X. D. Li, W. C. Chang, Y. J. Chao, R. Wang, and M. Chang, Nanoscale structure and mechanical characterization of a natural nanocomposite material: the shell of red abalone, Nano Letters, vol.4, issue.4, p.613617, 2004.

X. D. Li, Z. Xu, and R. Wang, In Situ Observation of Nanograin Rotation and Deformation in Nacre, Nano Letters, vol.6, issue.10, p.23012304, 2006.
DOI : 10.1021/nl061775u

M. Rousseau, X. Bourrat, P. Stempé, M. Brendlé, and E. Lopez, Multi-scale structure of the pinctada mother of pearl: Demonstration of a continuous and oriented organic framework in a natural ceramic, Key Engineering Materials, vol.705708, pp.284-286, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00131525

S. Weiner and W. Traub, Macromolecules in Mollusc Shells and Their Functions in Biomineralization [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.304, issue.1121, p.425434, 1984.
DOI : 10.1098/rstb.1984.0036

L. Bédouet, M. Schuller, F. Marin, C. Milet, E. Lopez et al., Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata:, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.128, issue.3, 2001.
DOI : 10.1016/S1096-4959(00)00337-7

L. Pereira-mouriès, M. Almeida, C. Ribeiro, J. Peduzzi, M. Barthélemy et al., Soluble silk-like organic matrix in the nacreous layer of the bivalve pinctada maxima, Euro, J. Biochem, vol.269, p.49945003, 2002.

M. Rousseau, L. Pereira-mouriès, M. Almeida, C. Milet, and E. Lopez, The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.135, issue.17, 2003.
DOI : 10.1016/S1096-4959(03)00032-0

M. Rousseau, A. Meibom, M. Gèze, X. Bourrat, M. Angellier et al., Dynamics of sheet nacre formation in bivalves, Journal of Structural Biology, vol.165, issue.3, 2009.
DOI : 10.1016/j.jsb.2008.11.011

URL : https://hal.archives-ouvertes.fr/insu-00371791

Y. Levi-kalisman, G. Falini, L. Addadi, and S. Weiner, Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM, Journal of Structural Biology, vol.135, issue.1, 2001.
DOI : 10.1006/jsbi.2001.4372

F. Song, X. Zhang, and Y. Bai, Microstructure and Characteristics in the Organic Matrix Layers of Nacre, Journal of Materials Research, vol.17, issue.07, p.15671570, 2002.
DOI : 10.1016/S0928-4931(00)00138-7

G. Falini, S. Weiner, and L. Addadi, Chitin-silk broin interactions: relevance to calcium carbonate formation in invertebrates, Calcif Tissue Int, vol.72, issue.548554, 2003.

F. Song, A. Soh, and Y. Bai, Structural and mechanical properties of the organic matrix layers of nacre, Biomaterials, vol.24, issue.20, p.36233631, 2003.
DOI : 10.1016/S0142-9612(03)00215-1

X. Bourrat, L. Qiao, Q. Feng, M. Angellier, A. Disseaux et al., Origin of growth defects in pearl, Materials Characterization, vol.72, pp.72-94, 2012.
DOI : 10.1016/j.matchar.2012.07.010

URL : https://hal.archives-ouvertes.fr/insu-00723037

J. Currey, Mechanical Properties of Mother of Pearl in Tension, Proceedings of the Royal Society B: Biological Sciences, vol.196, issue.1125, p.463, 1977.
DOI : 10.1098/rspb.1977.0050

A. Jackson, J. Vincent, and R. Turner, Comparison of nacre with other ceramic composites, Journal of Materials Science, vol.36, issue.7, pp.25-31733178, 1990.
DOI : 10.1007/BF00587670

K. Okumura and P. De-gennes, Why is nacre strong? elastic theory and fracture mechanics for biocomposites with stratied structures, Eur. Phys. J. E, vol.4, 2001.

