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[1] Strike-slip plate boundaries juxtapose crustal blocks that may have different
geodynamic origins and therefore different thermal structures. Thermo-kinematic
modeling of this type of strike-slip plate boundary predicts an asymmetric signature in the
low-temperature thermochronologic record across the fault. Age-elevation profiles of
zircon (U-Th)/He ages across the Motagua Fault, a 500 km long segment of the transform
boundary between the North American and Caribbean plates, document a sharp cooling
age discontinuity across the fault. This discontinuity could be interpreted as a difference in
denudation history on each side of the fault. However, a low-relief Miocene erosional
surface extends across the fault; this surface has been uplifted and incised and provides a

geomorphic argument against differential denudation across the fault. By integrating
magmatic, volcanic, and heat flow data, age-elevation profiles, and thermo-kinematic
modeling, we propose that large horizontal displacement along the Motagua Fault has
offset a persistent geothermal asymmetry across the fault and explains both the age
discontinuities and the age-elevation patterns. This study illustrates how
thermochronology can be used to detect large strike-slip displacements and more generally
opens new perspectives in understanding the impact of nonuniform thermal structures on

thermochronologic results.

Citation: Simon-Labric, T., G. Y. Brocard, C. Teyssier, P. A. van der Beek, M. G. Fellin, P. W. Reiners, and
C. Authemayou (2013), Preservation of contrasting geothermal gradients across the Caribbean-North America plate
boundary (Motagua Fault, Guatemala), Tectonics, 32, 993-1010, doi:10.1002/tect.20060.

1. Introduction

[2] Major strike-slip fault systems or wrench zones are
commonly associated with large variations in denudation
of orogenic crust [e.g., Fitzgerald et al., 1995; Storti et al.,
2003; Cruz et al., 2007; Spotila et al., 2007; Umhoefer
etal.,2007; Bermudez et al., 2011]. The contrasted cooling
history of rocks that surround these faults as determined by
thermochronometers is usually converted into contrasting
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exhumation rates assuming a uniform geothermal gradient
[Cruz et al., 2007; Bermudez et al., 2011]. But large faults,
such as transform plate boundaries, also juxtapose crustal
blocks with contrasted thermal structures [Le Pichon
et al., 2005]. This juxtaposition creates strong lateral
thermal gradients, which in turn favor strain localization
and control the internal dynamics of strike-slip faults.
Such variations in thermal structure across strike-slip faults
had been largely described for oceanic transform faults
[e.g., Bouillin et al., 1997; Sage et al., 2000; Bigot-Cornier
et al., 2005] and make the interpretation of denudation rates
and deformation history problematic.

[3] In this study, we evaluate quantitatively the impact on
thermochronology patterns and age-elevation relationships
using numerical modeling of (i) a pronounced geothermal
asymmetry astride a major strike-slip fault and (ii) the
associated lateral heat transfer through the strike-slip fault
when the two different thermal setting are juxtaposed.
Then, we confront modeling results with a natural example,
the Motagua-Polochic Fault Zone (MPFZ), a 500 km long
continental transform belonging to the boundary between
the North American plate to the north and the Caribbean
plate to the south (Figure 1A). We compile published
thermochronological data (*°Ar-*?Ar and AFT data)
[Harlow et al., 2004; Ratschbacher et al., 2009] and present
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Figure 1. A) Tectonic setting of northern Central America and southern Mexico showing the location
and names of main geologic features and tectonic contacts (modified from Rogers and Mann [2007]).
CT—Cayman trough; EPR—East Pacific Rise; MAT—Middle America trench; MPFZ—Motagua-Polochic
Fault Zone; NCMZ—Northern Chortis magmatic zone; TMVB—Trans-Mexican Volcanic Belt; X—Xolapa
complex. B) Heat flow map of the North America-Caribbean plate boundary showing active volcanoes
[modified from Blackwell and Richards, 2004]. White triangles are volcanoes, thick black lines are faults, thin
black line is the coastline, and thin gray lines represent isovalues of surface heat flux. TMVB—Trans-Mexican
Volcanic Belt; CAVB—Central American Volcanic Belt.

33 new zircon (U-Th)/He (ZHe) ages from 15 samples that
were collected along age-elevation profiles on both sides of
the fault trace. Finally, we compare the thermochronology
data set with model predictions and discuss how geothermal
asymmetry across the Motagua continental transform
fault has influenced the cooling history and the
thermochronologic record.

[4] Left-lateral displacements along the MPFZ initiated
during the Late Cretaceous [e.g., Pindell et al., 1988; Pindell

etal.,2005; Pindell and Kennan, 2009] and have accommo-
dated a minimum displacement of ~1100 km since Middle
Eocene time [Rosencrantz et al., 1988]. The MPFZ
separates the Chortis block to the south, a continental block
that is now inserted into the otherwise dominantly oceanic
Caribbean Plate, from the Maya block to the north, a
continental block that belongs to the North American
continent (Figure 1A). The present-day heat flow map
[Blackwell and Richards, 2004] shows that the MPFZ is a
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Figure 2. Simplified geologic map of northern Central America and southern Mexico showing the
igneous activity since the Eocene, compiled from the 2005 Geologic Map of North America [Reed ef al.,
2005]. Black lines are faults, white triangles are volcanoes. Middle-Late Miocene intrusions emplaced near
the Tonala Fault [ Wawrzyniec, 2005; Witt et al., 2012] are too small to be shown.

major thermal boundary between the high heat flow Chortis
block (surface heat flow >90 uW/m?) to the south and the
low heat flow Maya block (<45uW/m?) to the north
(Figure 1B). This translates into a short-distance transition
in geothermal gradient from ~20°C/km north of the MPFZ
to ~40°C/km south of the MPFZ, assuming a rock conductivity
of 2.5 Wm™ ' k™! that is typical of continental crust [ Touloukian
etal., 1981]. Cenozoic magmatism and present-day volcanic
activity are also contrasted across the plate boundary
(Figure 2). Modern volcanic activity is widespread at the
western tip of the Chortis block, including the Central
America Volcanic Arc [Carr et al., 2003; Bolge et al.,
2009] and alkaline volcanism in the back arc [Walker
et al., 2011]. In contrast, volcanism is sparse along the
southern edge of the Maya block and limited to few eruptive
centers in the Sierra Madre de Chiapas [Garcia-Palomo
et al., 2004; Mora et al., 2007]. This asymmetric magmatic
activity extends into the past, with episodic Miocene events
north of the MPFZ, along the Polochic [Ratschbacher et al.,
2009] and Tonala faults [Wawrzyniec, 2005; Witt et al.,
2012], while nearly continuous, large-volume magmatism
has characterized the Chortis block at least since Eocene time
(Figure 2) [Donnelly et al., 1990]. All these observations
suggest that these two tectonics blocks sustained an
asymmetric thermal evolution and that large-scale horizontal
transfer along the MPFZ has juxtaposed a cooler northern
block against a warmer southern block (Figure 1B). In the
next section, we explore quantitatively the generic case of
contrasting geotherms across a strike-slip fault.

