Latest Ordovician-earliest Silurian acritarchs and chitinozoans from subsurface samples in Jebel Asba, Kufra Basin, SE Libya
Bindra Thusu, Sayed Rasul, Florentin Paris, Guido Meinhold, James Howard, Youssef Abutarruma, Andrew Whitham

To cite this version:

HAL Id: insu-00843501
https://hal-insu.archives-ouvertes.fr/insu-00843501
Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Latest Ordovician–earliest Silurian acritarchs and chitinozoans from subsurface samples in Jebel Asba, Kufra Basin, SE Libya

Bindra Thusu, Syed Rasul, Florentin Paris, Guido Meinhold, James P. Howard, Yousef Abutarruma, Andrew G. Whitham

1 Maghreb Petroleum Research Group, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
2 Rue des Jonquilles, 35235 Thorigné-Fouillard, France; Géosciences Rennes, CNRS UMR 6118, Université de Rennes 1, Rennes cedex, France
3 CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge CB3 0DH, United Kingdom
4 Geowissenschaftliches Zentrum der Universität Göttingen, Abteilung Sedimentologie/Umweltgeologie, Goldschmidtstraße 3, 37077 Göttingen, Germany
5 Mellitah Oil & Gas B.V., Dat Al Imad Complex Tower 5 Floor 13, P.O. Box 91651, Tripoli, Libya

* Corresponding author: Tel.: +49 551 393455; fax: +49 551 397996.
E-mail address: guido.meinhold@geo.uni-goettingen.de (G. Meinhold)
Abstract

Latest Ordovician–earliest Silurian Tanezzuft Formation shales recovered from core material of the shallow borehole JA-2 drilled in Jebel Asba at the eastern margin of the Kufra Basin, southeastern Libya, yielded well-diversified palynomorph assemblages with transparent and brownish to yellowish vesicles and organic matter (visual kerogen Type 1 and 2) from depth interval 46.20 to 67.82 m. In addition, miospores including cryptospores, and *Tasmanites* sp. (“*Tasmanites* with nodules”), scolecodonts, and a stratigraphically significant palaeo-marker, the enigmatic, tubular organic structure *Tortotubus protuberans*, were also recorded frequently in most samples. Kerogen colour based on miospores (TAI <3) and chitinozoan reflectance indicate an immature facies for oil generation. The two uppermost samples (from 33.33 m and 46.20 m depths) and the lowermost ones (from 67.92 to 73.21 m depth) contain rare palynomorphs and other organic remains and have been partially affected by oxidation.

Furthermore, palynological and palynofacies analysis was carried out on cuttings from an old well (UN-REMSA well), ca. 530 m towards the NNE from well JA-2. The composition of the organic residue is similar in both wells. However, the UN-REMSA well yields fairly numerous chitinozoans, scolecodonts and biofilms but lacks the “thread-like structures” and “*Tasmanites* with nodules” observed in well JA-2.

All the investigated samples in well JA-2 are dominated by a single chitinozoan species, *Euconochitina moussegoudaensis* Paris (in Le Hérissé et al., 2013). Based on correlation with chitinozoan-bearing strata around the Ordovician–Silurian boundary, the analysed samples from well JA-2 and from the UN-REMSA well are regarded as post-glacial, but still of either latest Hirnantian age, or at least no younger than earliest Rhuddanian. A well-diversified acritarch,
miospore and cryptospore assemblage recorded in well JA-2 supports a marginal marine (nearshore) depositional environment. This assemblage is no older than earliest Rhuddanian yet the latest Hirnantian age of the assemblage cannot be completely ruled out as our current knowledge on the post-glacial, latest Hirnantian acritarch and miospore assemblages is poorly documented in North Africa.

Keywords: biostratigraphy; acritarchs; chitinozoans; Hirnantian; Silurian, Gondwana; Libya

Research highlights

▶ We describe palynomorphs from subsurface shales of SE Libya.

▶ The shales are of latest Hirnantian–earliest Rhuddanian age.

▶ The shales are immature for oil generation.

▶ Dominant chitinozoan species *Euconochitina moussegoudaensis* Paris.

▶ Discussion of the Ordovician–Silurian boundary.

1. Introduction

The precise location of the source rock horizons close to the Ordovician–Silurian boundary is an important question for hydrocarbon exploration in northern Gondwana regions. In areas of anoxic geological setting, typical “hot shale” horizons are easily identified by their peculiar lithology (e.g., black shales), a sharp positive excursion of the gamma-ray curve in the well logs and high total organic carbon (TOC) content (e.g., Lüning et al., 2000, 2005, 2006). These characteristics can also be determined by the visual nature and the abundance of the organic
matter including palynomorphs, animal remains and associated amorphous organic matter (AOM).

The main goal of the present study is to record for the first time moderately rich to rich assemblages of acritarchs, chitinozoans, miospores and cryptospores recovered from well JA-2 in Jebel Asba, Kufra Basin, drilled by CASP (formerly known as Cambridge Arctic Shelf Programme) in April–May 2009 (Fig. 1).

2. Material and methods

2.1. Sampling

Core samples from well JA-2 (geographic coordinates: 22°35′49.31″N, 24°7′57.10″E) drilled in the Jebel Asba at the eastern margin of the Kufra Basin (Figs 1 and 2) and cuttings (single sample SJS0001) from a pile of drill cuttings surrounding the borehole collar of an abandoned well (geographic coordinates: 22°36′4.52″N, 24°8′4.67″E), apparently drilled by REMSA (Repsol Exploración Murzuq S.A.), some 530 m NNE of well JA-2 have been investigated for acritarchs and chitinozoans. However, we are not certain that the abandoned well was drilled by REMSA, and therefore we name it UN-REMSA well with UN standing for uncertain. Before starting the chemical processes, each core sample was observed under the binocular microscope in order to collect information on its grain size, petrology, and possible macrofossils. The degree of weathering of the rock sample was also evaluated as oxidation of the rock precludes the preservation of the organic matter (Table 1). This information is useful to interpret low chitinozoan abundances: low abundance in non-weathered and low-energy sediments is mainly caused by environmental conditions and the lack of palynomorphs in weathered or high-energy
deposits, respectively, are due to oxidation of the organic matter, and to non-deposition of the lighter particles such as acritarchs or chitinozoans.

In well JA-2 (Fig. 2), the lowermost core sample at 73.21 m depth is grey shale. Samples from 67.97 to 69.12 m show evidence of weathering (e.g., oxidation of pyrite crystals; brownish micas) in very fine light coloured sandstone and in whitish (altered?) shale. The uppermost processed samples (33.33 m and 46.20 m) also display evidence of weathering (i.e. beige colour of the silty shale and oxidation of the organic matter). This alternation most likely corresponds to the deepest part of the sub-Recent weathering profile developed in many Saharan regions. In the interval 46.60–67.59 m, the lithology is fairly constant and ranges from grey and greenish shale to grey siltstone with micas. A lithological change is noticed between 67.59 and 67.82 m with the occurrence of very fine sandstone. However, for the microfossils, a major change occurs at 67.97 m with a dramatic drop in abundance of the chitinozoans, possibly related to either the oxidation, noticed in the core samples (Table 1), or to temporary emersion (e.g., during the latest Hirnantian–earliest Rhuddanian post-glacial rebound), which permitted the weathering of the older strata. Ground water circulation in a minor fault also might have caused oxidation of the rock and of its organic matter between 67.82 and 69.12 m. Because no biostratigraphical information is available on the underlying strata, it is not possible to favour one or the other of these hypotheses.

The cutting sample SJS0001 from the UN-REMSA well is susceptible to caving. However, because no strong lithological disparity was noticed in the cuttings collected and investigated, the drilled horizon represents likely dark grey silty shale, which is the most common component of the sample.

2.2. Sample preparation
The core material was split into equal parts and prepared separately for acritarch and chitinozoan analysis. For the acritarchs, the samples were treated according to standard palynological preparation methods. A zinc bromide solution (specific gravity 2 g cm\(^{-3}\)) was used for separation of organic matter, which was then screened using a 15 \(\mu\)m mesh for washing in order to separate the larger organic-walled microfossils. If necessary, samples were also treated with nitric acid.

For chitinozoans, the processing technique developed in the palynological laboratory of Rennes University (see Paris et al., 2012) was adopted. The palynological slides corresponding to the illustrated material on Plates I to V are housed in the CASP Palaeontological Collection in Cambridge, and the palynological slides corresponding to the illustrated material on Plates VI to XII are housed in the collection of Rennes University under the repository numbers IGR 72951 to 72995.

3. Palynological results

Marine acritarchs, leiosphaerids, *Tasmanites*, land-derived plant elements (cryptospores, miospores), and “thread-like structures” possibly related to cyanobacteria or to fungi in association with nearshore chitinozoans, scolecodonts and eurypterid remains are reported in this study (Tables 1 and 2). Large organic “blades” or “sheets”, called “biofilm”, are also present in the organic residues.

3.1. Marine phytoplankton and land-derived plant element assemblages

3.1.1. Species from well JA-2
The interval 33.33–69.12 m yielded rich to moderately rich assemblages of acritarchs (Plates I to IV) dominated by *Leiosphaeridia* spp. The presence of *Eupoikilocula striatifera* at 48.18 m, *Moyeria cabbotti* at 67.82 m and *Leiosphaeridia acerscrabrella* suggest an age no older than Rhuddanian for this interval. Other accessory taxa present in the studied core samples include *Buedingiisphaeridium* sp., *Diexallophasis denticulata*, *Filisphaeridium* sp., *Geron* cf. *gracilis*, *Tunisphaeiridium* sp., *Veryhachium europaeum*, *V. lairdii* and *V. trispinosum* (Table 2).

The assemblage is dominated by miospores in the upper part of the interval 46.60–53.07 m. Tetrads and other cryptospores are dominant in the interval 48.18–67.82 m. Land-derived spore tetrads are recorded in residues from various depths (see Tables 1 and 3) but mostly in the interval 55.53–62.34 m. Miospores are represented by *Ambitisporites dilutus*, *Archaeozonotriletes chulus* var. *chulus* and trilete spores. Cryptospores are represented by *Dyadospora murusdensa*, *Rugosphaera* sp. and *Tetrahedraletes medinensis*. The presence of these miospores and cryptospores are consistent with an early Silurian (Llandoverian, Rhuddanian) age for the assemblage.

