
HAL Id: insu-00836055
https://insu.hal.science/insu-00836055

Submitted on 20 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cenozoic reactivation of the Great Glen Fault, Scotland:
additional evidence and possible causes
Eline Le Breton, Peter Robert Cobbold, Alain Zanella

To cite this version:
Eline Le Breton, Peter Robert Cobbold, Alain Zanella. Cenozoic reactivation of the Great Glen Fault,
Scotland: additional evidence and possible causes. Journal of the Geological Society, 2013, 170 (3),
pp.403-410. �10.1144/jgs2012-067�. �insu-00836055�

https://insu.hal.science/insu-00836055
https://hal.archives-ouvertes.fr


1 

 

Cenozoic reactivation of the Great Glen Fault, Scotland: Additional Evidence and 1 

Possible Causes 2 

 3 

E. Le Breton1,2*, P.R. Cobbold1, A. Zanella1 4 

1 Géosciences Rennes, Université de Rennes 1, CNRS, 263 Avenue du Général Leclerc, 5 

35042 Rennes, France 6 

2 Now at Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany 7 

 8 

*Corresponding author, E. Le Breton, Department of Earth Sciences, Freie Universität Berlin, 9 

Malterserstr. 74-100, 12249 Berlin, Germany. eline.lebreton@fu-berlin.de 10 

 11 

 12 

Abstract 13 

The Great Glen Fault (GGF) trends NNE-SSW across northern Scotland. According to 14 

previous studies, the GGF developed as a left-lateral strike slip fault during the Caledonian 15 

Orogeny (Ordovician to Early Devonian). However, it then reactivated right-laterally in the 16 

Tertiary. We discuss additional evidence for this later phase. At Eathie and Shandwick, minor 17 

folds and faults in fossiliferous Jurassic marine strata indicate post-depositional right-lateral 18 

slip. In Jurassic shale, we have found bedding-parallel calcite veins (‘beef’ and ‘cone-in-19 

cone’) that may provide evidence for overpressure development and maturation of organic 20 

matter at significant depth. Thus, the Jurassic strata at Eathie and Shandwick accumulated 21 

deeper offshore in the Moray Firth and were subject to Cenozoic exhumation during right-22 

lateral displacement along the GGF, as suggested by previous authors. Differential sea-floor 23 

spreading along the North East Atlantic ridge system generated left-lateral transpressional 24 

displacements along the Faroe Fracture Zone (FFZ) from the Early Eocene to the Late 25 

Oligocene (c. 47–26 Ma), a period of uplift and exhumation in Scotland. We suggest that such 26 
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differential spreading was responsible for reactivation of the GGF. Indeed, left-lateral slip 27 

along the FFZ is compatible with right-lateral reactivation of the GGF. 28 

 29 

Introduction 30 

 Scotland lies between the NE Atlantic Ocean to the west and north, and the North Sea 31 

to the east (Figure 1). The Great Glen Fault (GGF) is a major Caledonian tectonic structure 32 

that trends NNE-SSW across all of northern Scotland. This strike-slip fault developed left-33 

laterally during the Caledonian Orogeny, in Ordovician to Early Devonian times (e.g. Hutton 34 

& McErlean, 1991; Soper et al., 1992; Stewart et al., 2000, 2001; Mendum & Noble, 2010). 35 

However, previous studies of seismic data from the Inner Moray Firth (IMF) Basin, Mesozoic 36 

strata onshore NE Scotland and Tertiary dyke-swarms in NW Scotland, all indicate right-37 

lateral reactivation of the GGF during the Cenozoic (e.g. Holgate, 1969; Underhill & Brodie, 38 

1993; Thomson & Underhill, 1993; Thomson & Hillis, 1995). The exact timing and the causes 39 

of this reactivation are still uncertain.  40 

 Underhill & Brodie (1993) showed that the IMF underwent regional uplift during the 41 

Cenozoic. This they attributed to reactivation of the GGF. More widely, analyses of sonic 42 

velocities, vitrinite reflectance and apatite fission tracks have revealed exhumation and uplift 43 

of Scotland during the Cenozoic (e.g. Underhill & Brodie, 1993; Thomson & Underhill, 1993; 44 

Hillis et al., 1994; Thomson & Hillis, 1995; Clift et al., 1998; Jolivet, 2007; Holford et al., 45 

2009, 2010). In the Early Palaeogene, significant uplift occurred. This may have been due to 46 

the Iceland Mantle Plume or part of the North Atlantic Igneous Province (NAIP) (e.g. Brodie 47 

& White, 1994; Clift et al., 1998; Jones et al., 2002). However, Cenozoic uplift of Scotland 48 

appears to have been episodic from 65 to 60 Ma, 40 to 25 Ma and 15 to 10 Ma (e.g. Holford 49 

et al., 2009, 2010). Holford et al. (2010) suggested that the various episodes of uplift were 50 

due to intraplate stress from the Alpine Orogeny and plate reorganisation in the NE Atlantic. 51 
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Thomson & Underhill (1993) and Thomson & Hillis (1995) attributed uplift of the IMF to 52 