2. Numerical Modeling

2.1.

[s] Pecube [Braun et al., 2012] is a finite-element model
that solves the transient advection-diffusion equation and
is coupled with an age-prediction model that simulates
landscape-evolution scenarios and predicts thermochronologic
ages. For each sample locality and all surface nodes, particle

Model Description

paths and corresponding time-temperature (¢-7) histories
are predicted. Thermochronological ages are calculated
using the modeled #-7 path, the annealing algorithm of
Stephenson et al. [2006] for AFT ages, and diffusion models
of Reiners et al. [2004] and Hames and Bowring [1994] for
ZHe ages and white mica “’Ar->°Ar ages, respectively.

[6] Here we use a modified version of Pecube, which
allows the thermal structure of the crust to vary spatially
and temporally in order to explore the effect of geothermal
variability on thermochronological ages. The thermal field
within the model domain is controlled by radiogenic heat
production, diffusion of heat from a fixed-temperature basal
boundary, and advection of heat to the surface resulting
from surface denudation as in the classic version of
Pecube. The modified version includes an additional heat
production parameter called Ha, which allows for changes
in geothermal gradient while other parameters, such as
denudation rate or topographic evolution, remain the same.
The general heat-transport equation can be written as:

pca—T +Epca—T =kVo,T+H,+H,
ot oz

where T is temperature, ¢ is time, z is the vertical spatial
coordinate, E is the vertical rock uplift rate (i.e., the velocity
of rocks with respect to the fixed base at z=-L), k is
conductivity, p is crustal density, ¢ is heat capacity, Hr is
the rate of radiogenic heat production, and Ha is the rate
of additional heat production. We only reproduce vertical
displacement of rocks and do not simulate any deformation
process, such as faulting.

[7] As illustrated by the surface heat flow map of the North
America-Caribbean plate boundary (Figure 1B), the upper
plate of a subduction system is characterized by a dynamic
thermal structure that is controlled by mantle wedge processes,
including magmatism [e.g., Currie et al., 2004], in addition to
tectonic and surface processes. Ha is used as a proxy for the
addition of heat into the upper crust brought into the system
by processes such as basal heating of the lithosphere, crustal

(1
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Table 1. Fixed Model Parameters

Parameters Unit Value
Crustal thickness km 30
Nb of nodes in Z-direction 21
Crustal density kg/m3 2700
Mantle density ke/m’ 3200
Poisson’s ratio 0.25
Thermal diffusivity km’/Ma 25
Temperature at the model base ° 450
Radioactive heat production mWim’ 1.1
Temperature at sea level °C 20
Atmospheric lapse rate °Clkm 6
Young’s modulus Nim’ 10"
Grid resolution m 500

magma advection, and latent heat liberated during the
conversion of melt to rock. Our approach has the strong ad-
vantage of being simple to implement, because geothermal
variability is introduced without having to choose the origin
of the heat. This point is important in a geologic setting like
the Chortis block, where magmatic history is not known
precisely. On the other hand, our model cannot simulate
local perturbations to the thermal structure, or the deflection
of isotherms produced by individual magmatic intrusions.

2.2. Numerical Simulation of a Geothermal Asymmetry
and Lateral Heat Transfer Across a Major Strike-Slip Fault

[8] To illustrate the effect of the spatial variability of
geotherm on thermochronology map patterns and age-
elevation relationships across a major strike-slip fault, we
conducted forward Pecube models that simulate the thermal
evolution of two tectonic blocks with different geothermal
gradients. In the warm block, an additional heat parameter
Ha of 2.9uW/m> is added uniformly and generates a
geothermal gradient of 40°C/km. In the cool block, the
additional heat parameter Ha is 0 uW/m>, generating a
geothermal gradient of 20°C/km. The basal model temperature,
the radiogenic heat production, and the rate of vertical rock
uplift are uniform and stable all along the model simulations
(Th=450°C at 30 km depth, Hr=1.1 pyW/m>, E=0.15 km/Ma).
Other constant parameters are listed in Table 1. Each
modeled scenario is run for a flat topography and for a
steady 2D sinusoid topography with a wavelength of
30km and an amplitude of 2 km.

[9] Two tectonic scenarios are considered. In a first
model, the two tectonic blocks with different geothermal
gradients are simulated separately; cooling and a denudation
precede their juxtaposition along the strike-slip fault
(Figure 3). In the second model, the blocks are in contact
at the initiation of the simulation, allowing for lateral heat
transfer across the fault (Figure 4).

[10] The first model produces a sharp geothermal
discontinuity astride the strike-slip fault (Figure 3A).
Heating of the warm block imposes a rise of isotherms
toward the topographic surface; the closure temperature iso-
therms are twice as close to the surface as in the colder
block, and cooling ages are about twice as young
(AFT=~12-20 Ma instead of 27-39 Ma; ZHe=~24-33 Ma
instead of 48-63 Ma, muscovite “°Ar-*>Ar=~49 Ma instead
of 82). In first order, age-elevation relationships are translated
toward younger ages in the hot block (Figure 3C). Under
the warm block, the deflection of isotherms under the

topographic surface is more pronounced and translates into
a stronger exaggeration of the apparent exhumation rates.
This effect has been fully described for low-temperature
thermochronology (AHe, AFT) [Braun, 2002; Braun et al.,
2006]. We show here that it can affect higher temperature
thermochronometers as well, such as ZHe if the geothermal
gradient is sufficiently high, like in the Chortis block
(~40°C/km). The numerical simulation demonstrates that
variability of geothermal gradient on its own can control
variability of thermochronological ages and for its amplitude.
Ignoring the role of the thermal setting of such tectonic area
would lead to erroneous interpretation of the age patterns,
for example interpreting them in terms of differences in
denudation rates.

[11] The second model adds the effect of lateral heat
transfer across the strike-slip fault, simulating a tectonic
setting in which the horizontal displacement along the
strike-slip fault had been sufficient to place in contact these
two blocks with a different thermal structure (Figure 4A). A
~30km wide, horizontal thermal transition is generated,
centered on the fault. At the fault itself, the
thermochronological ages equal the mean value of each
system in adjacent blocks (Figure 4B). The lateral transfer
of heat modifies the age-elevation relationships, producing
slope steepening in the hot block and slope shallowing in
the cool block (Figure 4C). Note that the sampling strategy
of the “vertical” profile is currently used to estimate
denudation rates assuming that the thermal structure does
not vary laterally along the profile [Fitzgerald et al.,
1995]; this assumption is not respected in this case. The
occurrence of old thermochronological ages and slow
apparent denudation rates derived from age-elevation
relationships on one side of the fault, and younger ages with
higher apparent denudation rates on the other side of the
fault, records thermal exchange through the strike-slip fault
that separates two thermal blocks; these relationships could
be erroneously interpreted as recording a differential
denudation history. In the following sections, we use these
numerical model results to guide our interpretation of the
thermochronological data around the MPFZ.