A few scolecodonts identified to the generic level (Plate XII, 1–2, 17) are present in the upper part of the core (Table 1). These jaws of marine worms (polychaetes) occur in nearshore as well as in pelagic deposits. Unusual thread-like and branched structures (Plate IX, 1, 6–8; Plate XII, 9, 14, 18) of unknown biological affinities (plant, cyanobacteria or fungi?) are also present in the organic residues (Tables 1 and 3). They are assigned to *Tortotubus protuberans* Johnson, 1985, which seems restricted to latest Ordovician–earliest Llandovery nearshore deposits in northern Gondwana localities (e.g., Chad, Libya, Oman, Saudi Arabia) and North America (Pennsylvania).
One of the peculiar characteristics of the palynological residues of JA-2 is the occurrence of large “blades” or “sheets” (up to 1 mm thick) of amorphous organic matter (Plate IX, 2–5, 10; Plate XII, 15-16). The chitinozoans and other palynomorphs are often adhesively associated with amorphous organic matter (Plate IX, 9; Plate XI, 14–15, 17) as result of which the processes of the Ancyrochitininae break frequently during sorting of the vesicles. These organic sheets are composed of agglomerated minute particles of several μm in length and less than one μm thick (Plate IX, 3 and 10). Pyrite framboids with 10 μm in diameter are recorded, with the exception of a sole specimen of about 500 nm. Under transmitted light microscope, they appear as tiny black spheres in the brownish to yellowish organic sheets. After oxidation with HNO₃, the pyrite is dissolved and the casts of the framboids are visible (Plate IX, 5 and 10). The organic sheets are here called “biofilms”, produced by algae or by bacteria. The organic matter in the northern Gondwana “hot shale” has a similar structure with minute “flakes” of organic particles adhesively clumped with the organic-walled microfossils. However, in the JA-2 well samples, the AOM is concentrated in films coating the bedding plane, whereas in the classical “hot shale” this organic matter is a major component of the sediment (up to 30% in some cases). This organic matter may represent remnants of algae.

3.1.2. Species from the UN-REMSA well

Cutting samples (SJS0001) from the UN-REMSA well, located some 530 m NNE of JA-2, yielded sparse acritarchs including *Leiosphaeridia* sp. and *Eupoikilofusa striatifera* (Table 2). Land-derived palynomorphs include *Ambitisporites dilutus* and a spore tetrad along with *Tortotubus protuberance* (Table 3). These taxa are also present in the core samples from JA-2.
The sediment was deposited in a shallow marine environment. The sample is rich in AOM with TAI <3, suggesting an immature kerogen with poor source potential.

3.2. Chitinozoan assemblages

3.2.1. Species from well JA-2

Most of the processed samples, except the two uppermost (33.33 and 46.20 m) and the lowermost interval (67.97–73.21 m), which are likely to be affected by oxidation (see above), yield well-preserved chitinozoan assemblages with transparent and brownish to yellowish vesicles (Plates X–XI). They are poorly diversified and frequently monospecific assemblages (see Fig. 4). However, the chitinozoan abundance is fairly high as it exceeds 100 specimens per gram of rock in half of the productive samples, and even reaches 430 specimens per gram of rock at 57.58 m (Fig. 2; Table 1). In the other samples, the chitinozoan abundance ranges around 60 to 80 specimens per gram of rock, except at 60.23 and 62.34 m depth where the abundance drops significantly with 23 and 5 specimens respectively per gram of rock. It is worth noting that eurypterid remains (Plate XII, 3–6) and *Tasmanites tzadiensis* Le Hérissé (in Le Hérissé et al., 2013) (Plate XII, 7–8, 11–13) are associated in these two samples (Table 1). This suggests shallower environments with prominent agitation in which the sediment (siltstones with large micas) becomes more mobile so that a selective sorting of the lighter particles occurs.

All the investigated samples, except those from 67.59–67.97 and 73.21 m, are dominated by a single species, *Euconochitina moussegoudaensis* Paris (in Le Hérissé et al., 2013), which represents 95 to 100 % of the recovered assemblages (Fig. 4). This species dominates also the chitinozoan assemblages recorded in the Moussegouda shallow core in NW Chad (Le Hérissé et
E. moussegoudaensis is a simple form (see diagnosis and description by F. Paris in Le Hérissé et al. 2013 and Plate VI, 4a–b, 8a–b; Plate VII, 5; Plate VIII, 3a-b, 4, 5a-b; Plate X, 1, 5–8, 10, 12, 14–16, 18; Plate XI, 16, 18-20). Its conical chamber has gently tapering flanks and a flat to slightly convex bottom, which may be variously affected during the flattening (folded inside or outside the chamber giving a more or less sharp aspect to the margin; see Plate X). No mucron or basal scar has been observed on the available material. The sub-cylindrical neck represents one third or less of the vesicle length, which ranges from ca. 100 to 200 μm. The weak flexure is located at the base of prosome, near the junction of the rica on the chamber inner wall (only visible on the transmitted light photos; Plate X). The wall surface is practically smooth, but at high magnification, SEM observation reveals very tiny granules (Plate VI, 4b), which are better expressed on, or near the margin (Plate VI, 8b). This species has no highly distinctive features (i.e., ornamentation). However, it can be identified on large populations allowing the appraisal of the intraspecific morphological variations.

During the present study, elongate specimens sharing most of the characters of E. moussegoudaensis Paris have been observed together with the typical form. These slender individuals are tentatively separated from the main morphotype. They are referred to as Euconochitina cf. moussegoudaensis Paris in Fig. 4 and on Plate X, 2–3, 9, 11, 19–20 and Plate XI, 3, 5, 11. The vesicle length exceeds 200 μm and may reach 230 μm. A weak constriction is visible at a short distance above the margin (e.g., Plate X, 2, 19–20). It is not clear yet if these elongate and slender vesicles correspond to the end forms within a polymorphic species or if they represent a different species, with a stratigraphical range partly overlapping the total range of E. moussegoudaensis Paris.
Besides the dominating *E. moussegoudaensis* Paris are subordinate species restricted to one or two samples. *Calpichitina* sp. (Plate X, 13) is restricted to one specimen recorded at 66.85 m depth. The membranous remains visible on the margin are most likely residues of the biofilm somehow glue the vesicle, and not part of a carina as in *Pterochitina deichaii*.

Two species of *Spinachitina* – *S. oulebsiri* Paris et al. (2000) and *Spinachitina verniersi* Vandenbroucke in Vandenbroucke et al. (2009) – are recorded in well JA-2. For the former, the most abundant population is from 67.59 m (Fig. 4) but a few individuals are also recorded at 67.21 and 67.40 m. *Spinachitina oulebsiri* (Plate VII, 1a–c, 3a–b, 4a–b, 6, 8 and 9a–c; Plate XI, 1, 6–10) has a conical chamber and a rather short sub-cylindrical neck (about one third of the vesicle length) ended with a denticulate aperture (Plate VII, 9c). The margin bears a crown of ca. 20 slender conical spines of up to 6 μm length (Plate VII, 1b, 3b, 4b and 9b). Butcher (2009, p. 600) included *S. oulebsiri* in the synonymy list of *S. fragilis*, which is the index species for the first Silurian chitinozoan biozone (Verniers et al., 1995). Even if they have close silhouettes, we do not consider the two species as synonyms. This is in agreement with Vandenbroucke et al. (2009) who reported *S. oulebsiri* from South Africa (see below). Indeed, *S. oulebsiri* has not the conspicuous shoulder of the specimens Butcher assigned to *S. fragilis* from depth 42.50 m in BG-14 in Jordan. Moreover, the populations of *S. oulebsiri* known in various localities from Algeria (Paris et al., 2000; F. Paris, unpublished data) and South Africa (Vandenbroucke et al., 2009) do not include large specimens (>250 μm) as known in *S. fragilis*. Based on the discussion below, *S. oulebsiri* ranges from the late Hirnantian to possibly earliest Rhuddanian (see Fig. 5).

Poorly preserved individuals from 62.34 m are tentatively referred to *S. sp. aff. oulebsiri*.

In well JA-2 (Fig. 4), *Spinachitina verniersi* Vandenbroucke (in Vandenbroucke et al., 2009) (Plate VI, 3a–b; Plate VII, 2a–b) is fairly abundant at 67.59 m and is represented by a few individuals at 65.74 m (see Fig. 4). This species, first described from the Soom Shale in South
Africa (Vandenbroucke et al., 2009), has a vesicle very close to that of *S. oulebsiri* and even to that of *E. moussegoudaensis* Paris. However, it is clearly distinguished from *S. oulebsiri* by the design of the crown of ornaments running on its margin (more densely spaced and irregular granules or blunt spines) (see Plate VII, 2a). Closely related specimens (*S. cf. verniersi*; Plate XI, 4) or more questionable individuals referred to as *?S. verniersi* (Plate VI, 1a–b, 2a–b, 6a–b, 7a–b; Plate VII, 7) due to a poor preservation of the crown on the margin are scattered from 55.53 m depth to 67.82 m depth in well JA-2 (Fig. 4). *S. verniersi* does not benefit yet from an accurate independent calibration by means of graptolites. However, in South Africa its FAD (First Appearance Datum) is in the Soom Shale Formation, i.e. just above the last Hirnantian glacial deposits (see discussion in Vandenbroucke et al., 2009). In Algeria, it also coexists with *S. oulebsiri* in the M’Kratta Formation above the Hirnantian diamictites of the Hassi el Hadjar Formation (see discussion in Paris et al., 2000). *S. verniersi* is also recorded in the cuttings from the UN-REMSA well (Plate VIII, 6a–c, 9a–b, 10a–b) where it occurs in association with *E. moussegoudaensis* Paris.

