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The aim of this review is to characterize the role of pressure solution creep in the ductility of the 

Earth’s upper crust and to describe how this creep mechanism competes and interacts with other 

deformation mechanisms. Pressure solution creep is a major mechanism of ductile deformation of the 

upper crust, accommodating basin compaction, folding, shear zone development, and fault creep and 

interseismic healing. However, its kinetics is strongly dependent on the composition of the rocks 

(mainly the presence of phyllosilicates minerals that activate pressure solution) and on its interaction 

with fracturing and healing processes (that activate and slow down pressure solution, respectively). 

The present review combines three approaches: natural observations, theoretical developments, and 

laboratory experiments. Natural observations can be used to identify the pressure solution markers 

necessary to evaluate creep law parameters, such as the nature of the material, the temperature and 

stress conditions or the geometry of mass transfer domains. Theoretical developments help to 

investigate the thermodynamics and kinetics of the processes and to build theoretical creep laws. 

Laboratory experiments are implemented in order to test the models and to measure creep law 

parameters such as driving forces and kinetic coefficients. Finally, applications are discussed for the 

modelling of sedimentary basin compaction and fault creep. The sensitivity of the models to time is 

given particular attention: viscous versus plastic rheology during sediment compaction; steady state 

versus non-steady state behaviour of fault and shear zones. The conclusions discuss recent advances 

for modelling pressure solution creep and the main questions that remain to be solved. 
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the Earth’s upper crust. Advances in Geophysics, 54, doi: 10.1016/B978-0-12-380940-

7.00002-0. 



 2 

 

1 – Introduction 

 
In order to investigate the role of pressure solution creep in the ductility of the Earth’s upper crust the 

various mechanical behaviour patterns of the upper crust must first be discussed. Two types of 

approach can be considered on this topic. 

1 - The mechanical behaviour of the upper crust is modelled using brittle theories, that include friction 

laws (Byerlee, 1978; Marone, 1998). This modelling approach is supported by two kinds of 

observations: (i) the maximum frequency of earthquakes is located within the first 15-20 km of the 

upper crust (Chen and Molnar, 1983; Sibson, 1982); (ii) laboratory experiments run at relatively fast 

strain-rates (faster than 10-7 s-1) indicate a transition from frictional to plastic deformation at pressure 

and temperature conditions appropriate for a depth of 10-20 km (Kohlstedt et al., 1995; Paterson, 

1978; Poirier, 1985). 

2 – Conversely, the behaviour of the upper crust is also modelled by ductile behaviour with creep laws 

(Wheeler, 1992). This modelling approach is supported by two kinds of observations: (i) geological 

structures exhumed from depth, such as compacted basin, folds and shear zones, and regional 

cleavage, indicate ductile behaviour throughout the upper crust (Argand, 1924; Hauck et al., 1998; 

Schmidt et al., 1996) (Fig. 1a); (ii) laboratory experiments run at very low strain-rates (slower than 10-

9 s-1) with possible fluid rock interactions show that stress-driven mass transfer or chemical corrosion 

control the creep processes (Atkinson, 1984; Chester et al., 2007; Rutter, 1976; Spiers et al., 1990). 

The two types of rheology do not occur over the same time scales. Fracturing, and more generally 

brittle deformation, mostly occurs over short time scales. Conversely, because they are most often 

controlled by stress-driven diffusive mass transfer and chemical effects, ductile processes in the upper 

crust take place over much longer time scales. Brittle and ductile mechanisms are very often spatially 

associated in the upper crust. For example, they occur in fault-related folds or along faults at the 

seismic to aseismic transition depth and they can strongly interact. It should be noted that ductile 

deformation within the entire upper crust mostly occurs near plate boundaries in collision (mountain 

ridges), and in transform (vertical shear) zones or extension zones (basins). A detailed discussion of 

why massive internal deformation develops throughout the upper crust in these particular zones is 

outside the scope of this review study. However, the main reason is probably that stress-driven mass 

transfer processes commonly associated with ductile deformation require the presence of fluids to 

relieve tectonic stress build-up efficiently, and these zones are likely to be the places where fluids 

circulate from depth (Kennedy et al., 1997; Kerrich, 1986; McCaig, 1988; Sibson et al., 
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Figure 1: (a) Outcrop-scale markers of pressure solution creep (from right to left: impressed pebbles, 

stylolites, elongated belemnites and folded veins, pressure solution cleavage and veins in granite). 

