Z. Legerosr and J. Legeros, Calcium phospate bioceramics:past, present, future, Key Eng Mater, vol.3, pp.240-242, 2003.

W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of Materials Research, vol.95, issue.36, pp.94-117, 1998.
DOI : 10.1007/BF01139073

U. Srinivasa-rao-ch, K. Kumar, and C. Jayasankar, Luminescence properties of Eu3+ ions in phosphate-based bioactive glasses, Solid State Sciences, vol.13, issue.6, pp.1309-1314, 2011.
DOI : 10.1016/j.solidstatesciences.2011.03.027

L. Hench, R. Splinter, W. Allen, and T. Greenlee, Bonding mechanism at the interface of ceramic prosthetic materails, J Biomed Mater Res, vol.2, pp.117-141, 1971.

I. Izquierdo-barba and M. Vallet-regi, Fascinating properties of bioactive templated glasses: A new generation of nanostructured bioceramics.Solid State Sci2011, pp.773-783

M. Vallet-regí, F. Balas, and D. Arcos, Mesoporous Materials for Drug Delivery, Angewandte Chemie International Edition, vol.98, issue.40, pp.7548-58, 2007.
DOI : 10.1002/anie.200604488

L. Hench and J. Polak, Third-Generation Biomedical Materials, Science, vol.295, issue.5557, pp.1014-1017, 2002.
DOI : 10.1126/science.1067404

D. Arcos, D. Real, R. Vallet-regí, and M. , Biphasic materials for bone grafting and hyperthermia treatment of cancer, Journal of Biomedical Materials Research Part A, vol.44, issue.1, pp.71-78, 2003.
DOI : 10.1002/jbm.a.10445

L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, vol.6, issue.1, pp.1487-510
DOI : 10.1016/0142-9612(86)90064-5

J. Rao, A. Dragulescu-andrasi, and Q. Yaoh, Fluorescence imaging in vivo: recent advances, Current Opinion in Biotechnology, vol.18, issue.1, pp.17-25, 2007.
DOI : 10.1016/j.copbio.2007.01.003

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu et al., Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties, Biomaterials, vol.31, issue.12, pp.3287-95, 2010.
DOI : 10.1016/j.biomaterials.2010.01.040

F. Chen, P. Huang, Y. Zhu, J. Wu, and D. Cui, Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging, Biomaterials, vol.33, issue.27, pp.6447-6455, 2012.
DOI : 10.1016/j.biomaterials.2012.05.059

S. Dembski, S. Rupp, M. Milde, C. Gellermann, M. Dyrba et al., Synthesis and optical properties of luminescent core???shell structured silicate and phosphate nanoparticles, Optical Materials, vol.33, issue.7, pp.331106-1110, 2011.
DOI : 10.1016/j.optmat.2010.10.036

H. Chander, Development of nanophosphors???A review, Materials Science and Engineering: R: Reports, vol.49, issue.5, pp.113-155, 2005.
DOI : 10.1016/j.mser.2005.06.001

H. Höppe, Recent Developments in the Field of Inorganic Phosphors, Angewandte Chemie International Edition, vol.3, issue.301, pp.3572-3582, 2009.
DOI : 10.1002/anie.200804005

J. Shen, L. Sun, and C. Yan, Luminescent rare earth nanomaterials for bioprobe applications, Dalton Transactions, vol.104, issue.42, pp.5687-5697, 2008.
DOI : 10.1039/b805306e

D. Araujo, T. Macedo, Z. , D. Oliveira, P. Valerio et al., Production and characterization of pure and Cr3+-doped hydroxyapatite for biomedical applications as fluorescent probes, Journal of Materials Science, vol.67, issue.2, pp.2236-2279, 2007.
DOI : 10.1007/s10853-006-0536-3

R. Jagannathan and M. Kottaisamy, Eu 3+ luminescence: A spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F -, Cl -, Br -or OH -), J Phys Condens Matter, issue.44, p.78453, 1995.