The Ancyrochitininae, abundant at 67.82 m depth, are present sporadically. *Plectochitina* sp. (Fig. 4) is another form kept in open nomenclature because of its poor preservation. They belong possibly to *Plectochitina cf. longispina* (Achab, 1978), which is the dominating species at 67.82 m depth (Plate VI, 5, 10; Plate XI, 13–15, 17). These specimens are assigned to *Plectochitina* rather than to *Ancyrochitina* because of the cell-like structure of their long processes (Plate X, 15 and 17). The individuals recorded at 67.82 m depth are rather small, e.g. vesicle length ranging from 100 to 120 μm. The length of the processes is about 40 to 60 μm. These values are very close to the measurements of *Ancyrochitina longispina* described by Achab (1978) in the Ellis Bay Formation of Anticosti Island, Eastern Canada. The Libyan and the Canadian specimens have processes with similar branching. The main difference between the
two populations is the less developed branching of the Libyan individuals (2 times branching as
a maximum). According to Achab (1978) and Soufiane and Achab (2000), *A. longispina* is
restricted to the lower member of the Ellis Bay Formation assigned to the early Hirnantian (i.e.
extraordinarius graptolite Zone) by Melchin (2008). Recently, Butcher (2009) published a form
he called *Ancyrochitina* sp. C, which displays most of the features of the individuals identified
here as *Plectochitina* cf. *longispina*, i.e. short vesicle. However, the form illustrated by Butcher
(2009) from BG-14 in Jordan is from the upper *ascensus–acuminatus* Biozone (early
Rhuddanian). Obviously, there is an urgent need of clarification of the Ancyrochitininae close to
the Ordovician–Silurian boundary, especially the forms with long processes.

3.2.2. Species from the UN-REMSA well

The composition of its organic residue is very similar to most of the residues recovered from
well JA-2. It includes fairly numerous chitinozoans, scolecodonts and biofilms. However, neither
“thread-like structures”, nor “*Tasmanites* with nodules” (i.e. *Tasmanites tzadiensis* Le Hérissé in
Le Hérissé et al. 2013) have been observed in this residue.

The cuttings from the UN-REMSA well (sample SJS0001) yield a chitinozoan assemblage very
close to that observed in well JA-2. *Euconochitina moussegoudaensis* Paris (Plate VIII, 2a–b; 4,
5a–b) is again the dominant species. It is accompanied by rare *Cyathochitina caputoi* Da Costa,
1971 (Plate VIII, 1). *C. caputoi* (the thick carina form), which is usually very abundant close to
the Ordovician–Silurian boundary is not observed in well JA-2. A few *Spinachitina verniersi*
(Plate VIII, 6a–c, 9a–b, 10a–b) and damaged Ancyrochitininae (Plate VIII, 7–8) (broken
processes do not allow any specific assignment) are also present in this assemblage and are
assigned to the latest Hirnantian–earliest Rhuddanian (see Fig. 5).
3.3. Kerogen analysis and thermal maturity

Visual kerogen analysis using transmitted light microscopy was carried out on 23 samples from the interval 33.33–73.21 m (Table 4). The analysis results are summarised in Figure 2. The interval 33.33–46.20 m is completely dominated by semi-structured (Type 3), vitrinite-like material. No acritarchs or miospores were recorded in this interval. The interval 46.60–67.40 m is generally dominated by AOM (Type 1) but semi-structured, vitrinite-like material continues to show its presence throughout the interval (see Appendix A). A high number of acritarchs along with miospores/cryptospores are also documented. *Leiospheridia* spp. dominate in numbers, and spiny acanthomorph acritarchs are low in numbers. The interval 67.59–73.21 m, with the exception of core at 69.92 m depth, in which AOM dominates, is abundant in semi-structured, vitrinite-like material.

Based on the colour of the miospores, the thermal alteration index (TAI) (Staplin, 1969) is less than 3, indicating an immature palynofacies for oil generation. Acritarchs and cryptospores are consistently pale and light yellow in colour, which probably indicates a lack of thermal alteration. Chitinozoan reflectance yielded R_{ch} values of about 0.6% (Table 5) which equals vitrinite reflectance (R_v) values of about 0.4% when using the equation of Tricker et al. (1992). Sediment with R_v of 0.4% is immature for oil generation, supporting the TAI interpretation.

4. Biostratigraphy, palaeoecology and regional correlation

4.1. Marine phytoplankton and land-derived plant element assemblages
The acritarchs assemblage is dominated by thin-walled *Leiosphaeridia* spp. often in clusters. Dorning (1981) found dominance of thin-walled leiosphaerids in the shallow marine Silurian (Ludlovian) sequence of the Welsh Borderland. The presence of land-derived vitrinite-like macerals and miospores–cryptospores is also indicative of a marginal marine (nearshore) depositional environment for the entire sequence of the studied well JA-2, although the interval 33.33–60.23 m does seem much closer to land with the dominance of land-derived plant remains.

In the late Silurian of the Ghadamis Basin, Al-Ameri (1983) erected six distinct types of palynofacies of which four contained acritarchs indicating increasing distance from the shoreline. Hill and Molyneux (1988) recognised two Llandoverian palynofacies assemblages in NE Libya. Their southern assemblage located in southern Cyrenaica, north of the present study area, was also dominated by leiosphaerids. Hill and Molyneux (1988) consider their acritarch assemblage comparable most closely to Palynofacies 3 of Al-Ameri (1983), which is interpreted as inner neritic.

The studied assemblage is also comparable to the land-derived palynoflora (miospores–cryptospores and organic structures) of early Silurian (Rhuddanian) age from the Tuscarora Formation in central Pennsylvania, USA (Johnson, 1985). Based on these comparisons the present assemblage was probably deposited closer to the shoreline.

4.1.1. Libya

Acritarch assemblages recorded in well JA-2 are similar to those from other basins in North Africa, the Middle East, and North America (Fig. 3).
Kufra Basin

Grignani et al. (1991) established a zonation of the early Silurian Assemblage C based on the chitinozoan *Ancyrochitina ancyrea*. However, the authors reported no early Silurian acritarchs. The marker acritarchs such as *Villosacapsula irrorata*, *V. setosapellicula* and *Veryhachium subglobosum* restricted to the Late Ordovician (Caradoc–Ashgill) were reported by Grignani et al. (1991) and by Thusu et al. (2007) from cutting samples from Jebel Dalma.

Murzuq Basin

Paris et al. (2012) reported an early Llandovery palynomorph assemblage from well CDEG-2a in Dor el Gussa and recorded palynomorph species which are also present in the present study including *Buedingiisphaeridium* sp., *Diexallophasis denticulate*, *Eupoikilofusa striatifera*, *Leiofusa estrecha*, *Veryhachium europaeum*, *V. trispinosum*, *Dyadospora murusdensa* and *Tetrahedraletes medinensis*.

Ghadamis Basin

Richardson and Ioannides (1973) reported a rich assemblage of Silurian acritarchs from two wells, C1-34 and B2-34, from the Akakus and Tanezzuft formations in the Ghadamis Basin. The recorded species in common with the present assemblage include *Eupoikilofusa striatifera*, *Veryhachium trispinosum*, *Diexallophasis denticulata*, *Leiosphaeridia acerscabrella*, *Leiofusa estrecha*, *Geron cf. gracilis*, *Tetrahedraletes medinensis* and *Dyadospora murusdensa*.
Northeast Libya, Cyrenaica

Hill et al. (1985), Hill and Molyneux (1988) and Richardson (1988) recorded early Silurian (Llandoverian) acritarchs from the Cyrenaica Platform. Several species recorded from Cyrenaica are common with the present assemblage and include *Eupoikilofusa striatifera*, *Diexallophasis denticulata*, *Tunisphaeridium* sp., and *Buedingisphaeridium* sp..

4.1.2. Chad

Le Hérissé et al. (2013) reported latest Ordovician–earliest Silurian palynological assemblages from the Moussegouda shallow borehole (21°40'N, 18°36'E) drilled in the Erdi Basin, northern Chad in the early 1960s. The Erdi Basin and the Mourdi Basin in northwest Sudan are considered to be the southern extensions of the Kufra Basin to the north in Libya.

The presence of several stratigraphically restricted acritarchs reported from core 9 (220–221A m) from the Moussegouda borehole such as *Neoveryhachium* sp. A, *Veryhachium subglobosum* and *Villosacapsula setosapellicula* clearly support an age no younger than Late Ashgill for this interval. *V. subglobosum* and *V. setosapellicula* were also recorded by Grignani et al. (1991) in their assemblage ‘B’ in the Kufra Basin. None of these species were recorded in our study. The absence (except in the basal part) of these species together with the common presence of *Tasmanites tzadiaensis* Le Hérissé et al. (2013) and many reported acritarchs and chitinozoans, cryptospores and miospores in cores 8–2 from the Moussegouda well in Chad and those in well JA-2 in Libya support their close chronostratigraphic and ecological similarities.
The oldest recorded early Silurian (late Rhuddanian) local Biozone LI1 was first reported by Hill and Molyneaux (1988) from an exploratory well (E1-81) in Cyrenaica northeast Libya and recently by Paris et al. (2012) from a shallow borehole (CDEG-2) in Dor el Gussa, eastern Murzuq Basin. In both areas, the incoming of marker species *Diexallophasis caperoradiola*, *Multiplicisphaeridium fisherii* and *Oppilatala eoplanktonica* clearly support a Late Rhuddanian age. None of these species were either recorded in Le Hérissé et al. (2013) in the Moussegouda well or in the present study in the JA-2 well. Based on these observations, it is inferred that the post-Ashgillian interval in the Moussegouda well (cores 8–2) and in well JA-2 may represent a time interval between the latest Ordovician and earliest Silurian. However, the presence of *Geron cf. gracilis*, *Moyeria cabotii*, *Tunisphaeridium* sp., *Ambitisporites dilutus* and *Archeozonotriletes chulus* var. *chulus* and *Tortotubus protuberans* in well JA-2 does appear to demonstrate an early Silurian age for the JA-2 assemblage. Furthermore, we cannot rule out the extension of the well JA-2 sequence to the post-glacial latest Hirnantian because the post-glacial latest Hirnantian acritarch and miospore assemblage is poorly documented in North Africa. The palynomorph content in both wells is supportive of a marginal marine (nearshore) environment and may represent a post-glacial pre-Tanezzuft Formation (sensu stricto) sedimentary sequence.

