Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data
Nolwenn Lesparre, Dominique Gibert, Jacques Marteau, Jean-Christophe Komorowski, Florence Nicollin, Olivier Coutant

To cite this version:
Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data

Nolwenn Lesparre,1* Dominique Gibert,1 Jacques Marteau,2 Jean-Christophe Komorowski,1 Florence Nicollin3 and Olivier Coutant4

1 Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, France. E-mail: gibert@univ-rennes1.fr
2 Institut de Physique Nucléaire de Lyon (UMR CNRS 5822), Lyon, France
3 Géosciences Rennes (UMR CNRS 6118), Rennes, France
4 Institut des Sciences de la Terre (UMR CNRS 5275, IRD UR 219), Grenoble, France

Accepted 2012 May 15. Received 2012 May 3; in original form 2012 January 7

SUMMARY
Density muon radiography is a new method to determine the average density of geological bodies by measuring the attenuation produced by rocks on the flux of cosmic muons. We present such density radiographies obtained for the Soufrière of Guadeloupe lava dome, both in the north–south and east–west planes. These radiographies reveal the highly heterogeneous density structure of the volcano, with low-density regions corresponding to recognized hydrothermally altered areas. The main structures observed in the density radiographies correlate with anomalies in electrical resistivity cross-sections and a density model obtained from gravity data.

Key words: Tomography; Gravity anomalies and Earth structure; Electrical properties; Hydrothermal systems; Volcano monitoring; Volcanic hazards and risks.

1 INTRODUCTION
Quantifying eruption hazards fundamentally consists in placing the present state of a volcano in its phase space to answer the question: how is the present state of the volcano far from a destabilization state? In practice, the phase space is constructed with geological data which provide information concerning the various destabilization scenarios which occurred in the past and may happen again. Geological data also give insights on timescales and recurrence periods for the different classes of events—flank destabilization, phreatic eruption, magmato-phreatic explosion, . . . —to get estimates of their occurrence probabilities. This general framework may eventually be refined by using geophysical and geochemical data to obtain an as precise as possible characterization of the present state of the volcano and determine its instantaneous evolution trajectory in the phase space through monitoring. The knowledge of the volcano interior constitutes a major issue to reach these goals by providing images of the structures and of the plumbing system, in relation with fluid transport (magma, gas or water) or physical and chemical evolution of the volcanic materials (e.g. hydrothermal alteration).

Geophysical imaging of volcanoes remains a challenging issue because their highly heterogeneous 3-D structure necessitates a high-density data sampling to be performed in difficult fields conditions, and also poses specific difficulties like, for instance, strong wave scattering and attenuation, and high resistivity contrasts making data inversion highly non-linear. Some physical properties may be imaged with different geophysical methods having their own advantages and disadvantages. For instance, electrical properties may be imaged through DC electrical resistivity (e.g. Pessel & Gibert 2003), low-frequency electromagnetic techniques (e.g. Zhadanov 2009), geological radar (e.g. Leparoux et al. 2001), and spontaneous potential (Maineult et al. 2006; Kirsch & Yaramanci 2009). Identically, mechanical properties like elastic parameters may be imaged with seismic reflection or refraction methods, transmission tomography, seismic noise or active sources, etc.

Within this respect, rock density is, up to now, mainly determined by means of gravity measurements whose inversion suffers from strong nonuniqueness and low-resolution performances (e.g. Li & Oldenburg 1998; Calcagno et al. 2008; Guillen et al. 2008). The recently developed muon tomography method interestingly reinforces gravity methods by providing a new means to determine the density of large volumes of rock by using the attenuation of the flux of cosmic muons crossing the geological body of interest (e.g. Nagamine 2003). The small cross-section of muons (Barrett et al. 1952) and their energy range (Gaisser & Stanev 2008) allow to probe geological objects at kilometre scales in a reasonable amount of time (Lesparre et al. 2010). Muon tomography presently benefits from a growing interest and, since the pioneering studies by Nagamine 1995, Nagamine et al. (1995), several studies appeared which demonstrate the interest of the method to image spatial and...
temporal variations of the density inside volcanoes (Tanaka et al. 2005, 2007a,b, 2008, 2009a,b, and references therein). However, comparisons of muon tomography imaging with other geophysical data remain scarce, and the work by Caffau et al. (1997) who compared muon radiography with gravity measurements remains an exception. It is one objective of the present paper to provide a qualitative comparison with electrical resistivity and gravity data acquired on La Soufrière of Guadeloupe volcano which is one of the most hazardous in the Lesser Antilles volcanic arc for which density muon tomography is of great interest (Gibert et al. 2010). A quantitative joined inversion of muon radiographies with resistivity and gravity data necessitates further field experiments and will be the subject of a forthcoming study.

The paper is organized as follows: Section 2 recalls the main phases of the eruptive history of La Soufrière and enumerates the hazards represented by this volcano. Section 3 describes the telescope and gives details on the field experiments. Section 4 presents the data and explains the main steps of the data processing leading to the production of average-density radiographies of the volcano. Section 5 discuss the muon density radiographies against geological informations and geo-electrical and gravity data available for La Soufrière.