Alpine and NE Atlantic events. More recently, Le Breton et al. (2012) have shown that 53 

variations in the amount and direction of sea-floor spreading, along and between the ridge 54 

systems of the NE Atlantic, generated relative displacements along major oceanic fracture 55 

zones, the Faroe-Fracture Zone (FFZ), between the Reykjanes and Aegir ridges, and the Jan 56 

Mayen Fracture Zone (JMFZ), between the Aegir and Mohns ridges. Le Breton et al. (2012) 57 

have suggested that this differential sea-floor spreading was responsible for post-breakup 58 

compressional deformation of the NW European continental margin.  59 

 60 

 On this basis, the four main possible causes of reactivation of the GGF and Cenozoic 61 

uplift of Scotland are: (1) mantle processes around the Iceland Mantle Plume, (2) intra-plate 62 

compression from the Alpine Orogeny, (3) ridge push from the NE Atlantic and (4) variation 63 

in the amount and rate of sea-floor spreading and plate reorganisation in the NE Atlantic. In 64 

this paper, we investigate the fourth hypothesis. To this purpose, we describe some field 65 

observations of Jurassic outcrops in NE Scotland and we discuss possible causes and timing 66 

of reactivation of the GGF. 67 

 68 

1. Geological Setting 69 

1.1 Onshore rocks of Scotland 70 

 Rocks in Scotland have formed over a time span of billions of years. Various 71 

orogenies have been responsible for a wide variety of rock types (Figure 1; Stone, 2007). The 72 

oldest rocks of Europe (~3 Ga), the Lewisian gneiss, are visible in the Hebrides Islands, NW 73 

Scotland, whereas, on the mainland along the NW coast, they lie beneath the Neoproterozoic 74 

sedimentary strata of the Torridonian Sandstone (~1 Ga). The Moine Thrust is a major fault 75 

that separates the Lewisian gneiss and Torridonian Sandstone, to the west, from 76 
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Neoproterozoic metamorphic rocks of the Moine Supergroup, to the east. In NE Scotland, the 77 

Moine Supergroup lies under the Devonian Old Red Sandstone, famous for its fossil fish 78 

(Miller, 1851). Further south, from Fort William to Inverness, the GGF separates the Moine 79 

Supergroup from the Dalradian Supergroup. The latter mostly consists of Neoproterozoic 80 

metamorphic rocks and late-Caledonian magmatic intrusions (Silurian-Devonian). South of 81 

the Highland Boundary Fault, the Midland Valley is a rift valley containing mostly Palaeozoic 82 

strata. The Moine Thrust, the GGF and the Highland Boundary Fault are major tectonic 83 

structures, which developed during the Caledonian Orogeny (Ordovician to Early Devonian), 84 

during closure of the Iapetus Ocean and continental collision of Laurentia, Baltica and 85 

Avalonia (Soper et al., 1992).  86 

 Mesozoic strata, mostly Jurassic, crop out along the NW and NE coasts. On the NW 87 

coast, they occur at Kilchoan, Lochaline and more widely across the Inner Hebrides; on the 88 

NE coast, at the mouth of the IMF and along the Helmsdale Fault (Figure 1). At Eathie and 89 

Shandwick, minor faults, trending NE-SW along the GGF, put Jurassic strata against Old Red 90 

Sandstone or Neoproterozoic basement (Judd, 1873; Holgate, 1969; Underhill & Brodie, 91 

1993). From fossil evidence, the strata are Kimmeridgian at Eathie and Bathonian to Middle 92 

Oxfordian at Shandwick (Judd, 1873; Sykes, 1975; Wright & Cox, 2001). In the Golspie-93 

Helmsdale area, Triassic to Upper Jurassic strata are more widespread (Stone, 2007; Trewin & 94 

Hurst, 2009). The Helmsdale Fault separates them from Neoproterozoic basement or the Late 95 

Caledonian Helmsdale Granite, to the west. The Upper Jurassic ‘Boulder Beds’ accumulated 96 

in deep water in the footwall of the Helmsdale Fault, at a time when that fault was active 97 

(Roberts, 1989; Trewin & Hurst, 2009). 98 

 Intense volcanic activity occurred along the NE Atlantic margins, during continental 99 

breakup in early Palaeogene time, and resulted in the development of the NAIP (Saunders et 100 

al., 1997). In NW Scotland, this volcanic event was responsible for the development of large 101 
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gabbroic intrusive centres (e.g. Isles of Skye and Mull), as well as widespread lava flows and 102 

dyke swarms (Figure 1). Several authors have suggested that the Iceland Mantle Plume was 103 

responsible for this widespread magmatic activity (e.g. White & McKenzie, 1989; Saunders et 104 

al., 1997).  105 

 During the Plio-Pleistocene, glaciation produced U-shaped valleys, such as the Great 106 

Glen, and various firths. After the last glacial maximum (approx. 18 kyr ago), isostatic 107 

readjustment produced Quaternary raised beaches. Indeed, the readjustment may still be 108 

ongoing (Firth & Stewart, 2000). 109 

 110 

1.2 Offshore rocks of NE Scotland 111 

The Mesozoic IMF Basin is a western arm of the North Sea rift (Figure 2, Evans et 112 

al., 2003; Underhill, 1991a). Numerous seismic surveys have provided good insights into the 113 

structural development of the IMF and the northeastern end of the GGF (Figure 2; Underhill 114 