O. Graeve, R. Kanakala, A. Madadi, B. Williams, and K. Glass, Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions, Luminescence variations in hydroxyapatites doped with Eu 2+ and Eu 3+ ions, pp.4259-4267, 2010.
DOI : 10.1016/j.biomaterials.2010.02.009

B. Tissue, Synthesis and Luminescence of Lanthanide Ions in Nanoscale Insulating Hosts, Chemistry of Materials, vol.10, issue.10
DOI : 10.1021/cm9802245

A. Groza, Review of the processes identified during the polymerization of organic and organosilicon liquid films in atmospheric pressure air corona discharges, Rom Rep Phys, vol.64, issue.2012, pp.1227-1242

F. Wang, W. Tan, Y. Zhang, X. Fan, and M. Wang, Luminescent nanomaterials for biological labelling, Nanotechnology, vol.17, issue.1, pp.1-13, 2006.
DOI : 10.1088/0957-4484/17/1/R01

F. Meiser, C. Cortez, and F. Caruso, Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles, Angewandte Chemie International Edition, vol.42, issue.44, pp.5954-5957, 2004.
DOI : 10.1002/anie.200460856

Y. Han, X. Wang, H. Dai, and S. Li, Synthesis and luminescence of Eu3+ doped hydroxyapatite nanocrystallines: Effects of calcinations and Eu3+ content, Journal of Luminescence, vol.135, pp.281-287, 2012.
DOI : 10.1016/j.jlumin.2012.09.029

J. Rakovan and R. Reeder, Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth, Geochimica et Cosmochimica Acta, vol.60, issue.22, pp.4435-4445, 1996.
DOI : 10.1016/S0016-7037(96)00244-X

R. Reisfeld, M. Gaft, G. Boulon, G. Panczer, and C. Jorgensen, Laser-induced luminescence of rare-earth elements in natural fluor-apatites, Journal of Luminescence, vol.69, issue.5-6, pp.343-353, 1996.
DOI : 10.1016/S0022-2313(96)00114-7

I. Mayer, J. Layani, A. Givan, M. Gaft, and P. Blanc, La ions in precipitated hydroxyapatites, Journal of Inorganic Biochemistry, vol.73, issue.4, pp.221-226, 1999.
DOI : 10.1016/S0162-0134(99)00019-7

P. Martin, G. Carlot, A. Chevarier, C. Den-auwer, and G. Panczer, Mechanisms involved in thermal diffusion of rare earth elements in apatite, Journal of Nuclear Materials, vol.275, issue.3, pp.268-276, 1999.
DOI : 10.1016/S0022-3115(99)00126-9

URL : https://hal.archives-ouvertes.fr/in2p3-00002423

A. Doat, M. Fanjul, F. Pelle, E. Hollande, and A. Lebugle, Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells, Biomaterials, vol.24, issue.19, pp.3365-3371, 2003.
DOI : 10.1016/S0142-9612(03)00169-8

A. Doat, F. Pelle, N. Gardant, and A. Lebugle, Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe, Journal of Solid State Chemistry, vol.177, issue.4-5, pp.1179-1187, 2004.
DOI : 10.1016/j.jssc.2003.10.023

A. Doat, F. Pellé, and A. Lebugle, Europium-doped calcium pyrophosphates: Allotropic forms and photoluminescent properties, Journal of Solid State Chemistry, vol.178, issue.7, pp.2354-2362, 2005.
DOI : 10.1016/j.jssc.2005.05.023

URL : https://hal.archives-ouvertes.fr/hal-00474901

S. Mondejar, A. Kovtun, and M. Epple, Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments, Journal of Materials Chemistry, vol.14, issue.39, pp.4153-4159, 2007.
DOI : 10.1039/b708258d

C. Ciobanu, S. Iconaru, L. Coustumer, and P. , Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria, Nanoscale Research Letters, vol.7, issue.1, p.324, 2012.
DOI : 10.1016/j.carbpol.2008.09.013

J. Capobianco, P. Proulx, and N. Raspa, Laser-excited fluorescence spectroscopy and crystal field analysis of europium(III)-doped cordierite glass, Chemical Physics Letters, vol.160, issue.5-6, pp.591-596, 1989.
DOI : 10.1016/0009-2614(89)80069-7

. Eu, 3+ ions in oxifluoride glasses. Comparison with fluoride and oxide glasses, J Chem Phys, vol.115, issue.23, pp.10935-10944, 2001.