2 LA SOUFRIÈRE ERUPTIVE HISTORY AND HAZARDS

La Soufrière of Guadeloupe is a stratovolcano that belongs to the Lesser Antilles volcanic arc which counts a dozen of either potentially or presently active volcanoes located in populated areas. Historical records of Lesser Antilles volcanoes dating back to 1632 AD are very short compared to their eruptive frequency of a few hundreds of years. In addition, limited volcano monitoring networks which began only in the 1950’s were significantly improved in the last few decades as a result of the 1976–77 eruptive crisis of la Soufrière of Guadeloupe, the 1979 eruption of Soufrière of St. Vincent and particularly in the current ongoing 15 year-long eruption of Soufrière Hills of Montserrat. Indeed this is a major difficulty as most of these active volcanoes have not undergone a magmatic eruption in the historical period and even less so since adequate multiparameter monitoring network were implemented. The last magmatic eruption at la Soufrière of Guadeloupe is dated 1530 AD (Boudon et al. 2008; Komorowski et al. 2008) and corresponds to the formation of the present lava dome whose area is represented in light grey on Fig. 1.

The last 12 000 yr of activity of La Soufrière are characterized by a succession of lava dome eruptions with explosive phases intercalated with prolonged periods of ash-producing phreatic explosive activity and an exceptional recurrence of small-volume edifice collapses that emplaced at least 12 debris-avalanches on the SE and principally the SW flanks of the volcano to a distance of 10 km (Komorowski et al. 2002, 2005; Boudon et al. 2007). In historical times, six phreatic eruptions have been recorded at la Soufrière of Guadeloupe in 1690, 1797–1798, 1809–1812, 1836–1837, 1956, and 1976–1977, involving different sectors of the lava dome particularly in the northern and eastern sides (Fig. 1). The last 1976–1977 eruption has been interpreted as a stillborn or failed magmatic eruption (Feuillard et al. 1983; Komorowski et al. 2005; Villemant et al. 2005; Boichu et al. 2008, 2011) linked to the intrusion of a small volume of viscous andesitic magma that stopped within a few kilometres of the surface triggering pressurization of the hydrothermal system, phreatic explosions and continuing episodic chlorine degassing into the hydrothermal system (Villemant et al. 2005).

In the last decade the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a systematic progressive increase in shallow low-energy seismicity, a slow rise of temperatures of some acid-sulfate thermal springs (Villemant et al. 2005) closest to the dome (Figs 1 and 2), and, most notably, a significant increase in the flux of summit fumarolic activity associated with HCl-rich and H2S acid gas emanations (Komorowski et al. 2001; OVSG 1999–2011; Komorowski et al. 2005). No other anomalous geophysical signals have been recorded such as significant ground deformation, deep-seated volcanic seismicity or significant SO2 gas emissions. This new period of unrest motivated the increase of the alert level from 1 (green; no alert) to level 2 (yellow; vigilance). Given the societal impacts of any renewed activity, an extensive multiparameter monitoring network is operated by the Observatoire Volcanologique et Sismologique de Guadeloupe (OVSG) of the Institut de Physique du Globe de Paris (IPGP). It is dedicated to understand the current behaviour of the hydrothermal-magmatic systems and to detect changes in their base level activity that could constitute possible precursory signs of an impending phreatic eruption or the ascent of a magmatic intrusion that could lead to a new magmatic eruption. Given the Holocene record of partial flank instability, any of these unrest scenarios (phreatic or magmatic) can be associated with renewed partial flank collapse and sudden explosive decompression of pressurized volatiles of either hydrothermal or magmatic origin. The OVSG (IPGP) also provides a research and analytical platform to test new methods which could ultimately be integrated to the routine set of tools and techniques used for volcano surveillance at La Soufrière but also at other analogue volcanoes in the world.

Knowledge of the density distribution inside La Soufrière is particularly important to constrain its mechanical behaviour in case of pressurization of hydrothermal and/or magmatic volatiles and flank destabilization. The structure of la Soufrière volcano has been significantly affected by both phreatic explosions which opened fractures and by hydrothermal acid fluids which have transformed the original volcanic rocks (andesite, ashes) into mechanically weak hydrothermalized material. Moreover these processes have led to the formation of low strength layers in the dome where shear friction is reduced and pore fluid pressure can be increased by the preferential circulation of hydrothermal fluids (Fig. 2). Hence, it is important to obtain an image of the internal structure, geometry and mechanical nature of rocks that form the La Soufrière dome to determine the volumes of material involved in case of flank destabilization. This objective can be achieved by undertaking a global density tomography of the dome. Implementing a time-series of continuous density tomography is necessary to follow density variations that are associated with fluid movements in the volcano and possibly related to liquid/vapour transformation in the shallow hydrothermal system.