& Brodie, 1993; Thomson & Underhill, 1993; Thomson & Hills, 1995). Three major faults 115 

shaped the basin: the Wick Fault at its northern edge, the Banff Fault to the south and the 116 

Helmsdale Fault to the west (Figure 2). During Upper Jurassic rifting, fault blocks formed 117 

and tilted (Underhill, 1991a). However, from interpretation of seismic data, well cores and 118 

outcrop data, the overall structure of the basin was that of a half-graben, the depocentre being 119 

proximal to the Helmsdale Fault (Thomson & Underhill, 1993).   120 

McQuillin et al. (1982) suggested that a post-Carboniferous right-lateral displacement 121 

of about 8 km along the GGF was a critical factor in the development of the IMF Basin. On 122 

the other hand, Underhill & Brodie (1993) argued that the GGF was inactive as a strike-slip 123 

fault, during phases of extension in the IMF, and that the Helmsdale Fault was then the 124 
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dominant control on the structure. In contrast, the GGF reactivated in the Tertiary, during 125 

regional uplift and basin inversion (Underhill, 1991a).  126 

 127 

1.3 Evidence for Cenozoic reactivation of the GGF  128 

 The GGF developed as a left-lateral fault during the Caledonian Orogeny (Hutton & 129 

McErlean, 1991; Stewart et al., 2000, 2001). However, according to previous studies, using 130 

seismic data from the IMF Basin and analyses of Mesozoic outcrops and Tertiary dyke 131 

swarms, the GGF reactivated right-laterally in the Tertiary (Holgate, 1969; Underhill & 132 

Brodie, 1993; Thomson & Underhill, 1993; Thomson & Hillis, 1995).  133 

By analysis of the WNW-trending Permo-Carboniferous dyke swarm of northern 134 

Argyll, on the northwestern side of the GGF, Speight & Mitchell (1979) inferred a right-135 

lateral displacement of 7-8 km, as well as a considerable downthrow to the SE. Moreover, 136 

Holgate (1969) deduced 29 km of right-lateral slip along the GGF since the Upper Jurassic, 137 

from field observations of Jurassic rocks in Argyll. On the island of Mull, Tertiary dykes are 138 

offset right-laterally along the GGF (Figure 1; Thomson & Underhill, 1993), which is 139 

consistent with the previous suggestions of Holgate (1969) and Speight & Mitchell (1979). 140 

 On seismic sections from the IMF Basin, the GGF appears as a ‘flower structure’ and 141 

inversion structures are visible in the northwestern corner of the basin, along the Wick Fault 142 

(Figure 2; Underhill & Brodie, 1993; Thomson & Underhill, 1993). From structural studies 143 

along the GGF in Easter Ross (Figure 2), onshore well data from Tain and seismic data from 144 

the IMF Basin, Underhill & Brodie (1993) identified folds and faults, trending N-S to NNE-145 

SSW, in Devonian strata adjacent to the GGF. Moreover, they suggested that the Jurassic 146 

outcrops in Easter Ross along the GGF (Figure 2) may be parts of flower structures that 147 

resulted from right-lateral slip along the GGF. In Jurassic strata of the Sutherland Terrace 148 
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(Figure 2), next to the Helmsdale Fault, Thomson & Underhill (1993) described open folds, 149 

attributing them to opposing senses of slip on the Helmsdale Fault (left-lateral) and the GGF 150 

(right-lateral). 151 

 Estimates of right-lateral displacement on the GGF during the Tertiary are small, from 152 

8 km to 29 km, depending on the studies (Holgate, 1969; McQuillin et al., 1982; Rogers et 153 

al., 1989; Underhill & Brodie, 1993). The exact timing of reactivation is uncertain. Several 154 

authors have suggested that reactivation was contemporaneous with regional uplift of the 155 

Scottish Highlands during Palaeocene-Eocene events of NE Atlantic rifting or during Oligo-156 

Miocene (Alpine) tectonics (e.g. Underhill, 1991b, Underhill & Brodie, 1993; Thomson & 157 

Underhill, 1993; Thomson & Hillis, 1995). 158 

 159 

1.4 Evidence for Cenozoic exhumation  160 

 From interpretation of seismic and well data, the IMF underwent exhumation during 161 

the Cenozoic and the western side of the North Sea tilted to the east (e.g. Underhill, 1991b; 162 

Argent et al., 2002). Indeed, Jurassic strata in the IMF are c. 500-1500 m shallower than they 163 

are in the Viking and Central Graben areas to the east. Thomson & Underhill (1993) have 164 

estimated about 1 km of uplift in the west, decreasing gradually eastwards, whereas Thomson 165 

& Hillis (1995) inferred that exhumation removed about 1.5 km of basin fill from the IMF 166 

and Hillis et al. (1994) estimated 1 km of Tertiary erosion throughout the whole IMF. 167 