4.1.3. Algeria

Jardine et al. (1974) recorded early Silurian acritarch assemblages from the Algerian Sahara and established Palynozones G1 and G2. Species common to the Algerian and present assemblage include *Diexallophasis denticulate*, *Eupoikilofusa striatifera*, *Leiofusa estrecha* and *Veryhachium trispinosum*.
4.1.4. Saudi Arabia

Le Hérissé et al. (1995) recorded early Silurian (Llandovery, Rhuddanian and Aeronian) palynomorphs assemblage from Saudi Arabia. They recorded *Buedingiisphaeridium* sp., *D. denticulata*, *E. striatifera*, *Filisphaeridium* sp., *Geron* sp., *Moyeria cabottii* and *Tunisphaeridium* sp..

4.1.5. Jordan

Keegan et al. (1990) recorded early Silurian palynomorphs from two exploration wells of the Hashemite Kingdom of Jordan. The morphotypes *Geron gracilis*, *D. murusdensa*, *Ambitisporites dilutus* and *Archaeozonotriletes chulus* var. *chulus* are present in zone JS-3 (early Llandoverian) of Jordan and are also recorded in the present study.

4.1.6. North America

The studied assemblage in well JA-2 is closely comparable with the early Silurian (Rhuddanian) assemblage from the Tuscarora Formation in central Pennsylvania, USA (Johnson, 1985). Common species include *L. acerscabrella*, *T. mediensis*, *A. dilutus*, *Rugosphaera* cf. *tuscarorensis* and *Tortotubus protuberans*.

4.2. Chitinozoan assemblages
Available data on chitinozoans from the Ordovician–Silurian boundary increased significantly during the last ten years with the work of Bourahrouh (2002) (data on Algeria, Morocco, western France and Czech Republic) and the papers of Vandenbroucke et al. (2009) on the chitinozoans from the Soom Shale of South Africa, and of Butcher (2009) on those of the Mudawwara Shale Formation in Jordan. A few new species are erected in these contributions. However, an extensive taxonomical study of many undescribed new forms from the Late Ordovician–early Silurian of northern Gondwana regions, based on large populations, is now urgently needed. Independent biostratigraphical control by means of graptolites is now available for some chitinozoan-bearing sections, e.g. Nseirat section, Mauritania (Underwood et al., 1998; Legrand, 2009), Jordan (Lüning et al., 2006; Loydell, 2007, 2012), Les Fresnaies section, southern Brittany, France (Piçarra et al., 2009), and Hlasna Treban, Czech Republic (Štorch, 1996; Štorch and Loydell, 1996). All these data now allow a reassessment of the chitinozoan assemblages formerly described in NE Libya by Molyneux and Paris (1985) and by Paris (1988).

The occurrence of chitinozoans throughout the penetrated sequence in JA-2 (except the barren lowermost samples; see above) clearly indicates a marine deposit. The rather low diversity of the recorded assemblages, in spite of high abundance (up to 415 specimens per gram of rock), is compatible with deposition in a rather proximal setting to the shoreline. This is consistent also with the occurrence of land-derived cryptospores and miospores in association with vitrinite-like organic matter in the residues. The presence of eurypterids (Plate XII, 3–6) is also in favour of environments not very far from the shoreline as these animals are regarded as nearshore (e.g., Jones and Kjellesvig-Waering, 1985), and in some cases occasionally terrestrial organisms (especially in the late Silurian) (e.g., Braddy, 2001). The occurrence of *Tortotubus protuberans* (Plate XII, 9, 14, 18) provides an additional indication of deposition fairly close to the shoreline,
as this enigmatic microfossil is usually reported from shallow to terrestrial environments at the
Ordovician–Silurian boundary (e.g., Le Hérissé et al., 2013).

4.3. Ordovician–Silurian boundary

The definition of the base of the Silurian, and thus of the Rhuddanian Stage is a critical point for
the calibration of the latest Ordovician–earliest Silurian chitinozoan assemblages. The
Ordovician–Silurian boundary first moved from its historical position at the base of the
persculptus Biozone, to the base of the succeeding *acuminatus* Biozone, with the GSSP of the
base of the Silurian defined at Dob’s Linn in Scotland (see Williams and Ingham, 1989). The
basal Silurian *acuminatus* Biozone at Dob’s Linn was subsequently subdivided into a lower
Akidograptus ascensus Biozone and a higher, more restricted *Parakidograptus acuminatus*
Biozone (Melchin and Williams, 2000). As a consequence, the base of the Silurian (base of the
Rhuddanian) is now defined by the first appearance of *A. ascensus*. This definition was ratified
by the International Subcomission on Silurian Stratigraphy (2007). Moreover, recent revisions of
graptolites from the *ascensus–acuminatus* Biozone (e.g., Loydell, 2007, 2012, and references
therein) confirm the three-fold divisions of this biozone by Štorch (1996) into lower, middle and
upper subzones. In this scheme (see Loydell, 2007, p. 10), *A. ascensus* ranges in the lower and
the middle subzones. All these successive changes had consequences on the accurate dating of
the chitinozoan biozones around the Ordovician–Silurian boundary, as there are no direct ties
with the GSSP at Dob’s Linn (no workable chitinozoan assemblages are available yet; see
Verniers and Vandenbroucke, 2006). Delabroye and Vecoli (2010) briefly reviewed the
biostratigraphical inconsistencies persisting in the main diagnostic fossil groups close to the
Ordovician–Silurian boundary.
4.4. Chronostratigraphical calibration of the Hirnantian and Rhuddanian chitinozoan biozones

Continuous chitinozoan-bearing strata of latest Ordovician to early Silurian age, i.e. not disturbed by Hirnantian glacial events, are very rare in northern Gondwana regions (including peri-Gondwana Europe, sensu Štorch, 1996). At a few localities this boundary can be located with the greatest precision, for example, in the Nseirat section in the Hodh area (Mauritania), which yielded associated abundant graptolites (Underwood et al., 1998; Legrand, 2009) and chitinozoans (Paris et al., 1998; F. Paris, unpublished data). The Hlasna Treban section in the Prague Basin (Czech Republic) also yielded well studied graptolites (Štorch, 1996; Štorch and Loydell, 1996) and chitinozoan data (Dufka and Fatka, 1993; Bourahrouh, 2002). Another section is at les Fresnaies, Ancenis Basin, western France, where Hirnantian chitinozoan-bearing diamictites (Bourahrouh, 2002; F. Paris, unpublished data) are overlain by Rhuddanian black shale with associated graptolites and chitinozoans (Bourahrouh, 2002; Piçarra et al., 2002; Piçarra et al., 2009; F. Paris, unpublished data). The Ordovician–Silurian boundary can also be located with the greatest precision in well BG-14 in southern Jordan where graptolites (Loydell, 2007) and chitinozoan (Butcher, 2009) have been studied. In southern Saudi Arabia chitinozoans occur in the MKSR-1 well, just below and within graptolite-bearing black shale assigned to the early Rhuddanian (Paris et al., 1995). Other important controls should be obtained from the graptolite-bearing sequence in the E1-NC174 core in the Murzuq Basin (Libya) as chitinozoans are also reported (Butcher, 2012) with abundant early Rhuddanian graptolites (Loydell, 2012). The concurrent ranges of the chitinozoans and graptolites in these sections are used here for more precise dating of numerous previously published chitinozoan assemblages close to the Ordovician–Silurian boundary (Fig. 5).
In the present study on core samples from JA-2, the comparison focuses chiefly on the chitinozoan data available for Libya, with a particular attention paid to the chitinozoan assemblages from the Kufra Basin, e.g. KW-2 core-drill (Grignani et al., 1991; Le Hérissé et al., 2013; F. Paris, unpublished data), cores from wells A1-NC43 and B1-NC43 (Grignani et al., 1991), and cuttings from H6000 and W5174 (Paris et al., 2008) (Fig. 5). Correlation is also proposed with other Libyan regions, e.g. well CDEG-2a in the eastern Murzuq Basin (Paris et al., 2012). The Silurian chitinozoans of Al-Ameri (1989) from Western Libya, however, are not discussed here as they correspond to assemblages younger than the material recovered from the sub-surface of the Kufra Basin. Older data from Cyrenaica (Molyneux and Paris, 1985; Paris, 1988), which did not benefit from an independent calibration in terms of graptolite biozones, can now be updated. The correlations are extended to cores in other countries, e.g. Moussegouda, northern Chad (Le Hérissé et al., 2004, 2013).

In Moussegouda, the occurrence of glacio-marine deposits with typical Late Ordovician chitinozoans and acritarchs ca. 15 m below the first *E. moussegoudaensis* chitinozoan assemblage must be stressed, as this demonstrates that the *E. moussegoudaensis* dominated assemblage is clearly post-glacial. In well KW-2, *E. moussegoudaensis* occurs in the shale referred to the Tanezzuft Formation (Le Hérissé et al., 2013). Below 54 m of this Tanezzuft Formation shale, the well penetrated sandstone of the Mamuniyat Formation for 7 m. No chitinozoans are reported from this sandy member but typical latest Ordovician chitinozoan assemblages are present in the neighbouring wells of A1-NC43 (core 3, Mamuniyat Formation) and B1-NC43 (core 5; but supposed to belong to the Tanezzuft Formation in Grignani et al., 1991). The lithostratigraphic position of the latter core sample, however, is confusing (see discussion in Grignani et al., 1991, p. 1163). No graptolites have been identified in JA-2 or in Moussegouda, but Grignani et al. (1991) reported “*Climacograptus medius*” (now
Normalograptus medius) in the KW-2 cores. If the identification is correct, this means that the corresponding samples can be of late Hirnantian as well as of Rhuddanian age as this species ranges across the Ordovician–Silurian boundary (see Loydell, 2007, text in fig. 6). In areas of JA-2 and KW-2, we do not have unweathered material from the overlying formations. In Moussegouda, the shale sequence with the moussegoudaensis chitinozoan assemblage is directly overlain by barren white sandstone referred to the Akakus Formation. No biostratigraphical data are available in the Silurian part of A1-NC43 and B1-NC43. Consequently, the top of the moussegoudaensis assemblage is not constrained in the Kufra Basin, even when this structure is extended to northern Chad.