3 DESCRIPTION OF FIELD EXPERIMENTS

3.1 Main characteristics of the telescope

The telescope deployed for the experiments discussed in this study is equipped with three matrices composed of \(N_x = 16 \) horizontal and \(N_y = 16 \) vertical scintillator strips whose intersections define 256 pixels with an area of \(5 \times 5 \text{ cm}^2 \) (left of Fig. 3). A detailed
Figure 1. Map of the location of the main structures, historical eruptive vents, and sites of currently observed fumarolic activity on La Soufrière lava dome (Komorowski 2008, modified after Nicollin et al. 2006). The two locations occupied by the telescope, Ravine Sud and Roche Fendue, are shown. The angular range spanned by the telescope at each location is represented as faint coloured sectors with their apex pointing on the location of the telescope. The resistivity profiles corresponding to the pseudo-sections of apparent resistivity of Fig. 8 are represented as solid red curves. The area corresponding to the lava dome is represented in light grey.

description of our field telescopes is given by Marteau et al. (2011) and we here recall only their main characteristics.

When a charged particle—muon, pion, electron—hits a scintillator strip, ionization occurs and a light pulse is emitted when the ionized atoms return to their low-energy state. In the case of a muon, an energy input of about 2 MeV is left in a scintillator bar of 1 cm in thickness and about 10^5 photons are emitted. The resulting light pulse is captured by optic fibres and detected by a photomultiplier.

The muon trajectory is determined by the pair of pixels $(a_{i,j}, b_{k,l})$ fired by the particle, where $a_{i,j}$ is a pixel belonging to the front matrix A and $b_{k,l}$ belongs to the rear matrix B. Here, indexes i, k vary from 1 to N_x and j, l vary from 1 to N_y. The combination of
all possible pairs of pixels \((a_i, b_j)\) defines a set of \((2N_x - 1) \times (2N_y - 1) = 961\) discrete directions of sight \(r_{mn}\), where the indexes \(m = i - k\) and \(n = j - l\) only depend on the relative shift between the \(a_{ij}\) and \(b_{ij}\) pixels. The angular range spanned by the 961 directions may be controlled by adjusting the distance between the front and rear matrices. For the present experiments, this distance was kept constant at \(D = 95\) cm corresponding to an angular aperture of \(77^\circ\) and an average resolution of \(2.5^\circ\) both in the horizontal and vertical planes. The retained angular aperture allows to scan most of the lava dome from a single viewpoint located near the volcano (Fig. 4). The angular resolution corresponds to a space resolution \(\delta l = 22\) m at a distance \(L = 500\) m from the telescope.

Fortuitous events caused by two particles simultaneously hitting the matrices \(A\) and \(B\) may cause a huge noise masking the faint variations of flux caused by the density heterogeneities inside the volcano. The occurrence probability of fortuitous events may be considerably reduced by using a third detection matrix \(C\) located in between matrices \(A\) and \(B\) (left-hand side of Fig. 3), and by keeping only those events whose three fired pixels \((a, b, c)\) are aligned.

Other undesirable events may be caused by atmospheric electrons with sufficient energy to cross the three matrices (Nagamine 2003). These events may be suppressed by using an iron shielding (black plate on left-hand side picture of Fig. 3) placed against the median matrix and whose thickness is sufficient to either stop the electron or produce an electron shower causing multiple events on either matrix \(A\) or \(B\). In this study, the thickness of the shielding equals \(24\) mm.

The telescope is an autonomous instrument with a total power consumption of \(40\) W provided by solar panels with a peak power of \(720\) W (middle of Fig. 3). The discrepancy between telescope power and solar unit power is due to the cloudy weather encountered on La Soufrière which necessitates a security factor of \(\approx 20\) to ensure a continuous operation of the telescope. However, despite this security margin very cloudy periods occur during the hurricane season and failure of the electrical power units may occur for several days. To manage these events, the telescope is equipped with remotely controllable relays which may be activated to turn off devices of the telescope and reduce the power consumption until the electrical accumulators remain filled.

The telescope is equipped with a number of sensors—electrical current, voltages, temperature, relative humidity, inclinometers—which provide information concerning the nominal operation of the instrument. These sensors are connected to an independent data logger plugged on the wireless link to automatically upload data on the Volcano Observatory database.

The total weight of the equipment is \(\approx 800\) kg, including solar panels, accumulators and iron shielding. The heaviest elements are the detector matrices with a weight of \(45\) kg. All elements are rugged enough to support helicopter hauling (right-hand side of Fig. 3) and even transportation through rope access techniques on very rough topography. A thick tarpaulin ensures a protection against the heavy tropical rains (middle of Fig. 3), and guys are used to secure the telescope against gusts.

3.2 Measurement sites

The data discussed in this paper have been acquired by installing the telescope at two locations hereafter referred to as the Ravine Sud and the Roche Fendue sites (Fig. 1). These sites are respectively located on the southern and eastern sides of the lava dome.
Table 1. Telescope parameters.