Several authors have suggested that Scotland experienced a major phase of uplift in 168 

the early Palaeogene, as a result of igneous underplating or dynamic uplift, associated with 169 

the Iceland Mantle Plume and widespread magmatic activity west of Scotland (White & 170 

Lovell, 1997; Nadin et al., 1997; Clift et al., 1998; Jones et al., 2002; Mackay et al., 2005; 171 

Saunders et al., 2007; Persano et al., 2007). However, fission track analyses on apatite have 172 
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revealed that Cenozoic exhumation of Scotland was episodic, at 65-60 Ma, 40-25 Ma and 15-173 

10 Ma (Holford et al., 2009, 2010; Jolivet, 2007) and may have continued into Late Neogene 174 

time (Hall & Bishop, 2002; Stoker, 2002). Holford et al. (2010) have therefore suggested that 175 

regional exhumation of Scotland was due mainly to plate-wide horizontal forces, resulting 176 

from Alpine orogeny or NE Atlantic events.  177 

 Coeval with Cenozoic uplift, widespread compressional folds and reverse faults 178 

developed on the NW European continental margin, offshore Scotland, (Boldreel & Andersen, 179 

1993, 1998; Brekke, 2000; Hitchen, 2004; Johnson et al., 2005; Ritchie et al., 2003, 2008; 180 

Smallwood, 2004; Stoker et al., 2005; Tuitt et al., 2010). South of the Faroe Islands, such 181 

structures (e.g. the Wyville-Thomson ridge, Ymir ridges (WYTR), Alpin Dome and Judd 182 

Anticline) formed from the Middle Eocene to the Early Miocene (Smallwood, 2004; Johnson 183 

et al., 2005; Ritchie et al., 2008; Tuitt et al., 2010). The possible causes of shortening are a 184 

subject of ongoing debate: (1) Alpine stress field (e.g. Boldreel & Andersen, 1993, 1998), (2) 185 

ridge push from the NE Atlantic (e.g. Boldreel & Andersen, 1993, 1998), (3) plume-enhanced 186 

ridge push (Lundin & Doré, 2002), (4) stress associated with the development of the Iceland 187 

Plateau (Doré et al., 2008) or (5) differential sea-floor spreading along the NE Atlantic 188 

(Mosar et al., 2002; Le Breton et al., 2012). 189 

In this paper, we further investigate the structural evidence for Cenozoic right-lateral 190 

reactivation of the GGF and we discuss possible causes, such as differential sea-floor 191 

spreading along the NE Atlantic. 192 

 193 

2. Method 194 

 Our data are from observations of Jurassic outcrops along both the GGF and the 195 

Helmsdale Fault (Figure 3). Upper Jurassic outcrops at Eathie (Kimmeridgian) and south of 196 



9 

 

Shandwick (Port-an-Righ, Lower and Middle Oxfordian, and Cadh’-an-Righ, from Bathonian 197 

to Middle Oxfordian) are accessible only at low tide. Along the Helmsdale Fault, between 198 

Golspie and Helmsdale, Jurassic outcrops are more numerous.  199 

The objectives of our fieldwork were to identify, measure and analyse structures 200 

within Jurassic strata and the nature of their contact with the Old Red Sandstone or 201 

Neoproterozoic/Caledonian basement. We compared our observations with previous studies 202 

and with published interpretations of seismic data from the IMF, in order to discuss the timing 203 

and possible causes of reactivation of the GGF. 204 

 205 

3. Results 206 

3.1 Eathie 207 

The Jurassic outcrops on the coast at Eathie are easily accessible at low tide, via the 208 

‘Hugh Miller Trail’. The sequence consists of alternating shale (containing Kimmeridgian 209 

ammonites) and argillaceous limestone, with some sandstone at the northeastern end of the 210 

outcrop. The Upper Jurassic rocks at Eathie are in contact mostly with Neoproterozoic 211 

basement, except in the northeastern area, where they are in contact with the Old Red 212 

Sandstone (Figures 4 and 5). Previous studies, notably a drilling site for coal exploration, 213 

indicate that the Jurassic strata abut a fault that trends NNE-SSW (Figure 4; Miller, 1851; 214 

Judd, 1873; Institute of Geological Sciences, Sheet 94, 1973). This fault is probably an eastern 215 

splay of the GGF (e.g. Underhill & Brodie, 1993). We did not observe a sharp fault contact, 216 

but there is evidence for faulting in the form of fault brecciation between Jurassic strata and 217 

Neoproterozoic basement.  218 

In the south, the Jurassic strata dip seaward at approx. 40-60°. However towards the 219 

NE, the dips vary more strongly (from 10 to 90°) around numerous folds, the axes of which 220 
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plunge gently and trend from N-S to NE-SW (Figures 4 and 5). Moreover, several steep 221 

calcite veins, parallel to the GGF, cut the entire Jurassic sequence and their sigmoidal shapes 222 

indicate right-lateral slip along the fault (Figure 5).  223 

 In the same general area, Jonk et al. (2003) described sills and dykes of injected sand. 224 