These markers were formed through the entire upper crust of the French Alps mountain range, from 0 

to 10-12 km depth. They now outcrop from the Pelvoux to Vercors massifs due to exhumation and 

erosion: light grey = eroded part, medium grey = present-day sedimentary cover, dark grey = 

basement, blue = Trias; (b) competition between the three main deformation mechanisms in the crust 

in a strength versus depth diagram, adapted from (Gratier and Gamond, 1990; Kohlstedt et al., 1995): 

friction regime (blue curve), pressure solution creep (red curve, at a given strain rate of 10-14s-1) and 

plastic deformation (green curve), high fluid pressure decreases the strength for friction. 

 

 1988). Even in these particular zones of upper crust ductile deformation, friction laws are often used 

to describe brittle to ductile transition from the upper crust to the lower crust (Fig. 1b). The brittle part 

implies a linear increase in strength with depth according to friction laws (Byerlee, 1978), up to 10-15 

km (Fig. 1b). However, to fully model the ductile behaviour of the upper crust, stress-driven mass 

transfer creep laws (e.g. pressure solution) must be used, since it will be seen that this process is the 

one that most often accommodates ductile deformation. Such creep laws occur at much lower strain-

rate values and require much smaller differential stress values than friction (Cox and Etheridge, 1989; 

Gratier and Gamond, 1990) (Fig. 1b). Both brittle and ductile mechanisms are not very sensitive to the 

effect of temperature and both tend to disappear below 15-20 km depth where other temperature-

activated plastic mechanisms become dominant, such as dislocation glide processes (Poirier, 1985) 

(Fig. 1b). 

As indicated above, there is very good evidence, from geological observations, that ductile 

deformation occurs through the entire upper crust, more or less closely associated with brittle 

deformation. Large-scale internal deformation is manifested by shearing and folding processes in 

collision and transformation zones and by compaction in sedimentary basins. Thanks to both uplift and 

erosion processes, deformation markers indicative of such ductile deformation from near the surface to 
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several tens of kilometres depth can be seen directly on outcrops when going from foreland to 

hinterland in collision zones. An example of such ductile upper crust deformation can be found in a 

geological cross-section from foreland to hinterland in the French Alps (Fig. 1a). The same type of 

ductile deformation is found in the cross-sections of other mountains ranges (Hauck et al., 1998; 

Schmid et al., 1996; Yeats and Huftile, 1994). 

The various types of pressure solution markers can be seen in the upper crust (Fig. 1a), now exhumed, 

such as impressed pebbles, aseismic sliding in faults, stylolites, solution cleavage associated with 

veins, in the folded and sheared sedimentary cover and basement. They are found ubiquitously from 

near the surface down to 10-15 km depth, reflecting the crucial role of this mechanism in ductile 

crustal deformation. It is also a major mechanism of compaction: mechanical processes alone cannot 

reduce the porosity to almost zero as often seen in sedimentary basins. 

Pressure solution is a deformation mechanism where solid material in the presence of its solution fluid 

responds to applied non-hydrostatic stresses by dissolution in the zone of largest normal stress (pitted 

pebble, stylolite, cleavage), mass transfer in the fluid phase and deposition in the zone of smallest 

normal stress (pores, veins). It is therefore also known as dissolution precipitation creep. Such stress 

driven mass transfer around blocks, grains or elements of grains of various sizes (from microns to 

decimetres) enables major internal deformation to be accommodated in association with shearing and 

folding processes in the upper crust. The blocks and grains may slightly deform (see below) but most 

often they do not. 