<table>
<thead>
<tr>
<th></th>
<th>Ravine Sud</th>
<th>Roche Fendue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude a.s.l.</td>
<td>1163 m</td>
<td>1268 m</td>
</tr>
<tr>
<td>X_{UTM} WGS84</td>
<td>(20)643033 m</td>
<td>(20)643347 m</td>
</tr>
<tr>
<td>Y_{UTM} WGS84</td>
<td>1773714 m</td>
<td>1774036 m</td>
</tr>
<tr>
<td>Distance to observatory</td>
<td>8.29 km</td>
<td>7.85 km</td>
</tr>
<tr>
<td>Zenith angle</td>
<td>67.0°</td>
<td>75.2°</td>
</tr>
<tr>
<td>Azimuth</td>
<td>−3.0°</td>
<td>299.1°</td>
</tr>
<tr>
<td>Number of matrices</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Matrix distance</td>
<td>47.5 cm</td>
<td>47.5 cm</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>2.5°</td>
<td>2.5°</td>
</tr>
<tr>
<td>Resolution at dome centre</td>
<td>20 m</td>
<td>20 m</td>
</tr>
<tr>
<td>Iron shield thickness</td>
<td>24 mm</td>
<td>24 mm</td>
</tr>
<tr>
<td>Acquisition time</td>
<td>82 d</td>
<td>83 d</td>
</tr>
</tbody>
</table>

The telescope was first installed at the Ravine Sud site located on the edge of the road along the southern side of the lava dome at an altitude of 1163 m (Fig. 1). The rays crossing the dome from this site have a maximum length $L \sim 1000$ m (bottom left-hand side of Fig. 4) and span a zenith angle range $55^\circ \leq \theta \leq 80^\circ$. The landscape south of the dome—that is, in the back of the telescope when oriented northward toward the volcano—is made of the large valley of the Galion river in the forefront and of the Caribbean Mountains in the background at a distance of ~ 10 km. This configuration is such that the whole sky is clear from obstacles in the back of the telescope. This allows measurements of the backward flux of muons for a limited range of zenith angles (top left of Fig. 4).

The Roche Fendue site (Fig. 1) is less accessible and helicopter hauling was used to move the equipment at this place (Fig. 3 right-hand side). As can be seen on the bottom right-hand side part of Fig. 4, the ray lengths are slightly smaller, $L \sim 700$ m, than for the Ravine Sud site. The crossing rays span a zenith angle range $60^\circ \leq \theta \leq 80^\circ$. The western side of the volcano, opposite to the telescope, is clear from mountains which could produce perturbing shadows on the radiographies. Contrarily to the situation encountered at the Ravine Sud place, the backward directions of sight of the telescope fall into the Échelle mountain which screens the intense flux from the open sky.

3.3 Measurement characteristics

The number of muons ν, detected by the telescope is given by (Lesparre et al. 2010),

$$\nu(r_m,n, \Delta T) = I(r_m,n) \times \Delta T \times T(r_m,n),$$

(1)

where I is the muon flux ($\text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$) given by eq. (2), ΔT is the measurement duration (s), and T ($\text{cm}^2 \text{sr}$) is the acceptance function of the telescope.

The acceptance quantifies the telescope capability to capture a flux coming from a given solid angle centred in a given direction. The acceptance depends on the geometrical characteristics of the telescope and is shown in Fig. 5 for all 961 discrete directions r_m,n, $N_x = N_y = 16$, $D = 95$ cm, and pixel size $d = 5$ cm2. As expected, the acceptance is maximum (≈ 18.3 cm2sr) for the direction $r_0,0$ perpendicular to the matrices since all pixels contribute to the detection surface.
The integrated flux of muons, I, emerging from the lava dome after crossing its rock mass is controlled by the incident differential flux, $\Phi_0 (\text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} \text{GeV}^{-1})$, and by the minimum energy, $E_{\text{min}} (\text{GeV})$, necessary for a muon to cross a given amount of matter ρ (hg cm$^{-2}$) (Fig. 6):

$$I[\rho, \theta] = \int_{E_{\text{min}}}^{\infty} \Phi_0(E, \theta) dE \quad [\text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1}].$$

In eq. (2), θ is the zenith angle which is the main parameter controlling the intensity of Φ_0 (Gaisser & Stanev 2008). A discussion concerning the models available for Φ_0 may be found in Lesparre et al. (2010) and, in this study, we use the model given by Tang et al. (2006).

The amount of matter, hereafter called the opacity, to be crossed by the muons is defined as

$$\varrho(L) = \int_0^L \rho(\xi) d\xi = \pi \times L,$$

where ξ is the coordinate measured along the ray trajectory of length L crossing the volcano (Fig. 4), ρ is the density and π is the density averaged along the trajectory. In practice, ϱ is often expressed in hg cm$^{-2}$, a physical unit which corresponds to 1 m water equivalent (m w.e.). Another useful unit for ϱ is 2.65 hg cm$^{-2}$ which corresponds to equivalent metres of standard rock (m s.r.e.) as defined by the Particle Data Group (e.g. Kudryavtsev 2009) and used in Fig. 6.

Lesparre et al. (2010) established a condition to be satisfied to distinguish a variation $\delta \varrho$ through a geological body of opacity ϱ_0 for a given telescope acceptance, T, and measurement duration ΔT:

$$\Delta T \times T \times \frac{\Delta I^2(\varrho_0, \delta \varrho)}{I(\varrho_0)} > c.$$

Here ΔI^2 is the variation of integrated flux caused by the opacity variation $\delta \varrho$ inside an object of total opacity ϱ_0. The value chosen for the right-hand term of eq. (4) fixes the confidence level of the resolution achieved on $\delta \varrho$ with $c = 1$ corresponding to one standard deviation (i.e. about 68 per cent).