We found that some of these sills resemble ‘beef’ (bedding-parallel veins of fibrous calcite; 225 

see Rodrigues et al., 2009), in the sense that they locally contain fibrous calcite or cone-in-226 

cone structures (Figure 6). We note that Hillier & Cosgrove (2002) described ‘beef’ and 227 

‘cone-in-cone’, together with sandstone intrusions, at a depth of about 2000 m within Eocene 228 

sandstone in the Alba oil field of the Outer Moray Firth, attributing these structures to 229 

overpressure. In other sedimentary basins (for example, the Neuquén Basin of Argentina, or 230 

the Wessex Basin, UK) ‘beef’ veins provide evidence of overpressure and maturation of 231 

organic matter at a depth of several km, in the ‘oil window’, where temperature is high 232 

enough (60-120 °C) for maturation of organic matter (Selley, 1992; Rodrigues et al., 2009). 233 

Similarly, the Jurassic shale at Eathie may have accumulated deeper offshore in the IMF 234 

Basin and then have been subject to post-Jurassic exhumation (Hillis et al.; 1994). This may 235 

have occurred during right-lateral slip along the GGF. 236 

 237 

3.2 Shandwick 238 

Two outcrops of Jurassic strata are accessible on the coast at low tide, south of 239 

Shandwick (Figure 7). At Port-an-Righ, the strata are Lower to Middle Oxfordian in age, 240 

whereas at Cadh’-an-Righ there is a complete section, from Bathonian to Middle Oxfordian 241 

(Sykes, 1975; Wright & Cox, 2001). In both areas the Jurassic strata abut the Old Red 242 

Sandstone. As at Eathie, this contact is a NNE-SSW fault zone, an eastern branch of the GGF 243 

(e.g. Judd, 1873, Underhill & Brodie, 1993). 244 
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 245 

Port-an-Righ 246 

 The Jurassic strata at Port-an-Righ dip generally seaward at approx. 14° to 32° 247 

(Figures 7 and 8). However, from the top of the cliffs, a large fold is visible on the wave-cut 248 

platform, next to the GGF. The fold is asymmetric and sigmoidal. At its northeastern end, the 249 

fold is broadly cylindrical and the fold axis strikes NE-SW, but at its southeastern end, the 250 

axis plunges at 16-20° to the SW. Such folds are typical of right-lateral slip within a 251 

multilayer (Richard et al., 1991). Further toward the NE, the dip of the bedding varies even 252 

more (from 12° to the S, through 28-70° to the W, to 10-23° to the E; Figure 7). Throughout 253 

the area, steep calcite veins offset the Jurassic strata right-laterally (Figure 8). The veins 254 

strike at approx. 45° to the GGF. In this area, Jonk et al. (2003) described right-lateral faults, 255 

trending NE-SW and bearing calcite cement. A fault separates Jurassic from Devonian strata 256 

(Figure 8; Jonk et al., 2003), but we did not observe any striae.  257 

 258 

Cadh’-an-Righ 259 

Another Jurassic outcrop is visible at Cadh’-an-Righ (Figure 7), although access to it 260 

is more difficult. In this area, the Devonian strata dip steeply seaward (at about 80° next to the 261 

Jurassic strata), whereas the Jurassic strata dip generally seaward at 44-58° (Figure 7). Once 262 

again, we found ‘beef’ in the Jurassic strata, as well as coal (Figure 9). 263 

At Cadh’-an-Righ there is a clear fault contact between Jurassic and Devonian strata 264 

(Figure 9). The strike of the fault is parallel to the GGF (approx. N040). We found striae that 265 

pitch at approx. 8° to the NE, indicating both right-lateral and reverse slip. Thus if the ‘beef’ 266 

formed at a depth of 1500-2500 m, close to the oil window where temperature is high enough 267 

for maturation of organic matter  (Rodrigues et al., 2009), its exhumation would imply a 268 

right-lateral displacement along the GGF of approx. 10-18 km. This magnitude is consistent 269 
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with previous estimates (e.g. Holgate, 1969; McQuillin et al., 1982; Rogers et al., 1989; 270 

Underhill & Brodie, 1993). 271 

 272 

3.3 Helmsdale 273 

 Between Golspie and Helmsdale, Permo-Trias to Upper Jurassic strata crop out along 274 

the Helmsdale Fault (Figure 10). At Helmsdale, Jurassic strata are in contact with the 275 

Helmsdale Granite (Silurian-Devonian; Figures 10 and 11). In this area, the Jurassic strata 276 

are Kimmeridgian, as at Eathie; however at Helmsdale units of conglomerate (Helmsdale 277 

Boulder Beds) alternate with shale, as a result of syn-tectonic sedimentation in the footwall of 278 

a normal fault (Thiérault & Steel, 1995; Trewin & Hurst, 2009). The conglomerate contains 279 

Devonian clasts, indicating that Devonian strata lay above the Helmsdale Granite at the time 280 

of faulting. Moreover, steep calcite veins cut the conglomerate, indicating extension in a 281 

direction perpendicular to the Helmsdale Fault (Figure 11B). We did not find any ‘beef’ in 282 