K. Okumura, Why is nacre strong? II. Remaining mechanical weakness for cracks propagating along the sheets, The European Physical Journal E, vol.7, issue.4, p.303310, 2002.
DOI : 10.1140/epje/i2001-10096-4

B. Ji and H. Gao, Mechanical properties of nanostructure of biological materials, Journal of the Mechanics and Physics of Solids, vol.52, issue.9, 2004.
DOI : 10.1016/j.jmps.2004.03.006

M. Meyers, P. Chen, A. Lin, and Y. Seki, Biological materials: Structure and mechanical properties, Progress in Materials Science, vol.53, issue.1, p.1206, 2008.
DOI : 10.1016/j.pmatsci.2007.05.002

B. Bruet, H. Qi, and M. Boyce, Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus, Journal of Materials Research, vol.21, issue.09, p.24002419, 2005.
DOI : 10.1016/S0022-0248(00)00396-1

P. Westbroek and F. Marin, A marriage of bone and nacre, Nature, vol.392, p.861862, 1998.

G. Atlan, O. Delattre, S. Berland, A. Lefaou, G. Nabias et al., Interface between bone and nacre implants in sheep, Biomaterials, vol.20, issue.11, p.10171022, 1999.
DOI : 10.1016/S0142-9612(98)90212-5

Y. Kim, J. Kim, Y. Kim, and J. Rho, Eect of organic matrix proteins on the interfacial structure at the bone biocompatible nacre interface in vivo, Biomaterials, vol.23, 2002.

H. Liao, H. Mutvei, L. Hammarström, T. Wurtz, and J. Li, Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study, Biomaterials, vol.23, issue.13, 2002.
DOI : 10.1016/S0142-9612(01)00421-5

E. Lopez, S. Berland, C. Camprasse, G. Camprasse, and C. Silve, Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro, Tissue and Cell, vol.24, issue.5, pp.24-667679, 1992.
DOI : 10.1016/0040-8166(92)90037-8

S. Berland, O. Delattre, S. Borzeix, Y. Catonné, and E. Lopez, Nacre/bone interface changes in durable nacre endosseous implants in sheep, Biomaterials, vol.26, issue.15, p.27672773, 2005.
DOI : 10.1016/j.biomaterials.2004.07.019

URL : https://hal.archives-ouvertes.fr/hal-00131382

C. Silve, E. Lopez, B. Vidal, D. Smith, C. Camprasse et al., Nacre initiates biomineralization by human osteoblasts maintained In Vitro, Calcified Tissue International, vol.332, issue.1, 1992.
DOI : 10.1007/BF00316881

A. Heuer, D. Fink, V. Laraia, J. Arias, P. Calvert et al., Innovative materials processing strategies: a biomimetic approach, Science, vol.255, issue.5048, p.10981105, 1992.
DOI : 10.1126/science.1546311

S. Weiner and L. Addadi, Design strategies in mineralized biological materials, Journal of Materials Chemistry, vol.7, issue.5, 1997.
DOI : 10.1039/a604512j

C. Wang, Y. Huang, Q. Zan, H. Guo, and S. Cai, Biomimetic structure design ??? a possible approach to change the brittleness of ceramics in nature, Materials Science and Engineering: C, vol.11, issue.1, p.911, 2000.
DOI : 10.1016/S0928-4931(00)00133-8

J. Carlson, S. Ghaey, S. Moran, C. Tran, and D. Kaplan, Biological materials in engineering mechanisms, Biomimetics, Biologically Inspired Technologies, p.365379, 2006.

E. Munch, M. Launey, D. Alsem, E. Saiz, A. Tomsia et al., Tough, Bio-Inspired Hybrid Materials, Science, vol.322, issue.5907, p.516520, 2008.
DOI : 10.1126/science.1164865

B. Bhushan, Biomimetics: lessons from nature-an overview, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.6, issue.6, pp.1445-1486, 2009.
DOI : 10.1021/nl060644q

P. Stempé and M. Brendlé, Tribological behaviour of nacre -inuence of the environment on the elementary wear processes, Tribology International, pp.39-14851496, 2006.

P. Stempé, O. Pantalé, R. Kouitat-njiwa, M. Rousseau, E. Lopez et al., Friction-induced sheet nacre fracture: eects of nano-shocks on cracks location, Int. J. Nanotechnol, vol.4, issue.6, p.712729, 2007.

