G. M. Jacquez, The map comparison problem: Tests for the overlap of geographic boundaries, Statistics in Medicine, vol.47, issue.21-22, pp.2343-2361, 1995.
DOI : 10.1002/sim.4780142107

M. P. Miller, M. R. Bellinger, E. D. Forsman, and S. M. Haig, Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States, Molecular Ecology, vol.12, issue.1, pp.145-159, 2006.
DOI : 10.1111/j.1365-294X.2005.02765.x

A. Coulon, G. Guillot, J. Cosson, J. M. Angibault, S. Aulagnier et al., Genetic structure is influenced by landscape features: empirical evidence from a roe deer population, Molecular Ecology, vol.38, issue.3, pp.1669-1679, 2006.
DOI : 10.1111/j.1365-294X.2006.02861.x

S. A. Cushman, K. S. Mckelvey, J. Hayden, and M. K. Schwartz, Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling, The American Naturalist, vol.168, issue.4, pp.486-499, 2006.
DOI : 10.1086/506976

T. Safner, C. Miaud, O. Gaggiotti, S. Decout, D. Rioux et al., Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape, Conservation Genetics, vol.18, issue.1, pp.161-173, 2010.
DOI : 10.1007/s10592-010-0129-1

R. Desalle and G. Amato, 1. The Expansion of Conservation Genetics, Nat. Rev. Genet, vol.5, pp.702-712, 2004.
DOI : 10.7312/amat12832-006

M. Musiani, J. A. Leonard, H. D. Cluff, C. C. Gates, S. Mariani et al., Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou, Molecular Ecology, vol.15, issue.19, pp.4149-4170, 2007.
DOI : 10.1111/j.1365-294X.2007.03458.x

G. Guillot, R. Leblois, A. Coulon, and A. C. Frantz, Statistical methods in spatial genetics, Molecular Ecology, vol.43, issue.4, pp.4734-4756, 2009.
DOI : 10.1111/j.1365-294X.2009.04410.x

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-959, 2000.

K. J. Dawson and K. Belkhir, A Bayesian approach to the identification of panmictic populations and the assignment of individuals, Genetics Research, vol.78, issue.01, pp.59-77, 2001.
DOI : 10.1017/S001667230100502X

J. Corander, P. Waldmann, and M. J. Sillanpaa, Bayesian analysis of genetic differentiation between populations, Genetics, vol.163, pp.367-374, 2003.

S. Manel, E. Bellemain, J. E. Swenson, and O. Francois, Assumed and inferred spatial structure of populations: the Scandinavian brown bears revisited, Molecular Ecology, vol.9, issue.5, pp.1327-1331, 2004.
DOI : 10.1111/j.1365-294X.2004.02074.x

B. H. Mcrae, P. Beier, L. E. Dewald, L. Y. Huynh, and P. Keim, Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma, Molecular Ecology, vol.38, issue.7, pp.1965-1977, 2005.
DOI : 10.1111/j.1365-294x.2005.02571.x

G. Guillot, A. Estoup, F. Mortier, and J. F. Cosson, A Spatial Statistical Model for Landscape Genetics, Genetics, vol.170, issue.3, pp.1261-1280, 2005.
DOI : 10.1534/genetics.104.033803

G. Guillot, F. Mortier, and A. Estoup, Geneland: a computer package for landscape genetics, Molecular Ecology Notes, vol.155, issue.3, pp.712-715, 2005.
DOI : 10.1016/S0169-5347(03)00008-9

O. Francois, S. Ancelet, and G. Guillot, Bayesian Clustering Using Hidden Markov Random Fields in Spatial Population Genetics, Genetics, vol.174, issue.2, pp.805-816, 2006.
DOI : 10.1534/genetics.106.059923

URL : https://hal.archives-ouvertes.fr/hal-00370263

C. Chen, E. Durand, F. Forbes, and O. Francois, Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study, Molecular Ecology Notes, vol.101, issue.41, pp.747-756, 2007.
DOI : 10.2307/2408641

URL : https://hal.archives-ouvertes.fr/hal-00370267

J. Corander, J. Sirén, and E. Arjas, Bayesian spatial modeling of genetic population structure, Computational Statistics, vol.52, issue.1, pp.111-129, 2008.
DOI : 10.1007/s00180-007-0072-x

M. Fortin and P. Drapeau, Delineation of Ecological Boundaries: Comparison of Approaches and Significance Tests, Oikos, vol.72, issue.3, pp.323-332, 1995.
DOI : 10.2307/3546117

M. S. Monmonier, Maximum-Difference Barriers: An Alternative Numerical Regionalization Method*, Geographical Analysis, vol.58, issue.3, pp.245-261, 2010.
DOI : 10.1111/j.1538-4632.1973.tb01011.x

W. H. Womble and . Systematics, Differential Systematics, Science, vol.114, issue.2961, pp.315-322, 1951.
DOI : 10.1126/science.114.2961.315