3. The MPFZ

3.1. Tectonics of the Plate Boundary Since Eocene Time

[12] The 3500km long northern Caribbean plate boundary
accommodates westward motion of North America relative
to the Caribbean Plate (Figure 1A) [DeMets et al., 2000].
Over its length, the plate boundary is mostly left lateral,
except in the Cayman Trough, where a short spreading
center, perpendicular to the overall strike of the plate boundary,
lies in the middle of a 1200km long pull-apart basin.
Oceanic accretion in the basin is thought to have started at
30Ma [MacDonald and Holcombe, 1978], or 49 — 50 Ma
[Rosencrantz et al., 1988; Leroy et al., 2000]. The spreading
center efficiently transfers most of the ~2 cm/yr left-lateral
plate motion [DeMets et al., 2000].

[13] Further to the west in Guatemala, the transform
boundary is a zone of diffuse deformation that consists of
several major transcurrent faults; from south to north, these
are the Jocotan-Chamelecon Fault, the Motagua Fault, and
the Polochic Fault (Figure 5) [e.g., Donnelly et al., 1990;
Guzman-Speziale, 2010; Authemayou et al., 2011]. The
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Figure 3. Thermal structure of two tectonic blocks with different geothermal gradients separated by a large
strike-slip fault, and cross sections with synthetic ZHe/AFT ages. The two tectonic blocks are simulated
separately in order to reproduce the thermal evolution of the two tectonic blocks, which have cooled before
to being juxtaposed by the horizontal displacement along the strike-slip fault. (A) Model thermal structure
(isotherms in °C) for a steady-state sinusoidal topography with wavelength A =30 km, amplitude A =2 km,
and a constant 150m.Ma~' denudation rate. See Table 1 for other thermo-kinematic parameters used in
Pecube modeling. (B) Predicted ZHe (diamonds) and AFT (dots) age-horizontal distance profiles collected
across the strike-slip fault. Solid lines show results for a flat topography and dashed line results for
steady-state sinusoidal topography. (C) Predicted ZHe (diamonds) and AFT (dots) age-elevation profiles
collected in both tectonic blocks. Black symbols come from the cool block (~20°C/km) and white
symbols from the hot block (~40°C/km). Note that synthetic “°Ar-3°Ar ages are not represented because
real “°Ar-3Ar ages do not give clear age-elevation trends.

the interplate motion [Lyon-Caen et al., 2006]. The fault
ruptured over 230 km in dominantly strike-slip motion in
1976 [Plafker, 1976]. Unlike the other two strike-slip faults
of the boundary, the Motagua Fault trace is smooth

Motagua Fault is the direct topographic and structural
continuation of the southern Cayman trough (Figure 1).
GPS measurements fitted to a model of elastic deformation
suggest that the Motagua Fault accommodates ~75% of
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Figure 4. Thermal structure of two tectonic blocks with different geothermal gradients separated by a
large strike-slip fault, and cross sections with synthetic ZHe/AFT ages. The two blocks are in contact
since initiation of the simulation at 85 Ma, introducing a horizontal thermal gradient and therefore
thermal equilibrium astride the two blocks. (A) Model thermal structure (isotherms in °C) for steady-state
sinusoidal topography with wavelength A=30km, amplitude A=2km, and a constant 150 mMa~'
denudation rate. See Table 1 for other thermo-kinematic parameters used in Pecube modeling. (B)
Predicted ZHe (diamonds) and AFT (dots) age-horizontal distance profiles collected astride the
strike-slip fault. Solid lines show results for a flat topography, and dashed lines show results for
the steady-state sinusoidal topography. (C) Predicted ZHe (diamonds) and AFT (dots) age-elevation profiles
collected in both tectonic blocks. Black symbols come from the cool block (~20°C/km) and white symbols

from the hot block (~40°C/km).
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[1985], Buckart et al. [1987], Donnelly et al. [1974], Kesler et al. [1970], McBirney [1963], Brocard et al.
[2011], and Authemayou et al. 2011]). Ch—Chiquimula batholith; J.C. Fault—Jocotan-Chameleon Fault.

[Schwartz et al., 1979] and tracks serpentinized ophiolitic
bodies [Donnelly et al., 1990].

[14] The Polochic Fault, 50km further north, likely
branches onto the Motagua Fault in the Caribbean Sea to
the east (Figure 1). The Polochic Fault has an abundant
record of large historical earthquakes [White, 1984; White,
1985], but GPS measurements [Lyon-Caen et al., 2006]
indicate that the fault currently takes up no more than 25%
of interplate motion. The Jocotan-Chamelecén Fault,
located 30—40 km south of the Motagua Fault is inactive,
and unlike the other two faults, does not directly connect
with the Cayman Trough [Schwartz et al., 1979].

[15] It has been suggested that plate motion has switched
from one fault to the other [Burkart, 1983; Deaton and
Burkart, 1984; Burkart, 1994; Rogers and Mann, 2007],
but the Motagua Fault has remained the major boundary
for most of the time since the Eocene. Field evidence
indicates that the Jocotan-Chamelecon Fault has not
experienced any major strike-slip activity since at least 20 Ma
[e.g., Clemons, 1966; Donnelly et al., 1990; Muehlberger and
Ritchie, 1975], and possibly since Cretaceous time [Rifchie,
1976]. Facies changes in carbonate sequences near the fault
suggest Albian fault activity [Donnelly et al., 1990]. The
presence of Cretaceous carbonate (Valle de los Angeles
formation) on both sides of the Jocotan-Chamelecon Fault
also suggests limited motion of this very fragmented fault
since that time [Authemayou et al., 2012]. Before the large
1976 earthquake on the Motagua Fault, the Polochic Fault
was regarded by some as the major plate boundary
[Kesler, 1970; Donnelly et al., 1974; Muehlberger and
Ritchie, 1975]. The total offset of the Polochic Fault was
initially evaluated to be <150km [Kesler, 1970], then
more precisely 132+5km, based on the offset of
Paleocene-Eocene folds [Burkart, 1978]. The total offset
on the fault is far less than the 750—1500 km opening distance
of the Cayman Trough [Holcombe et al., 1990; LeRoy et al.,

2000]. These observations altogether suggest that the
Motagua Fault is the weakest fault in the system and is
indeed the most likely to accommodate much of the
transcurrent motion.

3.2. Terrane Evolutions Across the Plate Boundary

[16] High-pressure/low-temperature ophiolitic rock belts
crop out within 20 km on both sides of the Motagua Fault
and define the Motagua suture zone [e.g., Beccaluva
et al., 1995; Harlow et al., 2004; Martens et al., 2012;
Ortega-Gutiérrez et al., 2007; Ortega-Obregon et al.,
2008; Ratschbacher et al., 2009]. About half of these
belts consist of serpentinite bodies [e.g., McBirney, 1963;
Donnelly et al., 1990; Beccaluva et al., 1995]. These Early
Cretaceous rocks [Brueckner et al., 2009] were exhumed
to upper crustal levels at~110-120 Ma south of the fault
(modern coordinates), and between~75 and 55 Ma north
of the fault [Harlow et al., 2004; Brueckner et al., 2009].
The ophiolites are thrust onto two elongate terranes.