Taking a typical ray length $L = 800$ m and an average density $\overline{\rho} = 2.0$ g cm$^{-3}$ give $\varrho_0 = 600$ m s.r.e. (eq. 3) and $I \approx 0.1$ cm$^{-2}$ sr$^{-1}$ day$^{-1}$ for zenith angles $\theta \approx 75^\circ$ (Fig. 6). With such an integrated flux and a typical telescope acceptance $T = 10$ cm2 sr, eq. (1) gives $v = 1$ muons detected every day per direction of sight. Now, decreasing the average density by 10 per cent gives $\delta \varrho = 60$ m s.r.e. and an integrated flux variation $\Delta I \approx 0.04$ cm$^{-2}$ sr$^{-1}$ day$^{-1}$. Inserting these estimates in the feasibility formula 4, the duration of measurement must be such that $\Delta T > 2$ weeks.

4 DATA PROCESSING

4.1 Reduction of background noise

Because the telescope is placed on the ground and in open sky conditions, it is exposed to the whole particle flux of cosmic ray showers which represents a huge background noise blurring the tiny flux of muons emerging from the volcano (Nagamine 2003).

A first kind of background noise—called the uncorrelated background noise—is due to the soft component of the showers which represents a huge background noise blurring the tiny flux of muons emerging from the volcano. A second kind of background noise—called the correlated background noise—is due to the soft component of the showers which represents a huge background noise blurring the tiny flux of muons emerging from the volcano.
and,

\[N_{[1,2,3]} = 16N_1N_2N_3\delta t^2, \]

(6)

where \(N_1, N_2 \) and \(N_3 \) are the respective hit rates of matrix 1, 2 and 3, and \(\delta t = 10 \) ns for our telescope. These equations show that the possibility of fake tracks is anti-proportional to the number of matrices.

For la Soufrière of Guadeloupe, we measure a rate \(N \approx 50 \text{s}^{-1} \) of events on each matrix when the telescope is configured in single-multiplicity mode, that is, all events hitting a single matrix are recorded. This rate is safely supported by the acquisition system of the telescope whose electronics readout frequency is of 5 MHz with a dead time of 13\,\mu s after each detected event, giving a nominal bandwidth of 77\,kHz. With the rates measured on the field, we find \(N_{[1,2]} \approx 10 \text{day}^{-1} \) and \(N_{[1,2,3]} \approx 0.007 \text{year}^{-1} \) to be compared with the rate of muons \(\approx 1 \text{day}^{-1} \) expected to emerge from 600\,m of standard rock. These figures could be made more precise by considering the transient higher flux of particles encountered during the passage of an extensive air shower front on the telescope (e.g. Abu-Zayyad et al. 2001). This necessitates a full modelling of air showers and is beyond the scope of this paper. However, the rate of fortuitous false events is further decreased by imposing the condition that the pixels triggered on the three matrices are aligned, emphasizing the absolute necessity to make measurement with three-matrices telescopes (Nagamine 2003). Another improvement will be obtained by using new electronic boards with a finer time resolution of \(\delta t = 1 \text{ns} \) allowing to distinguish the forward and backward directions of arrival of the particles.

A second type of noise—called the correlated background noise—is caused by particles whose energy is sufficient to make them able to cross the matrices of the telescope (Nagamine 2003). For instance, the \(e^+\;/e^- \) spectrum is more important than the muon spectrum at kinetic energies lower than 70\,MeV (Golden et al. 1995) and these particles of moderate energy may easily cross the telescope whose opacity is of 9.2\,g\,cm\(^{-2}\) (i.e. a stopping energy of 16.9\,MeV). Following Nagamine (2003), we equipped the telescope with a 24\,mm-thick iron screen placed against the middle matrix to increase the total opacity to 32.4\,g\,cm\(^{-2}\) sufficient to stop \(e^+\;/e^- \) with a kinetic energy \(<108.3\,\text{MeV} \).

4.2 Computation of density radiographies

The first computational step consists in using eq. (1) to convert the number of events, \(v(r_{m,n}) \), recorded during the detection time \(\Delta T \) into the integrated flux,

\[I(r_{m,n}) = \frac{v(r_{m,n}, \Delta T)}{\Delta T \times T(r_{m,n})}. \]

(7)

As discussed in details by Lesparre et al. (2012), an accurate determination of the acceptance function \(T \) is essential to properly determine the integrated flux in eq. (7). In particular, efficiency coefficients of the scintillator strips forming the detector matrices are inverted from open-sky measurements to get an experimental acceptance function accounting for the actual characteristics of the telescope. In this study, the acceptance function is the same for both sites since the matrix arrangement was kept constant. The data were acquired during \(\Delta T = 82 \, \text{d} \) at the Ravine Sud site and \(\Delta T = 83 \, \text{d} \) at the Roche Fendue site. The number of events detected during the whole period of measurement ranges from \(\approx 150 \) to \(\approx 60000 \) depending on both the acceptance and the rock thickness. Using these values, the flux computed for both sites varies between \(1.7 \times 10^{-6} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} \) and \(8.7 \times 10^{-4} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} \).