Several deformation processes could be candidates to accommodate strain in the upper crust. 

- Fracturing is very common in the upper crust. However, rigid block sliding cannot accommodate 

large strain values unless the blocks are very small. In such a case intense fracturing may lead to 

cataclastic creep (or flow) (Hadizadeh et al., 1983) that can be seen in the form of intense, very 

localized deformation along some active faults. When blocks are larger, block rotation is often 

accommodated by pressure solution (stylolites or veins), see § 2. Moreover, fracturing can boost 

pressure solution kinetics (Gratier et al., 1999). 

- Stress corrosion may be an important process in time-dependent phenomena, for example in the 

initiation of earthquakes in the upper crust (Anderson and Grew, 1977). However while it may reduce 

the size of blocks, it cannot alone accommodate large deformations. 

- Grain-boundary sliding in superplasticity processes (Ashby and Verrall, 1973; Konstantinidis and 

Herrmann, 1998; Wheeler, 2010), which can accommodate large strain values, is traditionally 

considered as a high-temperature mechanism when sliding is accommodated by diffusion at dry grain 

boundaries (Boullier and Guéguen, 1975). So it is not expected to be commonly found in the upper 

crust. However, it will be seen that pressure solution creep may accommodate grain boundary sliding 

when a trapped fluid phase activates diffusion along the grain boundary. In this case it is an efficient 
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deformation mechanism in the upper crust since the activation energy of fluid phase diffusion is much 

lower that along dry grain boundaries (Fischer and Elliott, 1974). 

- Conversely, the presence of a trapped fluid phase along grain boundaries, or in cracks, may promote 

grain boundary or crack healing (Hickman, 1989) that drastically inhibits the possibility of mass 

transfer by reducing the kinetics of stress-driven mass transfer such as pressure solution. The effect of 

such healing processes will be discussed. It will also be seen that the presence of phyllosilicates could 

prevent such healing and thus keep fast diffusive paths around the grains. 

- Calcite twinning is an efficient intracrystalline deformation mechanism that develops at low shear 

stress with almost no temperature dependence, consequently it is commonly observed in the upper 

crust. However, twinning alone cannot lead to large strains because only one independent slip system 

is available (Burkhard, 1992). Observations show that incompatibilities at grain boundaries are most 

often eliminated by pressure solution on the grain scale. 

- Other intracrystalline deformation mechanisms, such as dislocation glide processes, easy to 

recognize as they lead to the reorientation of the optical crystal axes (Poirier, 1985), cannot be seen at 

less than 400-500°C for most of the minerals of the upper crust so are more likely to be found in the 

lower crust. 

In order to build and use pressure solution creep laws, three different approaches are needed that are 

successively presented in this paper: 

- Thanks to observations of natural structures the deformation can be recognised and quantified and 

some key parameters of the creep laws evaluated (geometry of path transfer, temperature and stress 

conditions, nature of solid and fluid, etc.). 

- A theoretical approach can be used to investigate the thermodynamics and kinetics of the processes 

(particularly the specific behaviour of fluid phase trapped under stress) and build theoretical creep 

laws. 

- Laboratory experiments can be performed to test the models and to measure creep law parameters 

such as driving forces and kinetic coefficients. They also very often produce evidence of new 

phenomena that may lead to the development of new models. 

Finally, applications are discussed for modelling sedimentary basin compaction and fault creep. The 

sensitivity of the models to time is particularly discussed: viscous versus plastic rheology during 

compaction of the sediment; steady state versus non-steady state behaviour of faults and shear zones. 
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Figure 2: Classification of natural stress-enhanced dissolution patterns: dissolution seam (S) in a 

diagram showing the ratio of “surface area dissolution / total surface area of the elements” versus 

“spacing between dissolution seams“: at low values of this ratio the change from grain dissolution to 

impressed pebbles can be seen; at the highest values the change from slaty cleavage to spaced 

cleavage to stylolites can be seen. All these markers are discussed in the text. 