[17] The terrane that borders the Motagua Fault to the north
is the Chuactis complex, a continental terrane, which today
belongs to the Maya block and is made of a core of
micaschist and gneiss, fringed by more diverse assemblages
of amphibolite, marble, and migmatite [McBirney, 1963].
Garnet-clinopyroxene-phengite thermobarometry of Chuacus
gneisses indicates eclogitic conditions to ~700°C and
~2.1-2.4 GPa. U-Pb dating of eclogite metamorphic zircon
yielded a 75.5+2Ma age [Martens et al., 2012]. The
Chuacts complex then was retrogressed to amphibolite
grade [Ratschbacher et al., 2009]. The ages of the
eclogite-facies event and the amphibolite-facies retrogression
are equivalent [Martens et al., 2012]. Thus, exhumation of the
Chuacts complex from mantle to midcrustal depth was
quick, taking few million years. During exhumation,
Chuacts gneisses was intruded by ~76—66 Ma pegmatite
according to U-Pb, Rb-Sr, and K-Ar ages [Ratschbacher
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Figure 6. A) Shaded relief map (SRTM 90m) showing remnants of low-relief high-elevation
surfaces. The surface remnants have been mapped manually and are color coded according to their
elevation. Black box shows the location of the area view in Figure 6B. White star shows location
of the saprolite in Figure 6C. B) Relict landscape on Chuacus basement, areal view looking to the
East. White dashed line is paleo-relief border. C) Strong chemical alteration of saprolite showing

quartz veins.

et al., 2009; Martens et al., 2012] and deformed by ductile
left-lateral wrenching [Kesler, 1970; Donnelly et al.,
1990]. The complex cooled from 550°C (hornblende
Y0Ar-*?Ar) to 275°C (biotite *’Ar->’Ar) between~75 and
65Ma [Sutter, 1979; Ortega-Gutiérrez et al., 2004;
Ratschbacher et al., 2009]. The Chuacus complex belongs
to the North American continent but is separated from the rest
of the Maya block further north by a ductile shear zone, the
Baja Verapaz Fault (Figure 5), that accommodated an
unknown amount of reverse-lateral displacement [Ortega-
Obregon et al., 2008]. North of the Baja Verapaz Fault, the
basement of the Maya block consists of weakly metamorphic
Early Paleozoic sedimentary rocks intruded by Ordovician
plutons and covered by nonmetamorphic Mississipian to
Cretaceous continental to marine sedimentary units [Weber
et al., 2007; Ortega-Obregon et al., 2008; Witt et al., 2012].
[18] To the south, the Las Ovejas complex borders the
northern limit of the Chortis block. The Las Ovejas rocks
can be subdivided into metamorphosed volcanosedimentary
rocks and granitic components. The former includes
interlayered quartzofeldspathic gneisses, schists, marbles,
and amphibolites containing mineral assemblages indicative
of midamphibolite facies conditions [Ratschbacher et al.,

2009]. The metagranitic component includes metamorphosed
intrusives of dioritic to granodioritic composition, granitic
dikes, and deformed pegmatites. Amphibolite-facies condi-
tions, migmatization, intrusions, and deformation occurred
between ~27 and ~37Ma [Torres de Leon et al., 2012].
This event masked earlier Permo-Triassic and Jurassic
high-grade events and their associated intrusions and
migmatization [Ratschbacher et al., 2009]. To the south of
the Las Ovejas complex, the terrane is separated from the
rest of the Chortis block by the Jocotan-Chamelecon
Fault (Figure 5).

[19] In summary, the two sides of the Motagua Fault
exhibit contrasted metamorphic and deformation histories:
to the north, the elongate Chuacls terrane was strongly
deformed [Kesler, 1970; Donnelly et al., 1990], rapidly ex-
humed to upper crustal levels and invaded by upper-crustal
pegmatites in Late Cretaceous [Ratschbacher et al., 2009;
Martens et al., 2012]. In contrast, the Las Ovejas complex to
the south has experienced Eocene-Oligocene metamorphism
and deformation as a result of its displacement off southern
Mexico that was mainly accommodated by sinistral shear-
ing and Cenozoic tectonic transport [Torres de Leon
etal., 2012].

1000



SIMON-LABRIC ET AL.: THERMOCHRONOLOGY OF THE MOTAGUA FAULT

90°0'0"W 89°0'0"W

15°0'0"N

W A®W46-225]"

O e N

P-4

o

a
ZHe ages (Ma)
@® 0-30

=z

°

o

a

Figure7. Shaded relief map (SRTM 90 m data) showing sample locations and thermochronologic ages.
Light gray lines indicate topographic cross sections on Figure 8. Maps are arranged from lower to higher
temperature sensitive thermochronometers: A) Published *°Ar->Ar and K-Ar ages [Ortega-Gutiérrez
et al., 2004; Harlow et al., 2004; Ratschbacher et al., 2009]; squares are muscovite ages (closure
temperature of ~350°C); triangles are biotite ages (~300°C), hexagon are hornblende ages (~500°C),
and stars are feldspath ages (~250°C); B) new zircon (U-Th)/He ages (~190°C); C) published apatite
fission track (AFT) ages (~110°C) [Ratschbacher et al., 2009]. Low-relief high-elevation surfaces
(Cf. Figure 6) are shown in yellow.
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Figure 8. Geological cross sections with thermochronologic ages of Maya and Chortis blocks; A)
40Ar/*°Ar, B) ZHe, and C) AFT ages are projected along horizontal distance from the Motagua Fault.
Age color coding and topographic profiles located in Figure 7. Gray surfaces are projections of landscape
relicts along the topographic profile, and shade gray line is the paleo-relief reconstruction.

3.3. Magmatic, Volcanic, and Thermal Settings on
Either Side of the Motagua Fault

[20] The two sides of the Motagua Fault exhibit contrasted
igneous and thermal histories. South of the Motagua Fault,
the Chortis block has been affected by voluminous volcanic
activity since at least Eocene time [Donnelly et al., 1990].
Modern calc-alkaline volcanism is very active and forms the
Central American Volcanic Arc [Carr and Stoiber, 1990],
along the western edge of the Chortis block (Figure 2).
Volcanic activity is recorded up to 150 km behind the main
volcanic arc. This back-arc basaltic alkaline volcanism is
widespread and has formed extensive monogenetic cone fields
and some stratovolcanoes between the volcanic arc and the
MPFZ [e.g., Walker et al., 2011]. In the past, igneous activity
of the Chortis block was also very active and punctuated by
large Eo-Oligocene and Miocene ignimbritic flare-ups in the
volcanic arc [Jordan et al., 2007]. Across the northern part of
the Chortis block, Late Cretaceous to early Cenozoic
magmatism defines a broad swath (100 km wide) of magmatism
[Horne et al., 1976; Kozuch, 1991]. Aeromagnetic data in
Honduras show a magnetic anomaly that has been interpreted
as the associated intrusive belt referred to here as the Northern
Chortis magmatic zone [Rogers et al., 2007]. This belt crosses
the west termination of the Las Ovejas complex, which has
been nearly continuously intruded by large volumes of magma
between 40 and 20 Ma (Figure 5) [Ratschbacher et al., 2009].
Further east, the southern wall of the Cayman Trough exposes
plutonic and volcanic rocks of Paleocene and Eocene age
[Holcombe et al., 1990] that are regarded as the oriental limit
of the continental Chortis terrane.

