J. M. Allwood, J. M. Cullen, and R. L. Milford, Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050, Environmental Science & Technology, vol.44, issue.6, pp.1888-1894, 2010.
DOI : 10.1021/es902909k

K. G. Knauss, J. W. Johnson, and C. Steefel, Evaluation of the impact of CO 2 , co- 4 contaminant gas, aqueous fluid and reservoir rock interactions on the geological 5 sequestration of CO 2, Chem. Geol, vol.3, issue.217, pp.339-350, 2005.

S. J. Friedmann, Geological Carbon Dioxide Sequestration, Elements, vol.3, issue.3, pp.179-184, 2007.
DOI : 10.2113/gselements.3.3.179

S. Bachu, CO 2 storage in geological media: role, means, status, barriers to deployment

Y. K. Kharaka, D. R. Cole, S. D. Hovorka, W. D. Gunter, and K. G. Knauss, Freifeld, 12 B. M. Gas-water-rock interactions in Frio formation following CO 2 injection: 13 Implications for the storage of greenhouse gases in sedimentary basins, Geology, vol.11, issue.34, pp.577-580, 2006.

L. Zheng, J. A. Apps, Y. Zhang, T. Xu, and T. Birkholzer, On mobilization of lead and 16 arsenic in groundwater in response to CO 2 leakage from deep geological storage

K. U. Rempel, A. Liebscher, W. Heinrich, G. Schettler, G. Montes-hernandez et al., An experimental 19 investigation of trace element dissolution in carbon dioxide: Applications to the 20 geological storage of CO 2 Hematite and iron carbonate precipitation- 22 coexistence at the iron-montmorillonite-salt solution-CO 2 interfaces under high gas 23 pressure at 150 C, Chem. Geol. Appl. Clay Sci, vol.18, issue.45, pp.224-234, 2009.

J. M. Lu, J. W. Partin, S. D. Hovorka, and C. Wong, Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment, Environmental Earth Sciences, vol.1, issue.163, pp.335-348, 2010.
DOI : 10.1007/s12665-009-0382-0

J. Thordsen, S. R. Beers, W. N. Herkelrath, E. Kakouros, R. C. Trautz et al., Geochemical 18 modeling of changes in shallow groundwater chemistry observed during the MSU- 19 ZERT CO 2 injection experiment, Greenhouse Gas Control 2012, pp.202-217, 2013.

L. Charlet, P. Van-cappellen, J. Paquette, and R. J. Reeder, The surface chemistry of divalent 1 metal carbonate minerals Relationship between surface structure, growth 3 mechanism, and trace element incorporation in calcite, Am. J. Sci. Geochem. Cosmochem. Acta, vol.308, issue.59, pp.905-941, 1995.

C. Cornell, R. M. Schwertmann, and U. , The Iron Oxides, pp.3587-3602, 2008.
DOI : 10.1002/3527602097

G. Ozdemir, O. Dunlop, D. J. Montes-hernandez, G. Beck, P. Renard et al., Intermediate magnetite formation during 11 dehydration of goethite Chiriac, 13 R.; Findling, N. Fast precipitation of acicular goethite from ferric hydroxide gel under 14 moderate temperature (30 and 70 C degrees). Cryst. Growth Des Growth of nanosized 17 calcite through gas-solid carbonation of nanosized portlandite particles under 18 anisobaric conditions, Earth Planet. Sci. Lett. Cryst. Growth Des, vol.1030, issue.1932, pp.59-67, 1996.

F. Toche, Sequential precipitation of a new goethite-calcite nanocomposite and its 21 possible application in the removal of toxic ions from polluted water, Chem. Eng. J, vol.22, issue.2333, pp.139-148

+. Cu and . Na2haso4, 7(H2O) Calcite 11, p.32