Jurassic strata at Helmsdale and this is consistent with shallow burial, by comparison with the 283 

Jurassic strata at Eathie and Shandwick. 284 

Another set of steep calcite veins cuts the entire sequence and therefore post-dates the 285 

Jurassic. These veins are sigmoidal, indicating left-lateral slip along the Helmsdale fault zone 286 

(Figure 11). Such a motion is compatible with right-lateral displacement on the GGF. Indeed, 287 

according to previous studies, folds between the Helmsdale Fault and the GGF may have 288 

developed as a result of opposing senses of slip on these two faults (Thomson & Underhill, 289 

1993).  290 

  291 

4. Discussion  292 
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At Eathie and Shandwick, folds, faults and veins provide structural evidence for post-293 

Jurassic right-lateral reactivation of the GGF. Furthermore, ‘beef’ at outcrop is one indication 294 

that the Mesozoic strata were subject to several km of burial and then to post-Jurassic 295 

exhumation. In contrast, at Helmsdale there is no ‘beef’ and Jurassic conglomerate 296 

accumulated at shallower depth, in the footwall of the active Helmsdale Fault. Sigmoidal 297 

calcite veins, which cut the Jurassic sequence at Helmsdale, indicate left-lateral displacement 298 

on the Helmsdale Fault. This is compatible with right-lateral displacement along the GGF 299 

(Underhill & Brodie, 1993; Thomson & Underhill, 1993). At Cadh’-an-Righ our observations 300 

provide further evidence for right-lateral reactivation of the GGF. However, the reverse 301 

faulting would indicate a local context of transpression, rather than transtension. 302 

Our observations show clearly that right-lateral reactivation of the GGF was post-303 

Jurassic, but we know of no younger strata onshore, other than Quaternary. Subsurface data 304 

from the offshore IMF Basin and the apparent offsets of Palaeocene-Eocene dykes in NW 305 

Scotland all indicate that reactivation occurred in Tertiary time (Holgate, 1969; Underhill & 306 

Brodie, 1993; Thomson & Underhill, 1993; Thomson & Hillis, 1995). However, the exact 307 

timing remains uncertain. Underhill & Brodie (1993) showed that the IMF Basin underwent 308 

regional uplift during the Cenozoic and they attributed this to reactivation of the GGF. More 309 

generally, periods of uplift occurred at 65-60 Ma, 40-25 Ma and 15-10 Ma and may have 310 

continued into Late Neogene time (Hall & Bishop, 2002; Holford et al., 2009, 2010). 311 

Therefore, it seems likely that reactivation of the GGF occurred during one of these periods 312 

(Figure 12).  313 

Hillis et al. (1994) suggested that exhumation in the IMF occurred in mid-late Danian 314 

time (65.5 – 61.7 Ma, early Palaeogene), when a major unconformity developed. As we have 315 

explained earlier, a period of uplift did affect Scotland in Early Palaeogene time, probably in 316 

connection with the Iceland Mantle Plume and widespread magmatic activity west of 317 
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Scotland. However, the GGF has offset right-laterally the Palaeocene-Eocene dykes of NW 318 

Scotland. The youngest of those dykes formed at about 52 Ma (Holgate, 1969). Thus dextral 319 

reactivation of the GGF continued after that time. Moreover, several unconformities 320 

developed during the Cenozoic, in the North Sea rift system, and during the Palaeogene, 321 

offshore Scotland (e.g Evans et al., 2003; Stoker et al., 2012). Furthermore, Evans et al. 322 

(2003) have described several phases of local inversion in the IMF in middle Eocene, 323 

Oligocene and Miocene times. Thus the significant uplift of Scotland in Early Palaeocene 324 

time may have been due to processes other than tectonic reactivation. In Northern Ireland, a 325 

recent high-resolution aeromagnetic survey has demonstrated that Caledonian faults 326 

reactivated during Palaeogene time, and, more precisely, in Early Palaeocene and Oligocene 327 

time. The latter phase was associated with the development of Oligocene pull-apart basins 328 

(Cooper et al., 2012) and was maybe coeval with reactivation of the GGF. Thus, it is most 329 

likely that reactivation of the GGF occurred in Palaeogene time (after 52 Ma). 330 

Amongst the possible causes for reactivation of the GGF and for Cenozoic uplift of 331 

Scotland are: (1) mantle processes from the Iceland Plume, (2) intra-plate compression from 332 

the Alpine Orogeny, (3) ridge push from the NE Atlantic and (4) variations in the amount and 333 

rate of sea-floor spreading in the NE Atlantic. According to recent restorations (Le Breton et 334 

al., 2012), variations in the amount and direction of sea-floor spreading, between the 335 

Reykjanes and Aegir ridges of the NE Atlantic (Figure 13), generated left-lateral 336 

transpressional displacement along the FFZ, first in the Early Eocene (c. 56-51 Ma) and then 337 

from the Early Eocene to Late Oligocene (c. 47–26 Ma). During the latter phase, the Jan 338 

Mayen Microcontinent (JMMC) rifted progressively (from south to north) off East Greenland. 339 

When these continental areas finally separated, sea-floor spreading transferred from the Aegir 340 