M. Zambelli, M. Abril, V. Lavin, A. Speghini, and M. Bettinelli, Fluorescence line narrowing spectroscopy of Eu 3+ in a niobium tellurite glass. Phys Non-Crystalline Solids, pp.345-346386, 2004.

. Kushidat, Site-selective fluorescence spectroscopy of Eu 3+ and Sm 2+ ions in glass, J Lumin, vol.100, pp.1-473, 2002.

R. Frost, S. Mills, and M. Weier, Peisleyite an unusual mixed anion mineral???a vibrational spectroscopic study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.61, issue.1-2, pp.177-184, 2005.
DOI : 10.1016/j.saa.2004.04.008

M. Fleet and X. Liu, Coupled substitution of type A and B carbonate in sodium-bearing apatite, Biomaterials, vol.28, issue.6, pp.916-926, 2007.
DOI : 10.1016/j.biomaterials.2006.11.003

M. Sivakumar, S. Kumart, T. Shantha, K. , P. Rao et al., Development of hydroxyapatite derived from Indian coral, Biomaterials, vol.17, issue.17, pp.1709-1714, 1996.
DOI : 10.1016/0142-9612(96)87651-4

C. Ciobanu, S. Iconaru, F. Massuyeau, L. Constantin, A. Costescu et al., Synthesis, Structure, and Luminescent Properties of Europium-Doped Hydroxyapatite Nanocrystalline Powders, Journal of Nanomaterials, vol.6, issue.4, pp.10-1155, 2012.
DOI : 10.1016/S1002-0721(07)60455-4

J. Kolmas, A. Jaklewicz, A. Zima, M. Bu?ko, Z. Paszkiewicz et al., Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties, Journal of Molecular Structure, vol.987, issue.1-3, pp.40-50, 2011.
DOI : 10.1016/j.molstruc.2010.11.058

B. Matsuhiro and P. Rivas, Second-derivative Fourier transform infrared spectra of seaweed galactans, Journal of Applied Phycology, vol.11, issue.1, pp.45-51, 1993.
DOI : 10.1007/BF02182421

E. Gómez-ordóñez and P. Rupérez, FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds, Food Hydrocolloids, vol.25, issue.6, pp.1514-1520, 2011.
DOI : 10.1016/j.foodhyd.2011.02.009

J. Uggeri, S. Guizzardi, R. Scandroglio, and R. Gatti, Adhesion of human osteoblasts to titanium: A morpho-functional analysis with confocal microscopy, Micron, vol.41, issue.3, pp.210-219, 2010.
DOI : 10.1016/j.micron.2009.10.013

T. Buttke, J. Mccubrey, and T. Owen, Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines, Journal of Immunological Methods, vol.157, issue.1-2, pp.233-240
DOI : 10.1016/0022-1759(93)90092-L

C. Limban and M. Chifiriuc, Antibacterial Activity of New Dibenzoxepinone Oximes with Fluorine and Trifluoromethyl Group Substituents, International Journal of Molecular Sciences, vol.12, issue.12, pp.6432-6444, 2011.
DOI : 10.3390/ijms12106432

C. Limban, L. Marutescu, and M. Chifiriuc, Synthesis, Spectroscopic Properties and Antipathogenic Activity of New Thiourea. Derivatives Molecules, pp.7593-7607, 2011.

L. Marutescu, C. Limban, M. Chifiriuc, A. Missir, I. Chirita et al., Studies on the antimicrobial activity of new compounds containing thiourea function, Biointerface Research in Applied Chemistry, vol.1, issue.6, pp.236-241, 2011.