The next processing stage consists in transforming the integrated flux data into opacities by using eq. (2) to determine the opacity necessary to reproduce the observed flux (Fig. 6). We use the differential spectrum elaborated by Tang et al. (2006) and apply the altitude correction of Hebbeker & Timmermans (2002). In the final processing step, the opacity, \(\varphi \), is converted into average density, \(\overline{\rho} \), by using the ray length \(L \) into eq. (3). The ray length is determined from a high-resolution digital elevation model with a mesh of 2\,m. The resulting average density radiographies are shown in Fig. 7 as density anomalies, \(\Delta \overline{\rho} \), relative to a reference absolute density, regions with a too low signal-to-noise ratio have been removed. Both radiographies display density heterogeneities with about the same amplitude of 0.8\,g\,cm\(^{-3}\) for an uncertainty of about 5\,per\,cent.

The reference densities \(\overline{\rho}_{\text{ref}} = 1.3 \, \text{g cm}^{-3} \) for the Ravine Sud and \(\overline{\rho}_{\text{ref}} = 1.6 \, \text{g cm}^{-3} \) for the Roche Fendue seem negatively biased when compared with the density of rock samples. This bias may be partly explained by the presence of a residual background noise causing a positive bias in the integrated flux. To illustrate this effect, let us consider a 500\,m thick layer with \(\overline{\rho} = 1.8 \, \text{g cm}^{-3} \) that gives an emerging integrated flux \(I = 2.9 \times 10^{-6} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} \) for a zenith angle of 70\,°. Adding a background noise of \(10^{-6} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} \) to this flux gives a corresponding density of 1.6\,g\,cm\(^{-3}\). Let us emphasize that, for an acceptance \(T \approx 10 \, \text{min} \), this noise corresponds to less than one event per day for each measurement direction \(r_{m,n} \). The larger the thickness of rock, the smaller the emerging flux and, assuming a constant noise level, the smaller the signal-to-noise ratio and the larger the negative bias in the density. However, the radiographies of Fig. 7 do not display a systematic decrease of the density as a function of rock thickness, and no bias correction was applied. Adding a fourth matrix to the telescope would provide a means to further reduce the background noise.

The low value of \(\overline{\rho}_{\text{ref}} \) obtained for the Ravine Sud is possibly due to a larger noise level at this location, and we expect that this noise is due to the topography configuration of the site. In particular, the rear of the telescope is exposed to the wide (6\,km) and deep (900\,m) valley of the Galion River forming a large volume of air going down to \(-9 \) below the horizontal plane when seen from the telescope. This valley gives enough space for cosmic shower to produce a background flux entering the telescope by its rear face. Such a noise may not presently be removed from the data set because the clock resolution of the electronic boards is not sufficient to determine whether a particle crossed the telescope from the rear or from the front. This additional noise must be of the order of 1.4 particle per day to produce a further decrease of the density from 1.6\,g\,cm\(^{-3}\) to 1.3\,g\,cm\(^{-3}\). Considering this possibility, the low-density region visible at the bottom of the Ravine sud radiography may not be reliable and deserves further study.

5 COMPARISON WITH GEOLOGY, GEO-ELECTRICAL AND GRAVITY DATA

5.1 Geology

The density radiographies of Fig. 7 reveal that the lava dome is highly heterogeneous with domains of low average density \(\overline{\rho} \approx 1.1 \, \text{g cm}^{-3} \) and denser regions with \(\overline{\rho} \approx 1.9 \, \text{g cm}^{-3} \). Such contrasted densities are slightly lower than the densities of the various types of rocks encountered on andesitic tropical volcanoes (Bernard 1999; Komorowski et al. 2008). As discussed in Section 4.2, a small residual background noise may cause a

© 2012 The Authors, GJI, 190, 1008–1019

Geophysical Journal International © 2012 RAS
negative bias of the densities. However, it must also be considered that the densities obtained with muon radiography are averaged over huge volumes much larger than rock samples. Hence, the low average densities observed in both radiographies may at least partly be explained by the presence of voids inside the volcano. That is the case of the large low-density region RF4 located in the northern half of the dome (Fig. 7) which coincides with the large Spallanzani cave described as a series of wide cavities (L’Herminier 1815). This network of cavities is reported to extend from the Fente du Nord to the Cratère Dupuy (Fig. 1), that is, almost near the geometrical centre of the lava dome. These cavities are inaccessible since 1836 (Biot 1837) excepted for the first one whose dimensions are 55 × 35 × 11 m3 in the north–south, east–west and vertical directions, respectively (Mouret & Rodet 1985; Kuster & Silve 1997). The presence of such cavities may decrease the average density by 10–15 per cent.