Ridge to the Kolbeinsey Ridge (Figures 12 and 13). According to the stationary hot spot 341 

model of Lawver & Müller (1994), the head of the Iceland Plume was beneath the eastern 342 
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Greenland Margin at that time (c. 40-30 Ma). Müller et al. (2001) suggested that the Iceland 343 

Mantle Plume was responsible for (1) rifting at the edge of the eastern Greenland margin, (2) 344 

formation of the Kolbeinsey Ridge, west of Jan Mayen, (3) subsequent extinction of the Aegir 345 

Ridge and (4) separation of the JMMC from Greenland. 346 

The Middle Eocene to Late Oligocene was a period of uplift in Scotland and of 347 

compressional deformation on the NW United Kingdom Continental Margin (Figure 12). 348 

Numerous compressional structures developed offshore Scotland (e.g. the Wyville-Thomson, 349 

Ymir ridges (WYTR), the Alpin Dome and the Judd Anticline) from the Middle Eocene to the 350 

Early Miocene (Figure 13; Smallwood, 2004; Johnson et al., 2005; Ritchie et al., 2008; Tuitt 351 

et al., 2010; Stoker et al., 2012). Le Breton et al. (2012) have suggested that differential sea-352 

floor spreading of NE Atlantic ridges was responsible for compressional deformation on the 353 

continental margin at those times. Here we suggest furthermore that this differential sea-floor 354 

spreading was also responsible for reactivation of the GGF. Indeed, a left-lateral displacement 355 

along the FFZ is compatible with a right-lateral reactivation of the GGF (Figure 13). The 356 

stress field from the Alpine Orogeny and pulses from the Iceland Mantle plume may have 357 

amplified the intraplate stress in Scotland, so contributing to reactivation of the GGF. Because 358 

all these processes were active simultaneously, from the Late Eocene to the Late Oligocene 359 

(c. 37-26 Ma), we consider that reactivation of the GGF probably occurred in this interval 360 

(Figure 12). 361 

 362 

Conclusions 363 

(1) Our field observations of Jurassic outcrops in Eathie, Shandwick and Helmsdale, NE 364 

Scotland, provide additional evidence for post-Jurassic right-lateral reactivation of the GGF, 365 

under transpression. 366 
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(2) The ‘beef’ structures in Jurassic shale at Eathie and Shandwick provide evidence that 367 

this formation accumulated deeper offshore in the IMF Basin and has been subject to post-368 

Jurassic exhumation. This exhumation would be compatible with right-lateral displacement 369 

on the GGF. Assuming that ‘beef’ structures form at approx. 1500-2500 m depth (Rodrigues 370 

et al., 2009) and from the 8° pitch of striae on fault planes at Cadh’-an-Righ, we estimate that 371 

right-lateral displacement along the GGF was in the order of 10-18 km. 372 

(3) The timing of reactivation of the GGF remains uncertain; however we suggest that the 373 

GGF reactivated right-laterally in a time interval from Late Eocene to Late Oligocene, c. 37 to 374 

26 Ma. This period coincides with (1) an uplift episode of Scotland, (2) intraplate stress from 375 

the Alpine Orogeny (3) a pulse of the Iceland Mantle Plume, and more importantly with (4)  376 

left-lateral slip along the FFZ due to differential sea-floor spreading and plate readjustment in 377 

the NE Atlantic (separation of the JMMC, ‘ridge jump’ from the Aegir to the Kolbeinsey 378 

ridges). Indeed, left-lateral slip along the FFZ is compatible with right-lateral reactivation of 379 

the GGF. 380 

(4) In the future, low-temperature geochronological studies may provide better constraints 381 

on the timing of reactivation of the GGF. However, the vertical motion along the GGF may 382 

not have been significant enough to be detectable in such studies. Similar work along the 383 

MTF, Norway, would provide better constraints on the relationships between differential 384 

spreading along the NE Atlantic, left-lateral slip along the FFZ and JMFZ, uplift of Scotland 385 

and Norway, and Tertiary reactivation of the GGF and MTF. 386 
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Figure Captions 607 

 608 

Figure 1. Simplified geological map of northern Scotland (modified after Stone, 2007).  609 

Figure 2. Top left: structural map of the North Sea Basin and location of the Inner Moray 610 

Firth (IMF) Basin (modified after Underhill, 1991a). Top right: structural map of IMF Basin 611 

(modified after Evans et al., 2003). Gray lines indicate locations of seismic profiles A and B. 612 

A. Seismic profile of IMF Basin showing post-Cretaceous inversion structure along Wick 613 

Fault at its intersection with Great Glen Fault (from Thomson & Underhill, 1993). B. 614 

Geoseismic section showing a typical ‘flower structure’ of Great Glen Fault (from Underhill 615 

& Brodie, 1993). 616 

Figure 3. Geological map of NE Scotland (modified from Stone, 2007). Rectangles indicate 617 

locations of figures 4-6, 7-9 and 10-11.  618 

Figure 4. Geological map of Eathie (modified after Institute of Geological Sciences, Sheet 94, 619 