[21] North of the Motagua Fault, some igneous activity is
also evident but is characterized by episodic and low-volume
activity (Figure 2): (1) middle-late Miocene intrusions within
the Permian basement [ Wawrzyniec, 2005; Witt et al., 2012];
(2) subduction related Plio-Quaternary volcanism in a zone
bounding the Central Depression and the High Sierra; and
(3) recent volcanism related to the El Chichon volcano along

the North Deformational Front [Garcia-Palomo et al., 2004;
Mora et al., 2007]. From the middle-late Miocene, arc volca-
nism that started in the Sierra de Chiapas showed restricted
activity and coeval inland migration from the Tonala Fault
toward the Chiapas fold-and-thrust belt (Figure 2).

[22] The present-day heat flow map [Blackwell and
Richards, 2004] shows a similar thermal asymmetry astride
the MPFZ, which tectonically juxtaposes the high heat flow
Chortis block to the south against the low heat flow Maya
block to the north (Figure 1B). Locally, in the Chortis block,
heat flow values exceed 250 pW/m?> [Meert and Smith,
1991], suggesting that active arc magmatism in the Chortis
block participates to this thermal anomaly.

3.4. Geomorphology and Recent Deformation

[23] The disparity of deformation, igneous, and thermal his-
tories recorded on either side of the Motagua Fault contrasts
with the similarity of large-scale geomorphologic markers
across the fault. The Motagua Fault is the location of a long
valley that tracks the fault over its entire length and is presently
occupied by the Motagua River (Figure 6). On either side of
the Motagua valley, landscape exhibits extensive, low-relief
relict erosional surfaces, now found on top of the most
elevated mountains. North of the Motagua Fault, the upland
surface is well defined and stands some 2000 m above the river
floor [Authemayou et al., 2011; Brocard et al., 2011]. The
upland surface is mantled by a thick (~100 m) saprolite devel-
oped over the crystalline rocks of the Chuaciis complex
(Figure 6C). The surface started being perched and dissected
in the Late Miocene, between 12 and 7 Ma [Brocard et al.,
2011]. On the Chortis block, an extensive paleosurface of
both erosional and depositional origin, thought to have formed
as a low, rolling country, not far above sea level [Williams and
McBirney, 1969], is now buried below >2 km thick ignimbrite
sheets that were deposited during a Miocene volcanic flare-up
that peaked between 17 and 13 Ma [Sigurdsson et al., 2000;
Jordan et al., 2007]. Subsequent uplift and incision of the

1002



SIMON-LABRIC ET AL.: THERMOCHRONOLOGY OF THE MOTAGUA FAULT

Table 2. Zircon (U-Th)/He Ages From the Motagua-Polochic Fault Zone®

Profile Sample Easting Northing Elev. “He U Th Rawage Fr Corr. Age Error Lab
(decimal degrees) (decimal degrees) (m) nec/g (ppm)  (ppm) (Ma) (Ma) (Ma)
San Lorenzo 10-51z2 15.11947 —89.68592 2220 5501125.19 1443.57 218.55 304  0.66 45.7 1.7 ETH-Z-Z
San Lorenzo 10-51z4 " " " 4485585.64 1065.08 184.54 334  0.68 49.1 1.2 UofA
474 23
San Lorenzo 11-11z1 15.06777 —89.68684 1468 42554832 130.23  60.81 243 0.69 35.1 1.2 ETH-Z-Z
San Lorenzo 11-11z3 " " " 48209538 105.83  65.63 328 079 41.6 0.9 ETH-Z
" " 383 4.6
San Lorenzo 11-71z1 15.05106 —89.67471 923  1393074.17 402.81 153.27 262  0.68 38.7 0.9 ETH-Z
San Lorenzo 11-712z3 " " " 1347577.71 40442 84.24 262 0.77 34.1 0.8 ETH-Z
36.4 32
San Lorenzo 11-81z1 15.04392 —89.66888 635 198130692 584.80 22532 257 0.78 33.1 0.9 ETH-Z
San Lorenzo 11-81z2 " " " 1157806.9 321.53 196.44 260  0.72 36.0 0.8 ETH-Z
San Lorenzo 11-81z4 " " " 839907.06  290.10 166.65  21.1 0.71 29.7 0.6 ETH-Z
329 4.4
San Lorenzo  46-5z2 15.05132 —89.67309 833 6476028.54 178191 565.33 279  0.71 39.6 1.9 ETH-Z
San Lorenzo  46-5z3 " " " 1258464.49 27840 9598 353 0.86 41.3 0.6 UofA
40.4 1.2
San Lorenzo  46-8z1 15.06125 —89.67835 1247 2180891.79 551.85 180.54  30.3  0.77 39.2 1.2 ETH-Z
San Lorenzo  46-8z2 " " " 112263147 317.89 11392 269 0.72 37.2 1.1 ETH-Z
382 14
San Lorenzo 47-72z1 15.13407 —89.61218 1934 3062210.48 706.64 204.02 335 0.74 453 0.4 ETH-Z
San Lorenzo 47-72z2 " " " 3287812.57 729.55 217.15 @ 348 0.8 43.7 0.9 ETH-Z
445 1.2
San Lorenzo 47-142z1 15.1094 —89.6003 1575 4980054.48 1208.39 262.1 324 073 443 1.1 ETH-Z
San Lorenzo 47-142z2 " " " 3053247.53 818.12 154.04 295 0.74 39.7 1.3 ETH-Z
42.0 33
San Lorenzo 47-145z1 14.96282 —89.83603 355 905337.97 35333 88.73 20 0.65 31.0 1.6 ETH-Z
San Lorenzo 47-145z2 " " " 905472.71 368.06 115.12 189  0.64 29.5 1.7 ETH-Z
30.2 1.1
Chiquimula  16-11z1 14.84084 —89.67217 1584 57837299 396.74 21532 107 0.77 139 1.0 ETH-Z
Chiquimula  16-11z4 " " " 756509.41  404.00 410.20 127 0.73 17.7 0.3 UofA
Chiquimula  16-112z5 " " " 627950.12  360.49 268.30 125 0.71 17.8 0.3 UofA
Chiquimula  16-1122 " " " 830287.61 308.98 397.79 173 0.74 23.7 0.3 UofA
183 4.0
Chiquimula  16-21z4 14.82384 —89.64942 1396  8788.37 2.94 9.53 140 075 18.5 1.3 ETH-Z
Chiquimula  16-212z3 " " " 279006.85 158.40 136.07 123 0.75 16.7 0.3 UofA
17.6 1.3
Chiquimula  16-91z1 14.96998 —89.69784 249 43573556 42843  89.39 8.0 0.7 11.5 0.3 ETH-Z
Chiquimula  16-9122 " " " 249079.82  275.74 48.74 7.3 0.72 10.2 0.2 UofA
10.9 0.9
Chiquimula  16-111z1 14.94399 —89.69137 510 511369.86 564.17 36.14 7.4 0.67 11.1 0.3 ETH-Z
Chiquimula  16-11122 " " " 551157.94 571.71 125.49 7.6 0.64 11.9 0.3 ETH-Z
115 0.6
Polochic 9-111z3 15.351 —90.125 1023 2198346.83 352.41 100.31 482 075 64.0 1.9 UofA
Polochic 9-111z1 " " " 803062.67 191.23  46.28 328 071 46.2 1.1 UofA
55.1 12.6
El Chol 43-01z1 14.965 —90.4866 1041 598592.44 10572 24.29 443 081 55.0 1.3 UofA
El Chol 43-01z3 " " " 71544135 122.66 49.37 439 082 539 1.2 UofA
54.5 0.8

