S. Martin, J. Brathwaite, O. Zambrano, B. Solorzano, J. Bouckenooghe et al., The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality, American Journal of Tropical Medicine and Hygiene, vol.82, issue.1, pp.128-135, 2010.
DOI : 10.4269/ajtmh.2010.09-0346

H. Ranson, J. Burhani, N. Lumjuan, and W. Black, Insecticide resistance in dengue vectors, TropIKAnet Journal, vol.1, issue.1, 2010.

J. Rosine, Resistance d'Aedes aegypti et de Culex pipiens quinquefasciatus aux insecticide organophosphorés, biologique et aux pyréthrinoides en Martinique et en Guadeloupe Diplôme d'Etudes Approfondies, 1999.

A. Yébakima, Recherche sur Aedes aegypti et Culex pipiens en Martinique Ecologie Larvaire, Résistance aux Insecticides, Application a ` la Lutte, Thèse de Doctorat d'Etat es Sciences, p.210, 1991.

S. Marcombe, A. Carron, F. Darriet, E. M. Agnew, and P. , Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance, Am J Trop Med Hyg, vol.80, pp.745-751, 2009.

S. Marcombe, R. Poupardin, F. Darriet, S. Reynaud, and J. Bonnet, Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies), BMC Genomics, vol.10, issue.1, p.494, 2009.
DOI : 10.1186/1471-2164-10-494

C. Brengues, N. Hawkes, F. Chandre, L. Mccarroll, and S. Duchon, Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene, Medical and Veterinary Entomology, vol.443, issue.1, pp.87-94, 2003.
DOI : 10.1007/s004389670006

K. Saavedra-rodriguez, L. Urdaneta-marquez, S. Rajatileka, M. Moulton, and A. Flores, A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti, Insect Molecular Biology, vol.14, issue.6, pp.785-798, 2007.
DOI : 10.1111/j.1365-2583.2007.00774.x

A. Brown, Insecticide Resistance Mosquitoes: A Pragmatic Review, J Am Mosq Control Assoc, vol.2, pp.123-140, 1986.

R. Corriveau, B. Philippon, and A. Yebakima, La Dengue dans les Départements Français d'Amérique. Comment Optimiser la Lutte Contre cette Maladie? IRD E ´ dition, 2003.

G. Bocquene and A. Franco, Pesticide contamination of the coastline of Martinique, Marine Pollution Bulletin, vol.51, issue.5-7, pp.612-619, 2005.
DOI : 10.1016/j.marpolbul.2005.06.026

J. David, E. Coissac, C. Melodelima, R. Poupardin, and M. Riaz, Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology, BMC Genomics, vol.11, issue.1, p.216, 2010.
DOI : 10.1186/1471-2164-11-216

R. Poupardin, S. Reynaud, C. Strode, H. Ranson, and J. Vontas, Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides, Insect Biochemistry and Molecular Biology, vol.38, issue.5, pp.540-551, 2008.
DOI : 10.1016/j.ibmb.2008.01.004

URL : https://hal.archives-ouvertes.fr/halsde-00300514

M. Riaz, R. Poupardin, S. Reynaud, C. Strode, and H. Ranson, Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics???, Aquatic Toxicology, vol.93, issue.1, pp.61-69, 2009.
DOI : 10.1016/j.aquatox.2009.03.005

R. Djouaka, A. Bakare, O. Coulibaly, M. Akogbeto, and H. Ranson, Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria, BMC Genomics, vol.9, issue.1, p.538, 2008.
DOI : 10.1186/1471-2164-9-538

W. Gcddp, Guidelines for testing mosquito adulticides intended for Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) Document, WHO, vol.3, 2006.