P. Stempé, T. Djilali, R. Kouitat-njiwa, M. Rousseau, E. Lopez et al., Thermal-induced wear mechanisms of sheet nacre in dry friction, pp.35-97104, 2009.

P. Stempé, O. Pantalé, T. Djilali, R. Kouitat-njiwa, and X. Bourrat, Evaluation of the real contact area in three-body dry friction by micro-thermal analysis, Tribology International, pp.43-17941805, 2010.

P. Stempé, T. Djilali, R. Kouitat-njiwa, M. Rousseau, E. Lopez et al., Assessment of the thermalinduced wear mechanisms of sheet nacre by using scanning thermal microscopy, Proceedings of the 3rd International Conference NANOTECHNOLOGY -Viennano'09, p.409414, 2009.

R. Wang, H. Wen, F. Cui, H. Zhang, and H. Li, Observations of damage morphologies in nacre during deformation and fracture, Journal of Materials Science, vol.71, issue.9, pp.30-22992304, 1995.
DOI : 10.1007/BF01184577

A. Evans, Z. Suo, R. Wang, I. Aksay, M. He et al., Model for the robust mechanical behaviour of nacre, J. Mater. Res, vol.16, issue.9, 2001.

R. Wang, Z. Suo, A. Evans, N. Yao, and I. Aksay, Deformation mechanisms in nacre, Journal of Materials Research, vol.63, issue.09, 2001.
DOI : 10.1038/28354

K. Okumura, Fracture strength of biomimetic composites: scaling views on nacre, Journal of Physics: Condensed Matter, vol.17, issue.31, pp.2879-2884, 2005.
DOI : 10.1088/0953-8984/17/31/015

T. Sumitomo, H. Kakisawa, Y. Owaki, and Y. Kagawa, Transmission electron microscopy observation of nanoscale deformation structures in nacre, Journal of Materials Research, vol.2, issue.12, p.32133221, 2008.
DOI : 10.1557/jmr.2008.0184

M. Meyers, A. Lin, P. Chen, and J. Muyco, Mechanical strength of abalone nacre: Role of the soft organic layer, Journal of the Mechanical Behavior of Biomedical Materials, vol.1, issue.1, p.7685, 2008.
DOI : 10.1016/j.jmbbm.2007.03.001

A. Jackson, J. Vincent, D. Briggs, R. Crick, S. Davies et al., Application of surface analytical techniques to the study of fracture surfaces of mother-of-pearl, Journal of Materials Science Letters, vol.31, issue.10, p.975978, 1986.
DOI : 10.1007/BF01730253

S. Kotha, Y. Li, and N. Guzelsu, Micromechanical model of nacre tested in tension, J. Mater. Sci, vol.36, 2001.

N. Neves and J. Mano, Structure/mechanical behavior relationships in crossed-lamellar sea shells, Materials Science and Engineering: C, vol.25, issue.2, 2005.
DOI : 10.1016/j.msec.2005.01.004

P. Nukala and S. Simunovic, A continuous damage random thresholds model for simulating the fracture behavior of nacre, Biomaterials, vol.26, issue.30, p.60876098, 2005.
DOI : 10.1016/j.biomaterials.2005.03.013

M. Cortie, K. Mcbean, and M. Elcombe, Fracture mechanics of mollusc shells, Physica B, pp.385-386, 2006.

F. Barthelat, H. Tang, P. Zavattieri, C. Li, and H. Espinosa, On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure, Journal of the Mechanics and Physics of Solids, vol.55, issue.2, 2007.
DOI : 10.1016/j.jmps.2006.07.007

K. Okumura, Enhanced energy of parallel fractures in nacre-like composite materials, Europhysics Letters (EPL), vol.63, issue.5, p.701707, 2003.
DOI : 10.1209/epl/i2003-00578-y

H. Qi, B. Bruet, J. Palmer, C. Ortiz, and M. Boyce, Micromechanics and Macromechanics of the Tensile Deformation of Nacre, Mechanics of Biological Tissue, p.189, 2006.
DOI : 10.1007/3-540-31184-X_14

R. Menig, M. Meyers, M. Meyers, and K. Vecchio, Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells, Acta mater, p.48, 2000.