?Analytical uncertainty on U and Th determinations is ~3%. Abbreviations: Raw He age: grain age before applying the FT alpha-ejection correction factor; FT:
correction factor for alpha ejection [Hourigan et al., 2005] assuming homogeneous U and Th distribution; Corr He age: grain age after applying the FT alpha-
ejection correction factor. The weighted-mean age for each sample is given in bold together with the error calculated from the 1o standard deviation of the sample.
San Lorenzo is the profile from the eastern Chuacus and Chiquimula from the eastern Las Ovejas, both profiles located in the Motagua Valley. El Chol sample
comes from the western Chuacus and Polochic from the north side of the Polochic Fault.

Chortis block have been interpreted as the buoyant response of
the upper plate to an influx of mantle asthenosphere following
break-off and sinking of the Cocos plate slab after~10Ma
[Rogers et al., 2002]. In association with, or following this
long-wavelength uplift, numerous north-south trending
graben have grown in the Chortis block and disrupted its
topography since late Miocene time (by ~10.5 Ma) [Dengo
et al., 1970; Rogers et al., 2002; Jordan et al., 2007].
Horst-and-graben displacements make mapping of the
relict surfaces more difficult than on the Maya block. We
restricted our mapping to a few surface remnants (Figure 6),
where the erosional surface is easily distinguishable from the

widespread depositional surfaces of Miocene ignimbrite
sheets and more recent detrital accumulations. These relict
features are useful for thermochronologic analysis because
they constrain the Neogene topographic evolution and the
amplitude of the regional incision along the Motagua valley
since ~10 Ma.

3. Thermochronological Dating

3.1.

[24] The “°Ar-**Ar ages on K-feldspath, biotite, muscovite,
and hornblende show a clear-cut separation between the two

Compilation of Existing Thermochronological Ages
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Figure 9. Age-elevation plots of San Lorenzo (Chuacus
block) and Chiquimula (Las Ovejas block) profiles for zircon
(U-Th)/He data with weighted linear fit to the data (thick line:
best fit, gray lines: +1c variation); x axis error bars shown for
each sample.

sides of the Motagua Fault (Figure 7A) [Harlow et al., 2004;
Ratschbacher et al., 2009]. The Chuacus complex was
affected by a single event of rapid cooling during
Late-Cretaceous time when it passed the ~550°C
(hornblende *°Ar-*°Ar closure temperature) and 275-350°
C (biotite and muscovite *°Ar->’Ar closure temperatures)
isotherms between 75 and 65 Ma. South of the Motagua
Fault, the pattern of “°Ar->?Ar ages is more complex. The
western part of Las Ovejas records cooling events at ~165
and ~125 Ma, including localized Middle Jurassic to Early
Cretaceous reheating [Ratschbacher et al., 2009] followed
by Early Cretaceous retrogression during blueschist-facies
metamorphism of ophiolitic rocks [Brueckner et al.,
2009]. The “°Ar-*°Ar ages decrease abruptly toward the
east, recording cooling events at around 40 and 20 Ma
(Figure 7A). Ratschbacher et al. [2009] proposed that the
ages around 40Ma record the deformation and rapid
cooling of the Las Ovejas complex, and that ages around
20Ma could reflect a slower cooling phase or mineral
crystallization below the closure temperature for Ar
diffusion during a deformation event; clear synkinematic
mineral growth supports the latter [Ratschbacher et al.,
2009]. Notwithstanding this lateral variability of *°Ar-*°Ar
ages along the Las Ovejas complex, the most striking,
first-order pattern revealed by “’Ar-*°Ar geochronology is
a clear temporal asymmetry of the final cooling events
across the Motagua Fault, with the Chuacus complex
cooling 40Ma earlier than the Las Ovejas complex
(Figures 7A and 8A) [Ratschbacher et al., 2009].

[25] Lower-temperature cooling is tracked by apatite
fission track (AFT) ages that show a similar age jump
across the Motagua Fault, with ages ranging from 55 to
18 Ma in the Chuacus complex, and from 24 to 7Ma in
the Las Ovejas complex (Figure 7C) [Ratschbacher et al.,
2009]. A cross-sectional representation of AFT ages
(Figure 8C) shows that this difference cannot be attributed
to differences in the elevation at which the samples were
collected, but is clearly associated with the Motagua
Fault. North of the fault, AFT ages suggest slower cooling
but do not exhibit any clear trend with elevation; south of
the fault, AFT ages show a better correlation with elevation

but also tend to be younger near the Motagua Fault
(Figure 8C). The apparent tilt of AFT ages along the north-
ern border of the Chortis block suggests a north-south
lateral gradient in cooling evolution.

3.2. ZHe Analyses

[26] Samples for (U-Th)/He on zircon (ZHe) dating were
collected along steep profiles on both sides of the lower
Motagua valley. Estimated closure temperatures for the
ZHe system vary slightly depending on grain size and rate
of cooling. Diffusion parameters have been experimentally
determined for zircon by Reiners et al. [2004] and yield a
nominal closure temperature ranging from ~170 to 190°C,
and a helium partial retention zone spanning a temperature
range of 120 —180°C [Tagami et al., 2003]. The ZHe
thermochronometer has a closure temperature that bridges
the gap between the *°Ar->’Ar and AFT thermochronometers
[Reiners, 2005].

[27] Fifteen samples were analyzed to construct two age-
elevation profiles on both sides of the Motagua valley
(Figure 7B). The samples were collected below the upland
relict surfaces approximately every ~100m along the
profiles, wherever possible. The northern profile (San
Lorenzo) is composed of nine samples collected between
400 and 2300 m along a roughly north-south transect within
the Chuacus complex. The southern profile (Chiquimula) is
composed of four samples collected up the southern flank of
the Motagua valley, between 200 and 1600 m within the Las
Ovejas complex. The strong chemical alteration and small
size of the zircons strongly limited the analyzable samples
along this transect. In addition, two isolated samples have
been collected in the western Chuacus complex and one
north of the Polochic Fault.