The ranges of S. oulebsiri and S. verniersi, two taxa represented in the moussegoudaensis assemblage, have been used to better constrain its chronostratigraphic assignment. S. oulebsiri ranges in late Hirnantian post-glacial deposits, especially in the Nseirat section (Mauritania), where it coexists briefly with Belonechitina pseudarabiensis and Cyathochitina caputoi. The latter have their Last Appearance Datum (LAD) higher up in the section in the well-dated upper ascensus–acuminatus Biozone of early Rhuddanian age. The lower part of the Nseirat section (with S. oulebsiri) yields abundant Normalograptus graptolites attributed to the persculptus Biozone (Underwood et al., 1998), i.e. of late Hirnantian age. However, the specific assignment of these Normalograptus have been recently contested by Loydell (2007) who rejected the specimens of N. persculptus illustrated by Underwood et al. (1998) from his well-documented synonymy list for N. persculptus (Loydell, 2007, p. 43).

Because the durations of the related glacial events are significantly shorter (ca. 10 ky) than the range of the recorded chitinozoan species (ca. 1 Ma or more), the Hirnantian glacial climax can be regarded as isochronous at the scale of the northern Gondwana chitinozoan biozonations. Indeed, several typical Late Katian species, e.g. Calpichitina lenticularis,
Armoricochitina nigerica, Desmochitina gr. minor, Lagenochitina baltica, L. prussica (see Paris et al., 2000, and references therein) range through the Hirnantian, up to the end of the main melting phase of the ice cap, in the latest Hirnantian. Fortunately, some taxa have a more restricted range and proved to be helpful for subdividing the latest Ordovician. Tanuchitina elongata, the index species of the next to last Ordovician chitinozoan biozone (Paris, 1990) has its FAD before the first drastic sea level fall characterising the beginning of the Hirnantian glacial climax. This FAD is located just above the base of the Hirnantian as documented in the Anti-Atlas, Morocco (Loi et al., 2010) and in the Prague Basin by Bourahrouh (2002) where *T. elongata* is recorded in association with *Normalograptus osjuensis*. The latter graptolite is regarded as slightly preceding the FAD of *N. extraordinarius*, the index graptolite of the base of the “new” Hirnantian stage (see Chen et al., 2000, 2006) and thus *T. elongata* begins also just below the base of the Hirnantian. The species is recorded up to the uppermost Kosov Formation (Hirnantian) in the Prague Basin (Bourahrouh, 2002) where *N. persculptus* is present (Štorch and Loydell, 1996). The total range of *T. elongata* is therefore latest Katian–late Hirnantian.

At present, *Spinachitina oulebsiri* Biozone is the last Ordovician chitinozoan biozone in the northern Gondwana biozonation (Webby et al., 2004). This species coexists for a time with the last typical Ordovician chitinozoan species (see above) and thus its lower part is late Hirnantian in age. The LAD of *S. oulebsiri* is documented in the lower part of the Nseirat section (up to MSE-10) where it is associated with other chitinozoans with dominating *Cyathochitina caputoi* and rare *Belochechitina pseudarabiensis*. This chitinozoan assemblage coexists with numerous *Normalograptus* assigned to *N. persculptus* by Underwood et al. (1998), but not included in the synonymy list of this species proposed by Loydell (2007). Additional information is available from the MKSR-1 well (southern Saudi Arabia) where *S. oulebsiri* is restricted to strata below the ‘hot shale’ horizon yielding numerous *C. caputoi* associated with
graptolites of the *acuminatus* Zone (Paris et al., 1995, and discussion in Paris et al., 2013).

According to the graptolites, *S. oulebsiri* may therefore extend into the uppermost Hirnantian or the lowermost Rhuddanian. Based on the synonymy proposed by Vandenbroucke et al. (2009), *S. oulebsiri* is present in the United Kingdom (Vandenbroucke et al., 2005; Vandenbroucke, 2008). This species is reported from other localities devoid of accurate independent age control, e.g. Soom Shale in South Africa (Vandenbroucke et al., 2009), several wells in Algeria, including NI-2 (Paris et al., 2000), and sections in Argentina (De La Puente, 2009). It is also present in JA-2 in SE Libya (see Fig. 4). In these localities, it is worth noting that *S. oulebsiri* without the typical Late Ordovician species but associated with *S. verniersi*, occurs in post-glacial deposits. This confirms that the climax of the Late Ordovician glaciation ended within the *persculptus* Biozone.

Slightly higher in the Nseirat section (from NSE-11 to NSE-18) *B. pseudarabiensis* and *C. caputoi* dominate the chitinozoan assemblages. They are associated with *S. debbajae* in strata referred to the lower-middle subzone of the *ascensus−acuminatus* Biozone based on its graptolite content (Underwood et al., 1998) and on the comments provided by Loydell (2007). From NSE-18 onward, *B. pseudarabiensis* is associated with *S. fragilis* (morphotype with a shoulder) and with graptolites of the *ascensus−acuminatus* Biozone from NSE-18. A similar situation occurs also in Jordan (Butcher, 2009), in BG-14 core sample at 42.5 m depth assigned by Loydell (2007) to the upper subzone *ascensus−acuminatus* Biozone. In the Les Fesnaies section, western France (Bourahrouh, 2002; F. Paris, unpublished data), and in Hlasna Treban section, Czech Republic (Dufka and Fatka, 1993; Bourahrouh, 2002) identical *S. fragilis* specimens are associated with graptolites of the *ascensus−acuminatus* graptolite Biozone described respectively by Piçarra et al. (2009) and by Štorch (1996).
In Libya, in the Murzuq Basin, a chitinozoan assemblage similar to that of the upper middle part of the Nseirat section, i.e. *S. fragilis* “with shoulder” associated with Ancyrochitininae specimens with long branched processes (provisionally identified as *A. cf. ramosaspina*) is reported from the interval 47.48–50.64 m (core 20 to core 23) in well CDGE-2a (see Paris et al., 2012). In the Kufra Basin, in cuttings samples (W5174 and H6000) abundant *B. pseudarabiensis* coexist with Ancyrochitininae (long processes branched at their distal end, provisionally referred to as *A. gr. ancyrea* in Paris et al. (2008a). Based on the chitinozoan data from Jordan newly published by Butcher (2009) on BG-14 core samples accurately dated by graptolites (Loydell, 2007), the two Kufra assemblages from W5174 and H6000 can be correlated with the upper part of the ascensus–acuminatus graptolite Biozone of Jordan, where *S. fragilis* is no longer present (Butcher, 2009, text in fig. 7).

The re-evaluation of previous chitinozoans from Libya enables more accurate dates for assemblages. For instance, the chitinozoans recovered from JI-81A, E1-81 and A1-81 wells of southern Cyrenaica (Molyneux and Paris, 1985; Hill et al., 1985; Paris, 1988) are updated with regards to the range of the chitinozoan key species selected in the present report (Fig. 5). In well J1-81A, cuttings from 12150 ft to 13240 ft, yielded caved specimens of *S. debbajae, S. oulebsiri,* and *E. moussegoudaensis* mixed with well-characterised in-situ Hirnantian species. This means that below the Middle Devonian, and above the Upper Ordovician strata, this well penetrated Rhuddanian deposits (see stratigraphical interpretation on Figure 5). In well E1-81, the Ordovician–Silurian beds seem rather better developed, as there is a large interval of ca. 100 m separating core 4 of early Rhuddanian age (abundant *Sphaerochitina solitudina* consistent with the upper subzone of the ascensus–acuminatus Biozone), from core 5 of Hirnantian age (elongata Biozone) (Fig. 5).
5. Conclusions

The chitinozoan assemblages recovered from the 35 m thick shaly to silty sequence in well JA-2 are characterised by dominant *Euconochitina moussegoudaensis* and by the sporadic, but stratigraphically important presence of *Spinachitina oulebsiri*, *S. verniersi*, and highly branched Angochitininae. These characteristics are shared by the chitinozoan assemblages observed in the ca. 100 m thick shale dominated sequence penetrated by the Moussegouda well (northern Chad; Le Hérissé et al., 2013) and in the 4 core samples analysed previously in the KW-2 shallow core (Kufra Basin, Libya; see Grignani et al., 1991; F. Paris in Le Hérissé et al., 2013). The Moussegouda area is geologically regarded as part of the Kufra Basin (see e.g., Lüning et al., 2006) and therefore, the more complete data available on this well can be of some help in interpreting the core from well JA-2 and cuttings from the UN-REMSA well where the overlying and underlying strata are not documented by samples.

The analysed samples from well JA-2 and the UN-REMSA well are regarded as post-glacial, but are still either of latest Hirnantian age, or at least no younger than earliest Rhuddanian if one follows Loydell’s (2007) arguments for the Mauritania material. This uncertainty is indicated by a blue stripe on the graph (Fig. 5) summarising the reassessment of previously reported chitinozoan assemblages from Libya. However, an alternative interpretation, based on an environmental control of the range of the chitinozoans, cannot be definitively ruled out, even if the chitinozoans are not usually deeply affected by environmental factors. Because the *moussegoudensis* chitinozoan assemblages are so far restricted to the rather nearshore environments of the Kufra Basin (including Chad), the proliferation of *E. moussegoudaensis* may reflect an environmental control rather than a stratigraphically restricted range. If so, the absence of *E. moussegoudaensis* in Rhuddanian sections with a graptolite control (deeper
environments) would simply be a result of differences in the bathymetry of the depositional areas.

Based on the discussion above on chitinozoan biostratigraphy and palaeoecology, it appears that the studied section records an assemblage of latest Ordovician to earliest Silurian age. The acritarchs, miospores and cryptospores assemblage recorded seem to be no older than earliest Rhuddanian. However, several key post-glacial, latest Hirnantian sections, especially the Nseirat section in Mauritania and Anti-Atlas section in Morocco, where post-glacial Hirnantian chitinozoan assemblages have been documented, need to be investigated for acritarch and miospore content, for possible extension of the reported earliest Rhuddanian species to the latest Hirnantian.