Numerous other voids and caves are recognized on the summit plateau and on the flanks of the dome, the most notable being: the Dupuy and the Breislack pits, the north and the Faujas fractures, the 30 August fault, and the Tarissan and the south craters (Fig. 1). The Tarissan crater appears as a vertical chimney with a diameter of \approx20 m filled with a boiling acid lake whose surface is 80 m below the mouth of the crater. This crater was active during each eruptive crisis of La Soufrière and emitted most of the volume of ashes and block (e.g. about 4×10^5 m3 during the 1976–77 crisis (Le Guern et al. 1980)). Kuster & Silve (1997) report that the deep penetrable part of several cavities located on the eastern flank of the lava dome (e.g. Gouffre 56 and Cratère Breislack on Fig. 1) is obstructed by fallen rock blocks that prevent further exploration but indicate that voids are likely to exist deeper in the dome. Such cavities could significantly increase the macro porosity and further reduce the average density of the dome.

The RF5 dense region forming the northern part of the Roche Fendue radiography (Fig. 7) coincides with the north and northeastern part of the dome where massive lava is observed and forms steep slopes nearby the Fracture du nord-est (overlined in dark green on Fig. 1). The RF1 dense region and its counterpart RS5 coincide with massive lava outcrops located on the southeastern flank of the dome (i.e. Fracture Lacroix overlined in purple on Fig. 1).

The RF3 region of the Roche Fendue radiography corresponds to the region located between RS1 and RS4 in the radiography of Ravine Sud (Fig. 7). This region with an intermediate density may coincide with a body of dense rock forming a barrier between the shallow RF2 hydrothermal area and the RF4 deeper one that might undergo overpressured in case of increasing energy flux coming from below. This dense barrier might also explain the appearance of active areas in the northern part of the lava dome like the Fente du nord overlined in dark purple on Fig. 1 and shown active on fig. 2(e) of Gibert et al. (2010) during the 1976 phreatic eruption.

5.2 Comparison with electrical resistivity data

A huge amount of electrical resistivity data was acquired on and around the lava dome during the 2001–2006 period, and a detailed description of these data is given by Nicollin et al. (2006). These resistivity surveys clearly reveal the heterogeneous structure of the lava dome with low conductivity regions of unaltered massiveandesite and other low resistivity parts of highly hydrothermalized and unconsolidated materials. Fig. 8 shows two apparent-resistivity cross-sections in the north–south and east–west planes. The traces of these profiles are shown as red curves on Fig. 1, and the reader is referred to the paper by Nicollin et al. (2006) for other pseudo-sections. It can be observed that the apparent electrical resistivity
varies in a wide range spanning about three orders of magnitude. Regions with very low resistivity are observed at the base of the dome and probably correspond to a layer of hydrothermalized materials. This layer is retrieved almost all around the dome basement (Nicollin et al. 2006). A low-resistivity ‘channel’ connecting the conductive lower part of the dome to the summit regions is observed on both cross-sections which have been obtained with independent data sets. This conductive channel is roughly located beneath the southeastern part of the dome summit. It most likely corresponds to the main Tarissan and Cratère Sud vents that were reactivated in all southeastern part of the dome summit. It most likely corresponds to the domains covered by the radiographies of Fig. 7. The scale bar applies to both the horizontal and vertical axis. See Fig. 1 for the location of the corresponding profiles on the map.

Figure 8. East–west (top panel) and north–south (bottom) cross-sections of the apparent electrical resistivity constructed with the data discussed in Nicollin et al. (2006). The unmasked parts of the sections approximately correspond to the domains covered by the radiographies of Fig. 7. The scale bar applies to both the horizontal and vertical axis. See Fig. 1 for the location of the corresponding profiles on the map.

5.3 Comparison with gravity data

The gravity measurements from Gunawan (2005) have been inverted by Coutant et al. (2012) to derive a density model of the lava dome. The cross sections in Fig. 9 show density variations confirming the heterogeneous structure of the volcano observed in the density radiographies (Fig. 7) and in the electrical resistivity pseudo-sections (Fig. 8). By applying the method of Parasnis (1997) to its gravity data, Gunawan (2005) obtained an average density of \(\approx 2.1 \, \text{g cm}^{-3} \) for the volcano above 1050 m a.s.l. This author observes that the data do not fit a single straight line in the Parasnis’s diagram and concludes that the dome is probably highly heterogeneous. Core samples coming from boreholes located at the Savane à Mulets (200 m west of Ravine Sud) and Col de l’Echelle (150 m south of Roche Fendue) give densities of 2.0 \(\text{g cm}^{-3} \) for near-surface altered andesite and \(\approx 2.7 \, \text{g cm}^{-3} \) for deeper massive andesite (Gunawan 2005). Altered material sampled at the summit of the lava dome have densities in the 0.9–1.3 \(\text{g cm}^{-3} \) range (F. Dufour, personal communication, 2012). These values are very similar to those obtained by Bernard (1999) for samples of La Montagne Pelée in Martinique.