G. Barbujani, N. L. Oden, and R. R. Sokal, Detecting Regions of Abrupt Change in Maps of Biological Variables, Systematic Zoology, vol.38, issue.4, pp.376-389, 1989.
DOI : 10.2307/2992403

G. M. Jacquez, S. Maruca, and M. Fortin, From fields to objects: A review of geographic boundary analysis, Journal of Geographical Systems, vol.2, issue.3, pp.221-241, 2000.
DOI : 10.1007/PL00011456

F. Manni, E. Guerard, and E. Heyer, Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier's Algorithm, Human Biology, vol.76, issue.2, pp.173-190, 2004.
DOI : 10.1353/hub.2004.0034

M. P. Miller, Alleles In Space (AIS): Computer Software for the Joint Analysis of Interindividual Spatial and Genetic Information, Journal of Heredity, vol.96, issue.6, pp.722-724, 2005.
DOI : 10.1093/jhered/esi119

A. Cercueil, O. Francois, and S. Manel, The Genetical Bandwidth Mapping: A spatial and graphical representation of population genetic structure based on the Wombling method, Theoretical Population Biology, vol.71, issue.3, pp.332-341, 2007.
DOI : 10.1016/j.tpb.2007.01.007

URL : https://hal.archives-ouvertes.fr/halsde-00283758

A. Crida, S. Manel, and . Wombsoft, package that implements the Wombling method to identify genetic boundary, Molecular Ecology Notes, vol.28, issue.4, pp.588-591, 2007.
DOI : 10.1111/j.1471-8286.2007.01753.x

URL : https://hal.archives-ouvertes.fr/halsde-00293034

I. Dupanloup, S. Schneider, and L. Excoffier, A simulated annealing approach to define the genetic structure of populations, Molecular Ecology, vol.28, issue.12, pp.2571-2581, 2002.
DOI : 10.1046/j.1365-294X.2002.01650.x

R. Kuehn, K. E. Hindenlang, O. Holzgang, J. Senn, B. Stoeckle et al., Genetic Effect of Transportation Infrastructure on Roe Deer Populations (Capreolus capreolus), Journal of Heredity, vol.98, issue.1, pp.13-22, 2007.
DOI : 10.1093/jhered/esl056

G. Segelbacher, S. Manel, and J. Tomiuk, Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus), Molecular Ecology, vol.28, issue.10, pp.2356-2367, 2008.
DOI : 10.1111/j.1365-294X.2008.03767.x

URL : https://hal.archives-ouvertes.fr/halsde-00293168

E. K. Latch, G. Dharmarajan, J. C. Glaubitz, and O. E. Rhodes, Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation, Conservation Genetics, vol.18, issue.2, pp.295-302, 2006.
DOI : 10.1007/s10592-005-9098-1

A. C. Frantz, S. Cellina, A. Krier, L. Schley, and T. Burke, Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance?, Journal of Applied Ecology, vol.43, issue.Supplement 1, pp.493-505, 2009.
DOI : 10.1111/j.1365-2664.2008.01606.x

O. Francois and E. Durand, Spatially explicit Bayesian clustering models in population genetics, Molecular Ecology Resources, vol.24, issue.5, pp.773-784, 2010.
DOI : 10.1111/j.1755-0998.2010.02868.x

URL : https://hal.archives-ouvertes.fr/hal-00655070

J. Corander, P. Waldmann, P. Marttinen, M. J. Sillanpää, and . Baps, BAPS 2: enhanced possibilities for the analysis of genetic population structure, Bioinformatics, vol.20, issue.15, pp.2363-2369, 2004.
DOI : 10.1093/bioinformatics/bth250

J. Corander and J. Tang, Bayesian analysis of population structure based on linked molecular information, Mathematical Biosciences, vol.205, issue.1, pp.19-31, 2007.
DOI : 10.1016/j.mbs.2006.09.015

E. Durand, F. Jay, O. E. Gaggiotti, and O. Francois, Spatial Inference of Admixture Proportions and Secondary Contact Zones, Molecular Biology and Evolution, vol.26, issue.9, pp.1963-1973, 2009.
DOI : 10.1093/molbev/msp106

G. Guillot, On the inference of spatial structure from population genetics data, Bioinformatics, vol.25, issue.14, pp.1796-1801, 2009.
DOI : 10.1093/bioinformatics/btp267

E. Durand, C. Chen, and O. Francois, Comment on 'On the inference of spatial structure from population genetics data', Bioinformatics, vol.25, issue.14, pp.1796-1801, 2009.
DOI : 10.1093/bioinformatics/btp337

URL : https://hal.archives-ouvertes.fr/hal-00655076

G. Guillot, F. Santos, and A. Estoup, Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface, Bioinformatics, vol.24, issue.11, pp.1406-1407, 2008.
DOI : 10.1093/bioinformatics/btn136

URL : https://hal.archives-ouvertes.fr/hal-01197518

G. Guillot, Inference of structure in subdivided populations at low levels of genetic differentiation--the correlated allele frequencies model revisited, Bioinformatics, vol.24, issue.19, pp.2222-2228, 2008.
DOI : 10.1093/bioinformatics/btn419