Acknowledgments

We are very grateful to Faraj Said (National Oil Corporation, Tripoli, Libya), Ahmed I. Asbali (Arabian Gulf Oil Company, Benghazi, Libya), Ramadan Aburawi (Exploration Director, Libya Holdings Co.) and Bourima Belgasem (Libyan Petroleum Institute, Tripoli, Libya) for their scientific support and guidance during the project work in Libya. We also would like to thank the logistics team, provided by Bashir Grenat, for assistance in the field. The administrative and logistical support of staff at the Libyan Petroleum Institute is gratefully acknowledged. Support by the Earth Science Society of Libya is much appreciated. Special thanks go to James Stewart and Clive Johnson for their support during the drilling campaign in the Sahara Desert, to Shir Akbari for palynological sample preparation, and to John E.A. Marshall for providing chitinozoan reflectance data for some of the JA-2 core samples. The consortium of oil and gas industry subscribers is thanked for its financial support to the CASP Southern Basins of Libya
Project. Thijs R.A. Vandenbroucke and an anonymous reviewer contributed with thoughtful comments to improve the manuscript. This paper is a contribution to the International Geoscience Programme (IGCP) Project 591 – ‘The Early to Middle Paleozoic Revolution’.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at xxx.

References

35

Śtorch, P., Loydell, D.K., 1996. The Hirnantian graptolites *Normalograptus persculptus* and
‘*Glyptograptus* bohemicus’: stratigraphical consequences of their synonymy. Palaeontology
39, 869–881.

Taugourdeau, P., 1962. Association de Chitinozoaires dans quelques sondages de la région de
Edjelé (Sahara). Revue de Micropaléontologie 4, 229–236.

Thusu, B., Syed, R., Whitham, A., Abtarruma, Y., El Dieb, M., Elkatarry, F.M., Hamhoon,
palynostratigraphy in the Kufra Basin, Libya. Kufra Basin Project, Unpublished CASP
Report 6, 47 pp.

recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event.

biostratigraphy from the Asghill (Cautley district) and Pus Gill section (Dufton district,

and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa. Journal
of Micropalaeontology 28, 53–66.

Tables

Table 1. List of the main palynological and lithological data for the samples processed from well JA-2 and the UN-REMSA well for chitinozoan analysis.

Table 2. Range and relative frequencies (counted number of species) of the acritarchs recorded in the processed samples from well JA-2 and the UN-REMSA well.
Table 3. Range and relative frequencies (counted number of species) of the sporomorphs and *Tortubus portuberans* recorded in the processed samples from well JA-2 and the UN-REMSA well.

Table 4. Kerogen analysis data (grain count of all sizes undertaken under transmitted light) on samples from well JA-2 and on cutting samples (SJS0001) from the UN-REMSA well. Numbers are in percentages.

Table 5. Chitinozoan reflectance (Rch) values in % of core samples from well JA-2 (provided by John E. A. Marshall, University of Southampton). The measured reflectance values (average) have been corrected against a standard which was measured at the start and end of every sample series. For every sample the corrected value is close to the average value, showing that there has been not much instrumental drift during reflectance measurements. The vitrinite reflectance (Rv) values in % were calculated using the equation in Tricker et al. (1992).

FIGURE CAPTIONS

Fig. 1. Map of Libya showing surface outcrops with Paleozoic rocks (dark grey colour) and the location of Jebel Asba at the eastern margin of the Kufra Basin (after Paris et al., 2012). The drill site localities of well CDEG-2a in central Dor el Gussa (Paris et al., 2012) and well JA-2 in southern Jebel Asba (this study) are indicated. The UN-REMSA well was found some 530 m towards the NNE from JA-2 (not shown in the map).
Fig. 2. Lithological log of the core from well JA-2 together with biostratigraphic age, chitinozoan abundance and kerogen analysis data (see also Table 4). See text for explanation.

Fig. 3. Selected palynomorph species with stratigraphic ranges and regional occurrences in North Africa, the Middle East and USA (Becip, 1974; Jardiné et al., 1974; Johnson, 1985; Molyneux and Paris, 1985; Hill and Molyneux, 1988; Keegan et al., 1990; Le Hérissé et al., 1995; Paris et al., 2012) and comparison with the present study.

Fig. 4. Range, relative frequencies and abundances of the chitinozoans recorded in the processed samples from well JA-2.

PLATES
Plate I. Scale bar = 10 µm.

Plate II. Scale bar = 10 µm.

7: Tasmanites sp. Slide no. 4818. Core sample at 48.18 m depth. England finder location: J41.

Plate III. Scale bar = 10 µm.

Leiosphaerida sp. (in clusters). Slide no. 6782-5. Core sample at 67.82 m depth. England finder location: K32

Plate IV. Scale bar = 10 μm.

Plate V. Scale bar = 10 μm.

Plate VI. Scale bar = 100 μm, except for 1b, 2b, 3b, 4b, 6b, 7b and 9b (10 μm).

1a−b, 2a−b: **Spinachitina verniersi** Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 55.53 m depth; IGR 72962 (L47/4). 1a: conical specimen with gently tapering flanks and granules/spines concentrated on the margin. 1b: close-up of the granules/spines (less than 2 microns length, but possibly eroded) concentrated on the margin. Some granules seem also scattered on the chamber. 2a: (N44/4): flattened specimen (vesicle of 150 μm length) with a tilted bottom. 2b: close-up of the spines (up to 2 μm length) erected on the margin (not exactly arranged in a single row).

3a−b: **Spinachitina verniersi** Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 55.53 m depth; IGR 72962 (L47/4). 3a: conical vesicle showing the diagnostic crown of densely distributed spines/granules on the margin. 3b: detail of the spines/granules (up to 3 μm length) forming a crown around the carina.

4a−b, 8a−b: **Euconochitina moussegoudaensis** Paris, in Le Hérissé et al., 2013. Core sample at 67.82 m depth; IGR 72987. 4a: (O47/2): conical specimen with gently tapering flanks and a slightly flaring collarette. 4b: close-up of the smooth wall surface. 8a: (O47/3): specimen (vesicle of 146 μm length) with a partly tilted bottom. 8b: close-up of the margin devoid of spines or granules.

5: **Plectochitina** cf. *longispina* (Achab, 1978). Core sample at 67.82 m depth; 72987 (L38/3).

6a−b: **Spinachitina verniersi** Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 60.23 m depth; IGR 729864 (O47). 6a: (O47/2): conical specimen with gently tapering flanks. 6b: close-up of the margin showing possible granules in row.

7a−b: **Spinachitina verniersi** Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 67.82 m depth; IGR 72987 (L43/1). 7a: long conical specimen with a gently flaring collarette and spines concentrated on the margin. 7b: close-up showing the spines (up to 3 μm length) concentrated on the margin. Some granules (less than 1 μm length) seem also scattered on the lower part of the chamber.

Plate VII. Scale bar = 100 μm, except for 1b, 1c, 2b, 3b, 4b, 9b and 9c (10 μm).

1a−c, 3a−b, 4a−b, 6, 8, 9a−c: **Spinachitina oulebsiri** Paris et al., 2000. Core sample at 67.59 m depth; IGR 72981. 1a: (M44/1): typical specimen with a well-developed crown of spines (about 20 spines) erected around its margin. 1b: close-up of the spines (up to 8 μm length) showing their slender conical shape and their widened hollow base. 1c: detail of the wall surface, which seems rough at high magnification (possibly covered by a bacterial mat). 3a: (Q47/1): fairly long specimen (vesicle of
170 μm length) with a well-developed crown of spines (about 24 spines) around its margin and a conspicuous supra-margin constriction. 3b: close-up of the spines (up to 8 μm length) erected on the margin showing their slender conical shape and their widened hollow base. 4a (L48): long specimen (vesicle of 190 μm length) with a well-developed crown of spines (about 20 spines) around its margin. The supra-margin constriction is weak. 4b: close-up of the slender conical spines (up to 11 μm length); note the bi-rooted base (possibly resulting of the collapse of the wall of the hollow base). 6 (L48/4): short conical vesicle (vesicle of 130 μm length). 8 (O49): very short vesicle (close to 100 μm), note the serrated aperture. 9a (O49/4): unusual long vesicle (length close to 300 μm) with a conspicuous supra-margin constriction and a fenestrate aperture. 9b: close-up of the crown of densely distributed spines (about 30). 9c: close-up of the fenestrate aperture.

Spinachitina verniersi Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 67.59 m depth; IGR 72981 (Q47). 2a: conical vesicle showing the diagnostic crown of densely distributed granules on the margin. 2b: detail of the granules arranged in a crown on the carina.

Euconochitina moussegoudaensis Paris, in Le Hérissé et al., 2013. Core sample at 67.59 m depth; IGR 72981 (P47/3).

Spinachitina verniersi Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 67.59 m depth; IGR 72981 (N49/3). Vesicle with granules concentrated on the margin. However, they are not clearly arranged in crown.

Plate VIII. Chitinozoans and one scolecodont from cuttings (no depth provided) from the UN-REMSA well, Kufra Basin, Libya; IGR 72995. Scale bar = 100 μm, except for 3b, 5b, 6b, 8, 9b, 10b (10 μm) and 6c (1 μm).

Cyathochitina caputoi Da Costa, 1971. (Q44); note the thick carina and the longitudinal ridges at the junction of the chamber and of the neck.

Scolecodont partly “coated” with amorphous organic matter (R45/4).

Euconochitina moussegoudaensis Paris, in Le Hérissé et al., 2013. 3a (S46): slightly conical specimen with a well-developed cylindrical neck. 3b: close-up of the margin devoid of spines. The granules (about 1 μm) represent likely organic particles stuck on the margin. 4 (U48): gently tapering conical vesicle without any ornamentation on its margin. 5a (S48): slender conical specimen (vesicle of 161 μm length). 5b: close-up of the margin showing minute granules (less than one μm) concentrated around the base.