5.3.1 Ravine Sud radiography (Top panel of Fig. 7)

The northwest quarter of the gravity model of the dome appears as a high density body (D1 on Fig. 9) located beneath the most elevated part of the dome named La Découverte (Fig. 1). This dense region is crossed by the telescope rays for elevation angles \(\Phi < 25^\circ \) and \(95^\circ \leq \Theta \leq 115^\circ \) (Top right-hand side of Fig. 7), and coincides with the medium average density region RS3 on the density radiography. At higher elevation angles, the rays no more cross the northwestern...
The low-density region RF2 in the radiography corresponds to the upper part of the low-density domain L2 in the gravity model at levels 1300 and 1350 m (Figs 9A and B). This coincides with the upper part of the low-density domain L2 in the gravity model. The dense border RS2 observed in the radiography corresponds to the left part of the ray bundle (Fig. 1) that pass through the Dolomieu and the Faujas andesitic outcrops. The Faujas root might correspond to the western part of the D1 region in the gravity model (Fig. 9B and C), and no dense anomaly is observed in this model in regard of the Dolomieu outcrop. The dense eastern border RS5 visible on the Ravine Sud radiography corresponds to the I2 region of intermediate density in the gravity model (Fig. 9).

5.3.2 Roche Fendue radiography (Bottom of Fig. 7)

The low-density region RF2 in the radiography corresponds to the upper part of the low-density domain L2 in the gravity model at levels 1300 and 1350 m (Figs 9A and B). This coincides with the Cratère sud region, located in the southeastern quarter of the dome (Fig. 1). The large low density domain RF4 in the radiography corresponds to rays passing through the I1 and L3 anomalies in the gravity model at levels 1250 and 1300 m (Figs 9B and C). The low density of RF4 is then in qualitative agreement with the lower densities obtained in the northeastern part of the gravity model, but the densities of I1 and L3 are not sufficiently low to quantitatively agree with the average density of RF4. This discrepancy may be due to a local deficiency of the gravity model resulting from the ill-posedness of the inversion. The RF5 dense zone in the radiography corresponds to the dense domain I1 in the gravity model. The RF1 dense border of the Roche Fendue radiography has no clear equivalent in the gravity model and could correspond to an unresolved northern extension of the dense domain I2.

6 CONCLUDING REMARKS

The standalone telescope used in this study allows long-term monitoring of the whole volcano from a single well-chosen location (Fig. 4), and the scintillator detectors forming the matrices of the telescope proved both efficient and robust with respect to the harsh environmental conditions encountered on the volcano (Marteau et al. 2011). Based on our experience, we expect that other types of detectors like resistive plate chambers would be difficult to control given temperature and humidity variations between night and day (e.g. Ahn et al. 2000; Zhang et al. 2010). The removal of any background noise is an issue of a great importance when performing absolute density radiography as in this study. Indeed, a background noise of a single particle per day and per scanned direction is sufficient to significantly bias the reference density. This is probably what happens at the Ravine Sud location as discussed in Section 4.2, and the telescope is being upgraded with high-frequency electronics that will enable us to measure the time-of-flight of the particles crossing the detector matrices.

The field experiments performed on Soufrière of Guadeloupe confirm that the sizing of the telescope is a good compromise between transportability (Fig. 3) and detection capabilities. The acceptance (Fig. 5) allows to obtain useful radiographies within an acquisition duration T of about 5 weeks, and the results discussed in this paper demonstrate the great interest of such quickly obtained density radiographies to reveal the inner structure of the Soufrière lava dome in relation with hazard assessment (Komorowski et al. 2005; Le Friant et al. 2006). Higher accuracy can be obtained with longer acquisition time T according to the feasibility formula established by Lesparre et al. (2010), and more radiographies with different angles of view must be obtained to undertake a full and stable 3-D density tomography reconstruction.

Although there is not a one-to-one correspondence between density and electrical resistivity (Section 5.2 for discussion), we found a remarkably good correlation between the density radiographies (Fig. 7) and the corresponding apparent resistivity pseudo-sections (Fig. 8). The agreement between the density radiographies and a density model obtained by inverting gravity data is also satisfactory despite the non-uniqueness of the gravity inversion. Such an accordance between muon density, electrical resistivity and gravity-inverted density constitutes a strong encouragement to develop joint inversions of these data. We may expect that the addition of muon data could efficiently regularize the non-linear inversion of electrical resistivity data, and this will be the subject of forthcoming papers.

ACKNOWLEDGMENTS

Field operations received the invaluable help from colleagues of the Guadeloupe Volcano Observatory and from the crews of...
the helicopter station of the French Civil Security (www.helicodragon.com). The installation of the telescope received advices and authorization from the Director of the National Natural Park of Guadeloupe (www.guadeloupe-parcnational.fr). On the field, the maintenance and the servicing of the telescope are ensured by Fabrice Dufour. The construction of the telescopes benefited from the expertise of Bruno Carlus (computer), Bruno Kergosien (electronics), Pascal Rolland (mechanical engineering), and Sylvain Vanzetto (optical fibres). Very constructive reviews were provided by H. Tanaka and an anonymous Referee. The DIAPHANE project is financially supported by the IPGP (www.ippg.fr) BQR grant, the DOMOSCAN ANR (www.agence-nationale-recherche.fr) project, the CNRS/IN2P3 (www.cnrs.fr) Astroparticles program. The recent eruptive history of the volcano has been improved in the framework of the CASA V A ANR project. This is IPGP contribution 3292.

REFERENCES

© 2012 The Authors, GJI, 190, 1008–1019

Geophysical Journal International © 2012 RAS