1973). Strike and dip of Jurassic strata are variable, as a result of folding next to Great Glen 620 

Fault (GGF). Stereonets (lower hemisphere) show poles to strata; great circles are 621 

perpendicular to fold axes. Stars indicate locations of photographs in Figure 5. 622 

Figure 5. Photographs of Jurassic outcrop at Eathie. A. Contact between Jurassic strata and 623 

Devonian Old Red Sandstone in north east area. B. Contact between Jurassic strata and 624 

Neoproterozoic basement in south west area. C. Fold in Jurassic strata adjacent to Great Glen 625 

Fault . D. Calcite veins right-laterally offsetting Jurassic strata and striking parallel to GGF 626 

(approx. N040°). 627 

Figure 6. Photographs of ‘cone-in-cone’ (A and B) and ‘beef’ calcite cement (B) in Jurassic 628 

shale at Eathie. C. Interpretation of structures in B. 629 
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Figure 7. Geological map of Shandwick (modified after Institute of Geological Sciences, 630 

Sheet 94, 1973). Strike and dip of Jurassic strata are variable at Port-an-Righ and Cadh’-an-631 

Righ because of folding next to Great Glen Fault (GGF). A stereonet for Port-an-Righ (lower 632 

hemisphere, right) shows poles to strata; great circle is perpendicular to nearly horizontal fold 633 

axis, but some data deviate from this. Stereonet for Cadh-an-Righ (lower hemisphere, left) 634 

shows great circles (for bedding planes) intersecting at steep fold axis. Stars indicate locations 635 

of photographs (Figures 8 and 9). 636 

Figure 8. Photographs of Jurassic outcrop at Port-an-Righ. A. Panoramic view that shows the 637 

sigmoidal shape of Jurassic folds next to Great Glen Fault (GGF). This shape is diagnostic of 638 

right-lateral slip along GGF. B. Calcite veins right-laterally offsetting Jurassic strata. C. Fault 639 

contact between Jurassic and Devonian strata. 640 

Figure 9. Photographs of Jurassic outcrop at Cadh-an-Righ. A. Wide-angle view of fault 641 

contact between Jurassic and Devonian strata. B. Close-up view of same showing reverse and 642 

right-lateral slip along GGF. C. ‘Beef’ in Jurassic shale. D. Fragment of Jurassic coal next to 643 

GGF. 644 

Figure 10. Geological map of Helmsdale (modified after Stone, 2007). Strike and dip of 645 

Jurassic strata are variable as a result of folding next to Great Glen Fault (GGF). Stereonets 646 

for Golspie and Helmsdale (lower hemisphere) show great circles (for bedding planes) that 647 

intersect at shallowly-plunging fold axes. Stars indicate locations of photographs (Figure 11). 648 

Figure 11. Photographs of Jurassic outcrop near Helmsdale. A. Jurassic ‘Boulder Beds’ in 649 

contact with Helmsdale Granite. B. Syn-tectonic Jurassic conglomerate containing clasts of 650 

Devonian strata and extensional calcite veins. C. Sigmoidal calcite veins left-laterally 651 

offsetting Jurassic strata and striking parallel to Helmsdale Fault. 652 
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Figure 12. Summary and correlation of events. Numbers refer to (1) post-breakup 653 

compressional deformation offshore Scotland (Smallwood et al., 2004; Johnson et al., 2005; 654 

Ricthie et al., 2008; Tuitt et al., 2010); (2) main phases of uplift in Scotland during Cenozoic 655 

time (Hall & Bishop, 2002; Holford et al., 2009); (3) sea-floor spreading along NE Atlantic 656 

ridge system, differential sea-floor spreading along NE Atlantic that resulted in left-lateral slip 657 

along Faroe Fracture Zone (FFZ) and Jan Mayen Fracture Zone (JMFZ) (Le Breton et al., 658 

2012), ridge push, Iceland Mantle Plume pulse (correlation between age of V-shaped ridges 659 

and plume pulses from White & Lovell, 1997), development of Iceland Plateau, and 660 

compressional Alpine and Pyrenean stress field (Tuitt et al., 2010). Period of synchronous 661 

events (hachured) may represent timing of reactivation of Great Glen Fault (GGF). For 662 

locations of post-breakup compressional structures offshore Scotland, see Figure 13. 663 

Figure 13. Position of Europe at 36.6 Ma (Late Eocene) relative to a stationary Greenland 664 

plate. According to a new method of restoration differential sea-floor spreading along 665 

Reykjanes, Aegir and Mohns ridges generated left-lateral displacements along Faroe and Jan 666 

Mayen fracture zones (Le Breton et al,. 2012). Such displacements are compatible with right-667 

lateral reactivation of Great Glen Fault and possibly of Møre Trøndelag Fault, respectively. 668 

Abbreviations: AD, Alpin Dome; AR, Aegir Ridge; JA, Judd Anticline; MR, Mohns Ridge; 669 

RR, Reykjanes Ridge; YR, Ymir Ridge; WTR, Wyville-Thomson Ridge. Map projection is 670 

Universal Transverse Mercator (UTM, WGS 1984, zone 27N). 671 
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