[28] Mineral separation was performed following stan-
dard crushing, sieving, magnetic, and density separation
procedures. Grains were hand-picked in the 80 to 200 um
fraction to select idiomorphic and inclusion-free specimens.
The majority of (U-Th)/He analyses were performed at
the ETH Zurich, and a subset was analyzed at the
University of Arizona, following the method described by
Reiners et al. [2004] in both laboratories. The abundance
of He in each crystal was measured by laser mass spec-
trometry. The concentrations of U and Th were measured
by isotope dilution. An a-ejection correction (Ff) was
applied to each crystal to derive a corrected (U-Th)/He
age [Reiners, 2005].

3.3. ZHe Results

[29] Table 2 displays the geographic coordinate, ZHe
ages, and 1-sigma errors for all dated zircon grains. The
reproducibility of ZHe ages is good, with an average 1-sigma
error of about 8%. As in the case of the “°Ar->?Ar and AFT
ages, the ZHe ages show a first-order discontinuity across
the Motagua Fault: with ages between 55 and 30 Ma, cooling
of the Chuacus complex is substantially older than cooling of
the Las Ovejas complex (18-10Ma; Figures 7B and 8B).
Along the San Lorenzo profile, to the north of the Motagua
Fault, ZHe ages range from 30.2+1.1 Ma to 47.4+2.3 Ma,
following a very good linear trend of increasing ages with
elevation (R>=0.85; Figure 9) with a slope of 106 m/Ma
(93-126 m /Ma with 95% confidence). The Las Ovejas ZHe
ages range from 10.94+1.9Ma to 18.3+4.0 Ma and correlate
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positively with elevation (R?=0.99) with a slope of 157 m/Ma
(91-567m /Ma with 95% confidence). Both ZHe age-
elevation relationships have similar slopes, with a 20 Ma
offset. Further north, the crossing of the Baja Verapaz
shear zone and of the Polochic Fault is not marked by
any substantial change in exhumation history, with ZHe
ages of 55.1+12.8 Ma beyond the Polochic Fault, which
is not significantly older than those of the Chuacus
complex (Figure 7B).

5. Discussion

5.1. Origin of the Thermochronologic Asymmetry
Across the Motagua Fault

[30] Variability of the thermochronological record is
classically interpreted to record variability of denudation
patterns. After testing this hypothesis, we investigate
whether the persistence of contrasted geothermal gradients
that were transported and juxtaposed across the Motagua
strike-slip Fault could explain the observed contrast in
thermochronologic record.

5.1.1. Hypothesis 1: Asymmetry of the Denudation

[31] Here we test whether younger thermochronological
ages south of the Motagua Fault record higher denudation
in the Chortis block. Similar slopes in ZHe age-elevation
relationships of ~110-150 m /Ma on both sides of the fault
show that denudation rates were similar during the time-lapse
recorded by ZHe ages (i.e., ~30—45 Ma north and ~10-20 Ma
south of'the fault). Consequently, the only way to reconcile the
data is to allow a post-30 Ma decrease in denudation rate north
of the fault and/or a post-10 Ma increase in denudation rate
south of the fault.

[32] The evolution of topography and deformation across
the Motagua Fault contradicts the idea of faster denudation
of the southern block in the Miocene. The surface generally
stands at a lower elevation than the Chuacus complex and
has been experiencing stretching and localized subsidence
since the late Miocene (~10.5Ma) [Dengo et al., 1970;
Rogers et al., 2002; Jordan et al., 2007]. Furthermore, the
preservation and incision of low-relief surfaces of mid- to
late Miocene age on both sides of the fault suggest a similar
Miocene geomorphic and denudational evolution across the
fault and do not support an asymmetry of Miocene denudation
rates. Moreover, the low denudation rate of ~150 m/Ma of
the Las Ovejas complex is confirmed by K-Ar ages and
barometric data in the composite Chiquimula batholith
(Figure 5) [Ratschbacher et al., 2009]. This study indicates
that emplacement of the latest-stage magma occurred ~20 Ma
at a depth of 3.0 to 5.0 km, implying an integrated denudation
rate of 150-225 m /Ma over the last 20 Ma to bring these rocks
to the surface, with no specific increase of exhumation rate
after 10 Ma. Finally, the preservation of “°Ar/>°Ar ages at~
110-120 Ma in the western Las Ovejas complex (Figure 7)
[Brueckner et al., 2009] implies a limited thickness of total
denudation south of the Motagua Fault. Consequently, all avail-
able geological, geomorphological, and thermochronological
data testify against a significant asymmetry in denudation
rates across the Motagua Fault.

5.1.2. Hypothesis 2: Asymmetry of the Geothermal
Gradient

[33] The compilation of magmatic, volcanic, and heat flow

data supports an asymmetric evolution of the thermal setting

across the fault; the large-scale strike-slip displacement that
has recently juxtaposed the cold Maya block to the north
against the hot, arc-derived, Chortis block to the south, has
generated this spatial asymmetry. Numerical simulations
show that a persistent asymmetry in thermal input can
account for a thermochronologic asymmetry. In order to
quantitatively test this second hypothesis, we compare
observed white mica “°Ar-**Ar, ZHe, and AFT cooling ages
with synthetic thermochronologic ages obtained from our
modeling results (modified version of Pecube). The model
is constrained with available thermal, geological, and
geomorphological data.

[34] Like in the previous models, this model starts at
85Ma with a thermal gradient of 20°C/km in the Maya
block (Ha=0pW m™?) and 40°C/km in the Chortis block
(Ha=29pWm>). These values correspond to the
present-day thermal setting derived from heat flow data.
Consequently, we assume a persistent and stable geothermal
asymmetry. All other model parameters are equal in the
two blocks. A uniform and steady vertical rock uplift
velocity is imposed. The model starts with a flat topography
that simulates the initial, low-relief surface and evolves after
10 My toward a synthetic topography with a 30 km wavelength
and 2 km amplitude, simulating the Late Miocene incision
of the Motagua valley.

[35] The two sides of the Motagua Fault are simulated
separately to avoid lateral heat transfer across the Motagua
Fault. Numerical simulations show that lateral heat transfer
across the fault should produce a progressive age transition
across a strike-slip fault (Figure 4). This is not the case with
the three thermochronometers (*°Ar->Ar, ZHe, and AFT)
used here, suggesting that lateral heat transfer and thus
contact between two different thermal blocks is more recent
than the thermochronologic record.

[36] Some recent thermochronologic studies have used
Pecube coupled to the Neighborhood Algorithm to invert
thermochronologic ages and extract relevant values for
model parameters [e.g., Herman et al., 2010; Valla et al.,
2010], but a pertinent inversion of thermochronologic data
sets requires a numerical model reproducing all of the active
and significant thermal processes in the defined study area
[van der Beek et al., 2010]. Here we consider this 2D
thermo-kinematic model as a simplification of the complex
thermo-tectonic evolution of the MPFZ. Our goal is to
evaluate the impact of the persistent geothermal asymmetry
on the thermochronology across the Motagua Fault and not
to reproduce the entire complexity. Limitations of the model
are fully discussed in the next section.