G. Guillot and F. Santos, A computer program to simulate multilocus genotype data with spatially autocorrelated allele frequencies, Molecular Ecology Resources, vol.28, issue.4, pp.1112-1120, 2009.
DOI : 10.1111/j.1755-0998.2008.02496.x

S. Manel, M. K. Schwartz, G. Luikart, and P. Taberlet, Landscape genetics: combining landscape ecology and population genetics, Trends in Ecology & Evolution, vol.18, issue.4, pp.189-197, 2003.
DOI : 10.1016/S0169-5347(03)00008-9

URL : https://hal.archives-ouvertes.fr/halsde-00279786

T. Jombart, S. Devillard, A. Dufour, and D. Pontier, Revealing cryptic spatial patterns in genetic variability by a new multivariate method, Heredity, vol.28, issue.1, pp.92-103, 2008.
DOI : 10.1007/BF01031609

URL : https://hal.archives-ouvertes.fr/hal-00428188

M. Slatkin and N. H. Barton, A Comparison of Three Indirect Methods for Estimating Average Levels of Gene Flow, Evolution, vol.43, issue.7, pp.1349-1368, 1989.
DOI : 10.2307/2409452

M. P. Miller and S. M. Haig, Identifying Shared Genetic Structure Patterns among Pacific Northwest Forest Taxa: Insights from Use of Visualization Tools and Computer Simulations, PLoS ONE, vol.19, issue.9, p.13683, 2010.
DOI : 10.1371/journal.pone.0013683.t001

F. Austerlitz and P. Smouse, Two-generation analysis of pollen flow across a landscape. III. Impact of adult population structure, Genetics Research, vol.78, issue.03, pp.271-280, 2001.
DOI : 10.1017/S0016672301005341

URL : https://hal.archives-ouvertes.fr/hal-00525772

D. L. Hartl and A. G. Clark, Principles of Population Genetics, Fourth Edition, 2006.

L. Excoffier, G. Laval, and S. Schneider, Arlequin (version 3.0): An integrated software package for population genetics data analysis, Evol. Bioinform. Online, vol.1, pp.47-50, 2005.

F. Rousset, Genetic differentiation between individuals, Journal of Evolutionary Biology, vol.28, issue.1, pp.58-62, 2000.
DOI : 10.1086/282727

M. Jakobsson and N. A. Rosenberg, CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, vol.23, issue.14, pp.1801-1806, 2007.
DOI : 10.1093/bioinformatics/btm233

S. Manel, F. Berthoud, E. Bellemain, M. Gaudeul, G. Luikart et al., A new individual-based spatial approach for identifying genetic discontinuities in natural populations, Molecular Ecology, vol.70, issue.10, pp.2031-2043, 2007.
DOI : 10.1126/science.114.2961.315

URL : https://hal.archives-ouvertes.fr/halsde-00276500

P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. Lee et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Research, vol.23, issue.21, pp.4407-4414, 1995.
DOI : 10.1093/nar/23.21.4407

A. Bonin, D. Ehrich, and S. Manel, Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists, Molecular Ecology, vol.129, issue.18, pp.3737-3758, 2007.
DOI : 10.1006/geno.1994.1151

URL : https://hal.archives-ouvertes.fr/halsde-00293029

G. Evanno, S. Regnaut, and J. Goudet, Detecting the number of clusters of individuals using the software structure: a simulation study, Molecular Ecology, vol.16, issue.8, pp.2611-2620, 2005.
DOI : 10.1098/rspb.2001.1600

E. L. Landguth, S. A. Cushman, M. K. Schwartz, K. S. Mckelvey, . Murphy et al., Quantifying the lag time to detect barriers in landscape genetics, Molecular Ecology, vol.2, issue.19, pp.4179-4191, 2010.
DOI : 10.1111/j.1365-294X.2010.04808.x

M. K. Schwartz and K. S. Mckelvey, Why sampling scheme matters: the effect of sampling scheme on landscape genetic results, Conservation Genetics, vol.62, issue.2, pp.441-452, 2010.
DOI : 10.1007/s10592-008-9622-1

M. Fortin, T. H. Keitt, B. A. Maurer, M. L. Taper, D. M. Kaufman et al., Species??? geographic ranges and distributional limits: pattern analysis and statistical issues, Oikos, vol.59, issue.1, pp.7-17, 2005.
DOI : 10.1111/j.0030-1299.2005.13146.x

G. Barbujani and R. R. Sokal, Zones of sharp genetic change in Europe are also linguistic boundaries., Proc. Natl. Acad. Sci, pp.1816-1819, 1990.
DOI : 10.1073/pnas.87.5.1816

M. Fortin and M. R. Dale, Spatial Analysis, 2005.
DOI : 10.1017/CBO9780511542039

URL : https://hal.archives-ouvertes.fr/halshs-01093404