V. Laraia and A. Heuer, The Microindentation Behavior of Several Mollusk Shells, MRS Proceedings, vol.643, p.125131, 1990.
DOI : 10.1007/BF02408072

L. Ge, N. Kim, G. R. Bourne, and W. G. Sawyer, Material property identication and sensitivity analysis using micro-indentation, Journal of Tribology, vol.131, p.7, 2009.
DOI : 10.1115/1.3142902

P. Stempé, O. Pantalé, R. Kouitat-njiwa, M. Rousseau, E. Lopez et al., Nanoindentation & tribological tests -suitable tools for modelling the nanostructure of sheet nacre, Proceedings of the 2rd International Conference MICRO-NANOTECHNOLOGY -Viennano'07, p.153159, 2007.

B. Mohanty, K. Katti, and D. Katti, Experimental investigation of nanomechanics of the mineral-protein interface in nacre, Mechanics Research Communications, vol.35, issue.1-2, p.1723, 2008.
DOI : 10.1016/j.mechrescom.2007.09.006

P. Stempé, O. Pantalé, M. Rousseau, E. Lopez, and X. Bourrat, Mechanical properties of the elemental nanocomponents of nacre structure, Materials Science and Engineering C, vol.30, p.715721, 2010.

P. Stempé, X. Bourrat, R. Kouitat, M. Rousseau, and E. Lopez, Mechanical properties of sheet nacre porous intercrystalline organic matrix

M. Scherge and S. Gorb, Microtribology of biological materials, Tribology Letters, vol.8, issue.17, 2000.

M. Scherge and S. Gorb, Biological Micro-Nano-tribology, 2001.

P. Stempé and J. Takadoum, Multi-asperity nanotribological behavior of single-crystal silicon: Crystallography-induced anisotropy in friction and wear, Tribology International, vol.3543, p.48, 2012.

D. Sud, D. Doumenc, E. Lopez, and C. Milet, Role of water-soluble matrix fraction, extracted from the nacre of Pinctada maxima, in the regulation of cell activity in abalone mantle cell culture (Haliotis tuberculata), Tissue and Cell, vol.33, issue.2, p.154160, 2001.
DOI : 10.1054/tice.2000.0166

L. Addadi and S. Weiner, A pavement of pearl, Nature, vol.389, p.912913, 1997.

L. Huang and H. Li, The microstructure of the biomineralization bivalvia shells, Mater Res Soc Symp Proc, vol.174, 1990.

R. Maev, Acoustic Microscopy: Fundamentals and Applications, 2008.
DOI : 10.1002/9783527623136

Z. Xu, Y. Yang, Z. Huang, and X. Li, Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse nite element techniques, Materials Science and Engineering C, pp.31-18521856, 2011.

P. Stempé, J. Takadoum, and R. K. Njiwa, An accurate in-situ wear assessment in micro/nanotribology, Proceedings of the 3rd European Conference on Tribology, 2011.

I. Hill and W. G. Sawyer, Energy, Adhesion, and the Elastic Foundation, Tribology Letters, vol.99, issue.2, pp.37-453461, 2010.
DOI : 10.1007/s11249-009-9537-0

P. Stempé, F. Pollet, and L. Carpentier, Inuence of intergranualr metallic nanoparticles on the fretting wear mechanisms of fe-cr-al2o3 nanocomposites rubbing on ti-6al-4v, Tribology International, pp.41-10091019, 2008.

P. Stempé and J. Stebut, Nano-mechanical behaviour of the 3rd body generated in dry friction feedback eect of the 3rd body and inuence of the surrounding environment on the tribology of graphite, Wear, vol.260, p.601614, 2006.

J. Bezares, R. Asaro, and M. Hawley, Macromolecular structure of the organic framework of nacre in Haliotis rufescens: Implications for mechanical response, Journal of Structural Biology, vol.170, issue.3, p.484500, 2010.
DOI : 10.1016/j.jsb.2010.01.006