[37] The best fit values to actual data are obtained for a
steady vertical rock uplift of 170 m/Ma (Figure 10). In first
order, the fit is very good overall, demonstrating that our
model satisfactorily explains the data set. We show here that
this slow and steady denudation rate explains quite well
both cooling of the Chuacts complex since ~70 Ma (with
20°C/km geotherm) and cooling of the Las Ovejas complex
(with 40°C/km geotherm) since ~35 Ma. A denudation rate of
170 m/Ma is compatible with the denudation rates estimated
from ZHe age-clevation relationships, which are 110 and
~160m/Ma for the Chuactis and Las Ovejas complexes,
respectively, and consistent with the integrated 150-225 m /Ma
denudation rates since 20 Ma in the Chortis block derived
from the depth of emplacement of the Chiquimula batholith.
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[38] The long-term spatial variability in thermal structure
can strongly impact the thermochronological record.
Numerical simulation of a persistent geotherm difference
between two tectonic blocks sliding along a strike-slip fault
demonstrates that this juxtaposition of blocks is sufficient
to reproduce satisfactorily the observed asymmetry without
calling for differences in denudation rates.

5.2. Limitations of the Thermal Model

[39] Some residual misfit between observed and synthetic
data indicates that our model does not fully reproduce the
cooling and tectonic evolution of the MPFZ. First, a steady
denudation rate since 85Ma is at odds with the two-stage
exhumation of the Chuacus rocks since the Late Cretaceous
[Ratschbacher et al., 2009]. The simulation of middle and
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respectively.

high-temperature thermochronometers such as *°Ar-°Ar
ages on K-feldspar, biotite, or hornblende would be
necessary to reproduce the Late Cretaceous rapid cooling
event. Second, in addition to this major tectonic unroofing,
Chuacus rocks are locally intruded at ~76-66 Ma by upper-
crustal pegmatites [Ratschbacher et al., 2009; Martens
et al., 2012], their emplacements are not simulated and could
have locally perturbed the thermal structure. Third, the model
only calculates thermochronological ages by rock cooling
and not by syn-deformational mineral crystallization below
the closure temperature of Ar diffusion. Then, modeling
does not reproduce old *°Ar/*°Ar ages at~110-120 Ma in
the western Las Ovejas complex (Figure 7) [Brueckner
et al., 2009]. As discussed previously, the conservation of
these Early Cretaceous cooling ages implies a limited total
denudation south of the Motagua Fault, but the origin of this
lateral variability in the Las Ovejas complex is difficult to
evaluate in the present state of knowledge of the Tertiary de-
formation and magmatic evolution of the Las Ovejas com-
plex. Finally, we do not simulate the east-west extension
of the Chortis block since late Miocene time
(by~10.5Ma) [Dengo et al., 1970; Rogers et al., 2002],
which has probably impacted the thermochronological
data set.

[40] In summary, the complexity of the tectonic evolution
of the MPFZ is not fully reproduced by our modeling, but
the variability of the thermal structure either sides of the
Motagua Fault clearly appears as the first-order process
controlling white mica *“’Ar-*’Ar, ZHe, and AFT ages.
More generally, we show here that thermochronological data
are not a direct measurement of denudation patterns, but
rather than function of both denudation processes through
tectonic and erosion processes, and thermal processes such
geothermal difference across a strike-slip fault.

5.3. Origin of Persistent Difference in Geothermal
Gradients Across the Motagua Fault

[41] The Chortis block is believed to have been originally
located along the Pacific margin of Mexico [Karig, 1978;
Gose, 1985; Pindell et al., 1988; Ross and Scotese, 1988;
Schaaf et al., 1995; Mann, 2007]. Indeed, high shear stress
across the Caribbean-North American plate boundary during
the Eocene triggered breakaway of the Chortis Block from

southern Mexico, coeval with initiation of the Cayman
trough pull-apart basin. This sinistral break away started in
the Xolapa complex (Figure 1A) that had been an arc at least
since Late Cretaceous and thus was thermally weakened.
This terrane started drifting eastward in the wake of the
Caribbean plate and migrated along the plate margin, over
the subducting slab, remaining in an arc position between
the continental interior of North America and the subduction
zone (Figure 11) [Mann, 2007; Ratschbacher et al., 2009].
From a thermal point of view, the Chortis block has stayed
in an arc position and thus continuously intruded by a large
amount of magma, which explains the persistence of a high
geothermal gradient since the Eocene.

[42] In contrast, the northern side of the Motagua valley,
the Maya block, has remained in a back-arc position for the
last 65Ma, far from any arc activity. Since the Middle
Miocene, displacement of the Chortis block along the
southwestern margin of the North America plate brought
the Maya block closer to the subduction (Figure 11) [e.g.,
Pindell and Kennan, 2009], but igneous activity along the
Sierra de Chiapas has remained probably too sparse to
significantly increase the crustal geothermal gradient
(Figure 1B). The flat slab geometry of the subducted Cocos
plate beneath the Sierra de Chiapas has induced a 450 km long
volcanic gap between the eastern end of the Trans-Mexican
Volcanic Belt to the northwest and the northwestern end
of the narrow Central American Volcanic Arc to the
southeast [Manea and Manea, 2006].

[43] Numerical simulations show that the lateral transport
of two tectonic blocks with different geotherm should
produce lateral heat transfer across the fault and a progressive
age transition across the Motagua Fault. This is not the case
with the three thermochronometers (40Ar—39Ar, ZHe, and
AFT) used here, suggesting that lateral heat transfer is likely
more recent than the thermochronologic record. Heat transfer
would have to occur after 7-10 Ma in the Chortis block and
after 20-25Ma in the Maya block. Before the Middle
Miocene, the northeastern side of Chortis (northeast of the
Las Ovejas complex) was also a magmatic arc [Solari
et al., 2007; Ratschbacher et al., 2009; Torres de Leon
et al., 2012] with likely hot geothermal conditions, a possible
explanation for the lack of heat exchange. Lower-temperature
thermochronometers, such as apatite (U-Th)/He, would be
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necessary to detect and date the onset of heat transfer across
the Motagua Fault and therefore understand the initiation of
the modern situation with a Motagua Fault acting as a
thermal boundary.

6. Conclusions

[44] Published “°Ar-*°Ar and AFT ages combined with
new ZHe age-elevation relations show a pronounced cooling
age discontinuity across the Motagua Fault. The present-day
surface heat flow, slopes of the age-elevation relationships,
geomorphologic features, and thermo-kinematic modeling
results all suggest similar denudation rates across the fault
since the Oligocene. A period of moderate denudation
(~170 m/Ma) allowed for the formation of low-relief
landscapes on both blocks prior to the inception of surface
uplift since the Middle-Upper Miocene. The contrasted age
patterns across the fault and the ZHe age-clevation relations
are better explained by a persistent difference in geothermal
gradient, the Motagua Fault now juxtaposing the cold Maya
block and the hot Chortis block. This work highlights the
importance of considering lateral variations of the geotherm,
and not only differential denudation mechanisms, when
interpreting age patterns and age-elevation variability across
strike-slip faults.
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