for the stochastic analysis of the effects of the variation in some selected soil factors (pH, DOC and EC) on the concentration of copper in dwarf bean leaves (phytoavailability) grown in the laboratory on contaminated soils treated with different amendments. The method is based on a hybrid modeling technique that combines an artificial neural network (ANN) and Monte Carlo Simulations (MCS). Because the repeated analyses required by MCS are time-consuming, the ANN is employed to predict the copper concentration in dwarf bean leaves in response to stochastic (random) combinations of soil inputs. The input data for the ANN are a set of selected soil parameters generated randomly according to a Gaussian distribution to represent the parameter variabilities. The output is the copper concentration in bean leaves. The results obtained by the stochastic (hybrid) ANN-MCS method show that the proposed approach may be applied (i) to perform a sensitivity analysis of soil factors in order to quantify the most important soil parameters including soil properties and amendments on a given metal concentration, (ii) to contribute toward the development of decision-making processes at a large field scale such as the delineation of contaminated sites.
Complete list of metadatas

Cited literature [49 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-00852439
Contributor : Nathalie Pothier <>
Submitted on : Tuesday, November 12, 2013 - 3:25:25 PM
Last modification on : Wednesday, September 23, 2020 - 4:36:47 AM
Long-term archiving on: : Thursday, February 13, 2014 - 2:35:20 AM

File

Neural_network_and_Monte_Carlo...
Files produced by the author(s)

Identifiers

Collections

Citation

Nour Hattab, Ridha Hambli, Mikael Motelica-Heino, Michel Mench. Neural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils. Journal of Environmental Management, Elsevier, 2013, 129, pp.134-142. ⟨10.1016/j.jenvman.2013.07.003⟩. ⟨insu-00852439⟩

Share

Metrics

Record views

634

Files downloads

2488