B. Fowler, Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution, Inorganic Chemistry, vol.13, issue.1, pp.194-207, 1974.
DOI : 10.1021/ic50131a039

M. Markovik, B. Fowler, and M. Tung, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, Journal of Research of the National Institute of Standards and Technology, vol.109, issue.6, pp.553-568, 2004.
DOI : 10.6028/jres.109.042

W. Jastrzebski, M. Sitarz, M. Rokita, and K. Bu?at, Infrared spectroscopy of different phosphates structures, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.79, issue.4, pp.722-727, 2011.
DOI : 10.1016/j.saa.2010.08.044

K. Nakamoto and . In, Nakamoto K: Infrared and Raman spectra of inorganic and coordination compounds, 1978.

R. Legeros, G. Bonel, and R. Legros, Types of ???H2O??? in human enamel and in precipitated apatites, Calcified Tissue Research, vol.258, issue.1, pp.111-118, 1978.
DOI : 10.1007/BF02013245

D. Holcomb and R. Yung, Thermal decomposition of human tooth enamel, Calcified Tissue International1980, pp.189-209

J. Elliott, The crystallographic structure of dental enamel and related apatites

H. Owada, K. Yamashita, T. Umegaki, T. Kanazawa, and M. Nagai, Humidity-sensitivity of yttrium substituted apatite ceramics. Solid State Ionics, pp.3-4401, 1989.

C. Ribeiro, C. Gibson, I. Barbosa, and M. , The uptake of titanium ions by hydroxyapatite particles???structural changes and possible mechanisms, Biomaterials, vol.27, issue.9, pp.1749-1761, 2006.
DOI : 10.1016/j.biomaterials.2005.09.043

C. Rey, M. Shimizu, B. Collins, and M. Glimcher, Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in thev 3 PO4 domain, Calcified Tissue International, vol.1, issue.6, pp.383-388, 1991.
DOI : 10.1007/BF02555847

M. Kay, R. Young, and A. Posner, Crystal Structure of Hydroxyapatite, Nature, vol.8, issue.4963, pp.1050-1052, 1964.
DOI : 10.1063/1.1743345

C. Paluszkiewicz, A. Slosarczyk, D. Pijocha, M. Sitarz, M. Bucko et al., Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite, Journal of Molecular Structure, vol.976, issue.1-3, pp.301-309, 2010.
DOI : 10.1016/j.molstruc.2010.04.001

K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, vol.21, issue.7, pp.667-81, 2000.
DOI : 10.1016/S0142-9612(99)00242-2

A. Garcia and C. Reyes, Bio-adhesive Surfaces to Promote Osteoblast Differentiation and Bone Formation, Journal of Dental Research, vol.84, issue.5, pp.407-420, 2005.
DOI : 10.1002/(SICI)1097-4636(19990315)44:4<389::AID-JBM4>3.0.CO;2-O

B. Keselowsky, D. Collard, and A. Garcia, Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding, Biomaterials, vol.25, issue.28, pp.5947-54, 2004.
DOI : 10.1016/j.biomaterials.2004.01.062

C. Mcfarland, C. Thomas, D. Filippis, C. Steele, J. Healy et al., Protein adsorption and cell attachment to patterned surfaces, Journal of Biomedical Materials Research, vol.230, issue.2, pp.200-210, 2000.
DOI : 10.1002/(SICI)1097-4636(200002)49:2<200::AID-JBM7>3.0.CO;2-L

F. Raimondi, G. Scherer, R. Kotz, and A. Wokaun, Nanoparticles in Energy Technology: Examples from Electrochemistry and Catalysis, Angewandte Chemie International Edition, vol.14, issue.121, pp.2190-2209, 2005.
DOI : 10.1002/anie.200460466

J. Morones, J. Elechiguerra, A. Camacho, and J. Ramirez, The bactericidal effect of silver nanoparticles, Nanotechnology, vol.16, issue.10, pp.2346-2353, 2005.
DOI : 10.1088/0957-4484/16/10/059

G. Sauer and R. Wuthier, Fourier transform infrared characterization of mineral phases formed during induction of mineralization bycollagenase-released matrix vesicles in vitro

P. Granja and M. Barbosa, Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels, Journal of Materials Science, vol.36, issue.9, pp.2163-72
DOI : 10.1023/A:1017587815583

S. Hutchens, R. Benson, B. Evans, O. Neillh, M. Rawn et al., Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel, Biomaterials, vol.27, issue.26, pp.4661-4670, 2006.
DOI : 10.1016/j.biomaterials.2006.04.032

C. Rey, M. Shimuzu, B. Collins, and M. Glimcher, Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in thev 4 PO4 domain, Calcified Tissue International, vol.5, issue.1, pp.384-394, 1990.
DOI : 10.1007/BF02554969