W. Abbott, A Method of Computing the Effectiveness of an Insecticide, Journal of Economic Entomology, vol.18, issue.2, pp.265-267, 1925.
DOI : 10.1093/jee/18.2.265a

D. Finney, Probit analysis, 1971.

M. Raymond, PROBIT software, CNRS UMII, Licence L93019 Avenix, 1993.

W. Brogdon, J. Mcallister, and J. Vulule, Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance, J Am Mosq Control Assoc, vol.13, pp.233-237, 1997.

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

S. Rogers and A. Bendich, Extraction of DNA from plant tissues, Plant Mol Biol Manual, vol.6, pp.1-10, 1988.

S. Rajatileka, B. Wct, K. Saavedra-rodriguez, Y. Trongtokit, and C. Apiwathnasorn, Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti, Acta Tropica, vol.108, issue.1, pp.54-57, 2008.
DOI : 10.1016/j.actatropica.2008.08.004

D. Soderlund and D. Knipple, The molecular biology of knockdown resistance to pyrethroid insecticides, Insect Biochemistry and Molecular Biology, vol.33, issue.6, pp.563-577, 2003.
DOI : 10.1016/S0965-1748(03)00023-7

F. Rousset and R. M. , Statistical analyses of population genetic data: new tools, old concepts, Trends in Ecology & Evolution, vol.12, issue.8, pp.313-317, 1997.
DOI : 10.1016/S0169-5347(97)01104-X

H. Alout, P. Labbe, A. Berthomieu, N. Pasteur, and M. Weill, Multiple duplications of the rare ace-1 mutation F290V in Culex pipiens natural populations, Insect Biochemistry and Molecular Biology, vol.39, issue.12, pp.884-891, 2009.
DOI : 10.1016/j.ibmb.2009.10.005

C. Strode, C. Wondji, J. David, N. Hawkes, and N. Lumjuan, Genomic analysis of detoxification genes in the mosquito Aedes aegypti, Insect Biochemistry and Molecular Biology, vol.38, issue.1, pp.113-123, 2008.
DOI : 10.1016/j.ibmb.2007.09.007

URL : https://hal.archives-ouvertes.fr/halsde-00281688

N. Lumjuan, L. Mccarroll, L. Prapanthadara, J. Hemingway, and H. Ranson, Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti, Insect Biochemistry and Molecular Biology, vol.35, issue.8, pp.861-871, 2005.
DOI : 10.1016/j.ibmb.2005.03.008

R. Development and C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2008.

M. Paris, G. Tetreau, F. Laurent, M. Lelu, and L. Despres, Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes, Pest Management Science, vol.21, issue.1, 2010.
DOI : 10.1002/ps.2046

M. Donnelly, V. Corbel, D. Weetman, C. Wilding, and M. Williamson, Does kdr genotype predict insecticide-resistance phenotype in mosquitoes?, Trends in Parasitology, vol.25, issue.5, pp.213-219, 2009.
DOI : 10.1016/j.pt.2009.02.007

K. Saavedra-rodriguez, C. Strode, F. Suarez, A. , F. Salas et al., Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti, Genetics, vol.180, issue.2, pp.1137-1152, 2008.
DOI : 10.1534/genetics.108.087924

J. Yanola, P. Somboon, C. Walton, W. Nachaiwieng, and L. Prapanthadara, A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance, Pesticide Biochemistry and Physiology, vol.96, issue.3, pp.127-131, 2010.
DOI : 10.1016/j.pestbp.2009.10.005

A. Harris, S. Rajatileka, and H. Ranson, Pyrethroid Resistance in Aedes aegypti from Grand Cayman, American Journal of Tropical Medicine and Hygiene, vol.83, issue.2, pp.277-284, 2010.
DOI : 10.4269/ajtmh.2010.09-0623

M. Rodriguez, J. Bisset, D. Armas, Y. Ramos, and F. , PYRETHROID INSECTICIDE-RESISTANT STRAIN OF AEDES AEGYPTI FROM CUBA INDUCED BY DELTAMETHRIN SELECTION, Journal of the American Mosquito Control Association, vol.21, issue.4, pp.437-445, 2005.
DOI : 10.2987/8756-971X(2006)21[437:PISOAA]2.0.CO;2