6a–c, 9a–b, 10a–b: Spinachitina verniersi Vandenbroucke, in Vandenbroucke et al., 2009. 6a (P45/2): conical vesicle showing the diagnostic crown of densely distributed granules on the margin. 6b: detail of the crown of granules. 6c: close-up of the granules more or less in row on the margin. 9a (O48/1): long conical vesicle (190 μm length). 9b: detail of the crown of eroded granules. 10a (P49/3): conical vesicle (161 μm length) with densely distributed granules more or less forming a crown on the margin. 10b: detail of the crown of granules on the margin; additional minute granules are randomly scattered on the lower part of the chamber.

Ancyrochitininae indet. 7 (N44): damaged vesicle (broken processes) coated with amorphous organic matter. 8 (L47/4): antiapertural view of a specimen with broken processes.
Plate IX. Scale bar = 100 μm, except for 4, 7, 8 (10 μm) and 3, 5 and 10 (1 μm).

1, 6–8: *Tortotubus protuberans* Johnson, 1985. 1: Core sample at 60.23 m depth; IGR 72964 (O43); long branched structure. 6: Core sample at 67.59 m depth; IGR 72981 (P45/3); fragment of branched structure. 7: Close up of fig. 6 showing bulb-like “vesicles” at the junction between the four branches. 8: Close up showing detail of the bulb-like “vesicles” protruding on the surface of the longest branch of fig. 6.

2–5: Amorphous organic matter (biofilm) after oxidation with HNO₃. Core sample at 67.40 m depth; IGR 72979. 2: Large fragment of organic “sheet”. 3: Tilted view of the “sheet” showing the spongy structure of the section. 4: Fragment of “sheet”; see the straight border of a few μm thick. 5: Casts of frambooids of pyrite after dissolution with HNO₃.

9: Chitinozoan specimen (Ancyrochitininae) adhesively associated with amorphous organic matter (biofilm). Core sample at 67.82 m depth; IGR 72987 (K43/2).

10: “Sheets” of amorphous organic matter (biofilm). Core sample at 67.82 m depth, IGR 72987. Detail of the cast of frambooids of pyrite when dissolved with HNO₃.

Plate X. Scale bar = 100 μm, except for 13 and 21b (50 μm).

1: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 46.60 m depth; IGR 72954 (L48). Short thickset specimen.

2: *Euconochitina* cf. *moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 46.60 m depth; IGR 72954 (H40). Elongate and slender specimen showing a supra-margin constriction.

3: *Euconochitina* cf. *moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 48.18 m depth; IGR 72957 (H50/1). Very long specimen.

4: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 50.73 m depth; IGR 72962 (M46). Teratological specimen with a sleeve gaining the lower vesicle and extending around the succeeding one.

5: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 50.73 m depth; IGR 72958 (R40/3).

6: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 55.07 m depth; IGR 72959 (S36).

7: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 60.23 m depth; IGR 72965 (M39/1). Short specimen.

8, 10: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 64.02 m depth; IGR 72967. 8 (G32/4). 10: short specimen (G41/2).

9: *Euconochitina* cf. *moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 64.02 m depth; IGR 72967 (G38/4). Elongate and slender specimen with a supra-margin constriction.

11: *Euconochitina* cf. *moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 65.74 m depth; IGR 72968 (O42). Elongate and slender specimen with a supra-margin constriction.

12: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 65.74 m depth; IGR 72968 (P43/3). Short and thickset specimen.

13: *Calpichitina* sp. Core sample at 66.85 m depth; IGR 72970 (J50/2).
14–16: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 66.85 m depth. 14: (N39); 15: (L45); 16 (T34/4).

17: Ancyrochitinidae indet. Core sample at 67.05 m depth (H44).

18: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.05 m depth. Short and thickset specimen (Q41/1).

19–20: *Euconochitina cf. moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction. 19 (Q42); 20 (K49/1).

21a–b: *Spinachitina cf. S. oulebsiri* Paris et al., 2000. Core sample at 62.34 m depth; IGR 72966 (F.35/4); 21b: close-up showing the spines on the margin.

Plate XI. Scale bar = 100 μm.

1: *Spinachitina oulebsiri* Paris et al., 2000. Core sample at 67.21 m depth; IGR 72975 (F37/4).

2: *Spinachitina cf. verniersi* Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 67.21 m depth; IGR 72975 (M45). Specimen showing a conspicuous supra-margin constriction.

3: *Euconochitina cf. moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.21 m depth; IGR 72975 (N47/2).

4: *Spinachitina cf. verniersi* Vandenbroucke, in Vandenbroucke et al., 2009. Core sample at 67.40 m depth; IGR 72976 (M38/2). Short specimen.

5: *Euconochitina cf. moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.40 m depth; IGR 72976 (035).

11: *Euconochitina cf. moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.82 m depth; 72982 (K44/2). Elongate and slender specimen with a supra-margin constriction and a uncommon well-developed neck.

12: *Euconochitina sp. aff. vitrea* (Taugourdeau, 1962). Core sample at 67.82 m depth; IGR 72985 (K40/1).

16: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Core sample at 67.97 m depth; IGR 72988 (O44/3).

18–20: *Euconochitina moussegoudaensis* Paris, in Le Hérissé et al., 2013. Cuttings from UN-REMSA well; IGR 72955 18: (L43/2); 19: (O37/3); 20: (P39/4).

21: *Cyathochitina caputoi* Da Costa, 1971. Cuttings from UN-REMSA well; IGR 72995 (K38).

Plate XII. Scale bar = 100 μm, except for 7, 8, 10–13 and 19 (50 μm).

1–2, 17: Scolecodont indet. 1: Core sample at 46.60 m depth; IGR 72954 (O43/3). 2: Core sample at 48.18 m depth; IGR 72957 (U42). 17: Core sample at 67.21 m depth; IGR 72957 (M39/3).
3–6: Eurypterid remains. Core sample at 50.73 m depth; IGR 72958. 3: fragment of cuticle (M41/1). 4: fragment of cuticle of a ventral segment (P44/1). 5: “sensorial hair” (P34/1). 6: claw? (M41/1).

7: Ornamented palynomorph recalling *Tasmanites tzadiensis* La Hérissé, in Le Hérissé et al., 2013. Core sample at 50.73 m depth; IGR 72958 (S34).

8, 11–13: *Tasmanites tzadiensis* Le Hérissé, in Le Hérissé et al., 2013. 7: Core sample at 50.73 m depth (S34). 8: Core sample at 50.73 m depth (Q42/3). 11: Core sample at 60.23 m depth (J28/1). 12: Core sample at 62.34 m depth (M39). 13: Core sample at 66.85 m depth (L47/1).

9, 14, 18: *Tortotubus protuberans* Johnson, 1985. 9: Core sample at 57.58 m depth; IGR 72963 (M51); branched structure. 14: Core sample at 66.85 m depth; IGR 72970 (U48/1); fragment. 18: Core sample at 67.21 m depth; IGR 72975 (S43); branched element.

10: Connected palynomorphs. Core sample at 57.58 m depth; IGR 72963 (N47/4).

15–16: “Sheets or blades” of amorphous organic matter (biofilm). Core sample at 66.85 m depth. 15: frambooids of pyrite removed (circular depressions) after oxidation with HNO₃. IGR 72973 (N39/2). 16: biofilm without oxidation by HNO₃ showing black microspheres representing frambooids of pyrite; IGR 72972 (P45/1).

19: ?Colony of cyanobacteria. Core sample at 67.97 m depth; IGR 72988 (R50/2).
<table>
<thead>
<tr>
<th>AGE</th>
<th>SELECTED SPECIES</th>
<th>LIBYA</th>
<th>ALGERIA</th>
<th>MOROCCO</th>
<th>SAUDI ARABIA</th>
<th>JORDAN</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordovician</td>
<td>Ashgillian
Graptolites species
Enallagma sp.</td>
<td>KUFRA
Paris et al. (2012)</td>
<td>Ne Libya
Molynieux and Paris (1983), Molynieux (1989)</td>
<td>No previous record from Silurian</td>
</tr>
<tr>
<td>Silurian</td>
<td>Llandovery
Alzavetispora sp.
Archeoarchaeocystis sp.
Archeoarchaeocystis sp.
Pleurodictyum sp.</td>
<td>Murzuq
Becn (1974) unpublished data</td>
<td>Ghadames
Harad (1974)</td>
<td>No previous record from Silurian</td>
</tr>
</tbody>
</table>

<p>| Zone | 1, 2, 3, 6, 7, 11, 12, 17 | 1, 2, 3, 6, 7, 9, 12, 14, 17 | 1, 2, 3, 6, 7, 9, 12, 14, 17 | 1, 3, 5, 8, 9, 10, 11, 14, 17 | 9, 13, 14, 17 | 4, 12, 13, 15, 16 |
|------------------|---------------------|-----------------------|------------------|------------------|------------------|-------------------------|-----------------------|------------------|-----------------------|------------------------|----------------------|----------------|---------------------------|--------------------------|
| 33.33 | 100 | 100 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 46.20 | 100 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 46.60 | 98 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 48.18 | 98 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 50.73 | 98 | >1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 53.07 | 99 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 55.53 | 99 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 57.58 | 98 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 60.23 | 98 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 62.34 | 96 | 3 | | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 64.02 | 95 | 1 | 4 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 65.74 | 96 | 2 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 66.21 | 99 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 66.85 | 98 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.05 | 96 | 2 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.21 | 96 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.40 | 96 | cf. | 1 | 2 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.59 | 44 | <1 | 20 | <1 | 35 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.82 | 26 | <1 | <1 | <1 | <1 | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 67.97 | 85 | 15 | | <1 | | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 68.42 | | | | <1 | | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 69.12 | 100 | | | <1 | | | | <1 | 75 | 415 | 23 | | <1 | <1 |
| 73.21 | | | | 100 | | | | <1 | 75 | 415 | 23 | | <1 | <1 |</p>
<table>
<thead>
<tr>
<th>Sample depth (m)</th>
<th>Available sample (g)</th>
<th>Processed sample (g)</th>
<th>SEM observation Chitinoid abundance per gram / rock</th>
<th>Sorted %</th>
<th>Biofilm</th>
<th>Scolecodonts</th>
<th>Eurypteryds</th>
<th>Tasmanites</th>
<th>Lithology</th>
<th>Traces of weathering</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>beige silty shale</td>
<td>XX</td>
</tr>
<tr>
<td>33.33</td>
<td>10.4</td>
<td>4.0</td>
<td><1</td>
<td>100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>grey silty shale</td>
<td></td>
</tr>
<tr>
<td>46.20</td>
<td>10.9</td>
<td>5.6</td>
<td><1</td>
<td>100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>grey silty shale</td>
<td>X</td>
</tr>
<tr>
<td>46.60</td>
<td>10.2</td>
<td>5.0</td>
<td>YES</td>
<td>292</td>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>grey silty shale</td>
<td></td>
</tr>
<tr>
<td>48.18</td>
<td>11.3</td>
<td>5.6</td>
<td>189</td>
<td>62</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>grey silty shale</td>
<td></td>
</tr>
<tr>
<td>50.73</td>
<td>9.3</td>
<td>4.3</td>
<td>82</td>
<td>90</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>grey silty shale</td>
<td></td>
</tr>
<tr>
<td>53.07</td>
<td>6.7</td>
<td>4.0</td>
<td>74</td>
<td>50</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td>grey silty shale</td>
<td></td>
</tr>
<tr>
<td>55.53</td>
<td>14.3</td>
<td>6.0</td>
<td>YES</td>
<td>75</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>57.58</td>
<td>11.6</td>
<td>5.1</td>
<td>415</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grey silt, micas</td>
<td></td>
</tr>
<tr>
<td>60.23</td>
<td>7.1</td>
<td>5.1</td>
<td>YES</td>
<td>23</td>
<td>100</td>
<td></td>
<td>X</td>
<td>X</td>
<td>grey silt, micas</td>
<td></td>
</tr>
<tr>
<td>62.34</td>
<td>8.5</td>
<td>5.1</td>
<td>5</td>
<td>100</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>grey silt, micas</td>
<td></td>
</tr>
<tr>
<td>64.02</td>
<td>11.3</td>
<td>7.0</td>
<td>154</td>
<td>10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>grey siltstone</td>
<td></td>
</tr>
<tr>
<td>65.74</td>
<td>7.7</td>
<td>5.0</td>
<td>160</td>
<td>10</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>66.21</td>
<td>14.5</td>
<td>7.0</td>
<td>128</td>
<td>10</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>66.85</td>
<td>10.0</td>
<td>5.1</td>
<td>72</td>
<td>20</td>
<td>XX</td>
<td></td>
<td>X</td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>67.05</td>
<td>5.0</td>
<td>3.5</td>
<td>61</td>
<td>80</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td>greenish shale</td>
<td></td>
</tr>
<tr>
<td>67.21</td>
<td>5.6</td>
<td>3.7</td>
<td>59</td>
<td>90</td>
<td>XX</td>
<td>X</td>
<td></td>
<td></td>
<td>greenish shale</td>
<td></td>
</tr>
<tr>
<td>67.40</td>
<td>4.6</td>
<td>3.3</td>
<td>YES</td>
<td>109</td>
<td>80</td>
<td>XX</td>
<td></td>
<td></td>
<td>greenish shale</td>
<td></td>
</tr>
<tr>
<td>67.59</td>
<td>8.0</td>
<td>5.0</td>
<td>YES</td>
<td>190</td>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>67.82</td>
<td>4.4</td>
<td>3.2</td>
<td>YES</td>
<td>197</td>
<td>50</td>
<td>XX</td>
<td></td>
<td></td>
<td>fine beige sand.</td>
<td></td>
</tr>
<tr>
<td>67.97</td>
<td>3.8</td>
<td>2.4</td>
<td>3</td>
<td>100</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>fine beige sand.</td>
<td>X</td>
</tr>
<tr>
<td>68.42</td>
<td>5.2</td>
<td>3.2</td>
<td>/</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fine beige sand.</td>
<td>X</td>
</tr>
<tr>
<td>69.12</td>
<td>8.6</td>
<td>5.2</td>
<td><1</td>
<td>100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>whitish</td>
<td>XX</td>
</tr>
<tr>
<td>73.21</td>
<td>11.3</td>
<td>5.0</td>
<td><1</td>
<td>100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>grey shale</td>
<td></td>
</tr>
<tr>
<td>UN-REMSA</td>
<td></td>
</tr>
<tr>
<td>SJS0001</td>
<td>4.0</td>
<td>YES</td>
<td>125</td>
<td>10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>dark silty shale</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: X (present), XX (abundant)
Table 2.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JA-2</td>
<td></td>
</tr>
<tr>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>46.20</td>
<td></td>
</tr>
<tr>
<td>46.60</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>48.18</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>50.73</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>53.07</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>55.53</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>57.58</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>60.23</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>62.34</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>64.02</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>65.74</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>66.21</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>66.85</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.05</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.21</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.40</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.59</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.82</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>67.97</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>68.42</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>69.12</td>
<td></td>
</tr>
<tr>
<td>73.21</td>
<td></td>
</tr>
<tr>
<td>UN-REMSA</td>
<td></td>
</tr>
<tr>
<td>SJS0001</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: R: Rare (1–5), C: Common (6–19), A: Abundant (20+)
Table 3.

<table>
<thead>
<tr>
<th>Sample depth (m)</th>
<th>Ambitisporites dilutus</th>
<th>Ambitisporites spp.</th>
<th>Dyadospora murusdensa</th>
<th>Tetrad clusters</th>
<th>Tetrad indet.</th>
<th>Trilete spores</th>
<th>Verrucate spores</th>
<th>Archaeozonotriletes medensis</th>
<th>Archaeozonotriletes chulus var. chulus</th>
<th>Tetrahedraletes medinensis</th>
<th>Archaeozonotriletes medensis</th>
<th>Lophastrites tuscarorensis</th>
<th>Tetrad clusters</th>
<th>Reticulate spores</th>
<th>Rugosphaera tucarorensis</th>
<th>Tortotubus protuberans</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA-2</td>
<td></td>
</tr>
<tr>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>46.20</td>
<td></td>
</tr>
<tr>
<td>46.60</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.18</td>
<td></td>
<td>R</td>
<td>C</td>
<td>A</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>50.73</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>53.07</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>55.53</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>57.58</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.23</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>62.34</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>64.02</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>65.74</td>
<td></td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>66.21</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>66.85</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.05</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.21</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.40</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.59</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.82</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67.97</td>
<td>R</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.42</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>73.21</td>
<td></td>
</tr>
<tr>
<td>UN-REMSA</td>
<td></td>
</tr>
<tr>
<td>SJS0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: R: Rare (1–5), C: Common (6–19), A: Abundant (20+)
<table>
<thead>
<tr>
<th>Sample depth (m)</th>
<th>Vitrinite-like, semistructured</th>
<th>Amorphous organic matter</th>
<th>Cutinite</th>
<th>Acritarchs</th>
<th>Inertinite</th>
<th>Vitrinite-like, degraded</th>
<th>Exinite spores</th>
<th>Exinite resinite</th>
<th>Exinite Tasmanites</th>
<th>Intertinite semifusinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA-2</td>
<td></td>
</tr>
<tr>
<td>33.33</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.20</td>
<td></td>
</tr>
<tr>
<td>46.60</td>
<td>21 30 42 1 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.18</td>
<td>20 35 40 1 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.73</td>
<td>12 50 26 1 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.07</td>
<td>15 50 31 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.53</td>
<td>40 35 22 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.58</td>
<td>30 44 18 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.23</td>
<td>52 16 28 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.34</td>
<td>34 38 24 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.02</td>
<td>32 46 17 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.74</td>
<td>25 61 11 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.21</td>
<td>45 31 20 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.85</td>
<td>5 63 25 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.05</td>
<td>15 78 6 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.21</td>
<td>55 18 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.40</td>
<td>2 90 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.59</td>
<td>50 6 19 6 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.82</td>
<td>20 15 50 1 13 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.97</td>
<td>22 45 27 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.42</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.12</td>
<td>80 11 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.21</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-REMSA</td>
<td></td>
</tr>
<tr>
<td>SJS0001</td>
<td>5 89 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.

<table>
<thead>
<tr>
<th>Sample depth (m)</th>
<th>R_{ch} average</th>
<th>Corrected average</th>
<th>Count</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>R_c calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.60</td>
<td>0.59</td>
<td>0.57</td>
<td>49</td>
<td>0.029</td>
<td>0.54</td>
<td>0.65</td>
<td>0.44</td>
</tr>
<tr>
<td>46.60</td>
<td>0.56</td>
<td>0.55</td>
<td>66</td>
<td>0.036</td>
<td>0.48</td>
<td>0.63</td>
<td>0.41</td>
</tr>
<tr>
<td>48.18</td>
<td>0.60</td>
<td>0.58</td>
<td>4</td>
<td>0.021</td>
<td>0.58</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>57.58</td>
<td>0.55</td>
<td>0.56</td>
<td>72</td>
<td>0.043</td>
<td>0.47</td>
<td>0.63</td>
<td>0.41</td>
</tr>
<tr>
<td>64.02</td>
<td>0.63</td>
<td>0.63</td>
<td>20</td>
<td>0.031</td>
<td>0.58</td>
<td>0.68</td>
<td>0.48</td>
</tr>
<tr>
<td>64.02</td>
<td>0.63</td>
<td>0.61</td>
<td>22</td>
<td>0.065</td>
<td>0.55</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>65.74</td>
<td>0.50</td>
<td>0.49</td>
<td>74</td>
<td>0.031</td>
<td>0.45</td>
<td>0.55</td>
<td>0.36</td>
</tr>
<tr>
<td>65.74</td>
<td>0.54</td>
<td>0.53</td>
<td>22</td>
<td>0.019</td>
<td>0.52</td>
<td>0.57</td>
<td>0.40</td>
</tr>
<tr>
<td>67.82</td>
<td>0.52</td>
<td>0.51</td>
<td>5</td>
<td>0.026</td>
<td>0.49</td>
<td>0.55</td>
<td>0.38</td>
</tr>
</tbody>
</table>