J. Hemingway, N. Hawkes, L. Mccarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, issue.7, pp.653-665, 2004.
DOI : 10.1016/j.ibmb.2004.03.018

A. Paul, L. Harrington, and J. Scott, Evaluation of Novel Insecticides for Control of Dengue Vector <I>Aedes aegypti</I> (Diptera: Culicidae), Journal of Medical Entomology, vol.43, issue.1, pp.55-60, 2006.
DOI : 10.1603/0022-2585(2006)043[0055:EONIFC]2.0.CO;2

R. Feyereisen, Evolution of insect P450, Biochemical Society Transactions, vol.34, issue.6, pp.1252-1255, 2006.
DOI : 10.1042/BST0341252

T. Chiu, Z. Wen, S. Rupasinghe, and M. Schuler, CYP6Z1, a mosquito P450 capable of metabolizing DDT, Proceedings of the National Academy of Sciences, vol.105, issue.26, pp.8855-8860, 2008.
DOI : 10.1073/pnas.0709249105

J. David, C. Strode, J. Vontas, D. Nikou, and A. Vaughan, The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors, Proceedings of the National Academy of Sciences, vol.102, issue.11, pp.4080-4084, 2005.
DOI : 10.1073/pnas.0409348102

URL : https://hal.archives-ouvertes.fr/halsde-00317769

L. Mclaughlin, U. Niazi, J. Bibby, J. David, and J. Vontas, Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2, Insect Molecular Biology, vol.13, issue.2, pp.125-135, 2008.
DOI : 10.1006/pest.1996.0044

URL : https://hal.archives-ouvertes.fr/halsde-00281680

P. Muller, M. Donnelly, and H. Ranson, Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana, BMC Genomics, vol.8, issue.1, p.36, 2007.
DOI : 10.1186/1471-2164-8-36

G. Lycett, L. Mclaughlin, H. Ranson, J. Hemingway, and F. Kafatos, Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility, Insect Molecular Biology, vol.486, issue.3, pp.321-327, 2006.
DOI : 10.1006/bbrc.1999.0783

F. Ortelli, L. Rossiter, J. Vontas, H. Ranson, and J. Hemingway, Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae, Biochemical Journal, vol.373, issue.3, pp.957-963, 2003.
DOI : 10.1042/bj20030169

J. Hemingway and S. Karunaratne, Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism, Medical and Veterinary Entomology, vol.12, issue.1, pp.1-12, 1998.
DOI : 10.1046/j.1365-2915.1998.00082.x

J. Oakeshott, A. Devonshire, C. Claudianos, T. Sutherland, and I. Horne, Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases, Chemico-Biological Interactions, vol.157, issue.158, pp.269-275, 2005.
DOI : 10.1016/j.cbi.2005.10.041

M. Raymond, C. Chevillon, T. Guillemaud, T. Lenormand, and N. Pasteur, An overview of the evolution of overproduced esterases in the mosquito Culex pipiens, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.353, issue.1376, pp.1707-1711, 1998.
DOI : 10.1098/rstb.1998.0322

URL : https://hal.archives-ouvertes.fr/halsde-00201879

M. Akogbeto, R. Djouaka, and H. Noukpo, Use of agricultural insecticides in Benin, Bull Soc Pathol Exot, vol.98, pp.400-405, 2005.

V. Corbel, N. Guessan, R. Brengues, C. Chandre, F. Djogbenou et al., Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa, Acta Tropica, vol.101, issue.3, pp.207-216, 2007.
DOI : 10.1016/j.actatropica.2007.01.005

A. Diabate, The Role of Agricultural Use of Insecticides in Resistance to Pyrethroids in Anopheles gambiae S.L. in Burkina Faso, Am J Trop Med Hyg, vol.67, pp.617-622, 2002.