 

2 - Natural pressure solution creep: description and quantitative 

analysis 
 

Identifying natural pressure solution implies evaluating both local volume loss in the dissolution zone 

and local volume increase in the deposition zone: the specific geometric and chemical methods 

involved are discussed in this review. It is also of major interest to evaluate the overall volume change 

at all levels from outcrop to basin and in the entire upper crust. This is why techniques for evaluating 

overall volume changes are also presented, mostly following the pioneering work of Ramsay (1967). 

In the first part of this study, criteria for recognizing natural pressure solution are presented together 

with the types of parameters that can be used to model the ductility of the upper crust. For this  
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Figure 3: Classification of natural deposition patterns: pressure shadow (C) and veins (V) in a 

diagram showing the ratio of “surface area of deposition / total surface area of the elements” versus 

“spacing between deposition zones”: at low values of this ratio the change from grain size to pressure 

shadow and fibres (C) vs dissolution (S) along faults can be seen, at the highest value the change from 

truncated belemnite to strata boudinage to hectometre veins (V) can be seen. All these markers are 

discussed in the text. 

 

purpose, the natural markers have to be classified. Two parameters can be combined to classify 

dissolution markers (Fig. 2): 

- The degree of development of the dissolution zones, which can range from a single contact point to a 

planar surface. This is expressed by the ratio between the surface area of dissolution and the total 

surface area of the solid, and ranges from 0 to 1. 

- The spacing between the dissolution zones, which can range from grain size to much larger blocks 

(up to several metres). 

This classification is used to present the natural markers of pressure solution. Then, for each of these 

markers, the manner in which associated deposition markers can be identified is discussed (Fig. 3). 

Similar parameters are applied: 
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- The degree of development of the deposition zones, which can range from a deposition zone in 

pressure shadows at the grain scale to well-developed planar veins. This is expressed by the ratio 

between the surface area of deposition and the total surface area of the solid, and ranges from 0 to 1. 

- The spacing between the deposition zones, which can range from grain size to much larger blocks 

(up to several hundred metres). 

Several different spatial scales are involved when observing natural pressure solution creep patterns. 

The aim of this Section is to help the reader answer several questions about pressure solution creep: 

How can pressure solution markers be recognized on the field? What are their common 

characteristics? Where can they be found? What pressure and temperature conditions are required for 

their development? What are their links with large deformation structures such as folds and faults? 

And finally, how can they be used to model the ductile behaviour of the Earth's upper crust? 

The main types of natural pressure solution creep markers are described and, for each type, the 

geometry of mass transfer and key parameters of pressure solution creep laws that support the various 

pressure solution creep models are quantified. 

 

2.1 – Basic concepts 
Pressure solution creep is a stress-driven mass transfer process (Fig. 4a) that involves three kinds of 

parameters that will be described in more detail in Sections 3 and 4, but are presented here to better 

understand the use of natural pressure solution markers in order to model the ductile behaviour of the 

Earth's upper crust. 

i) The driving force is the stress difference in chemical potential of the solid between the dissolution 

zone and the deposition zone, causing mass transfer through a fluid phase (Paterson, 1973; Weyl, 

1959), (Fig. 4a). 

ii) The kinetics of the pressure solution process implies three successive steps: dissolution, transfer 

and deposition (Fig. 4a). As in all en-serie processes, if the rate of a given step is much slower than the 

others, then it controls the rate of the entire process and corresponds to a specific creep law. 

Thismeans that several pressure solution creep laws are possible (Raj, 1982) depending on the limiting 

step. 

iii) The mass transfer mechanism that carries the soluble species from dissolution to deposition sites 

controls the length scale of the process. In most pressure solution processes, one step of the en-serie 

process is diffusion through a fluid phase, which is trapped under compressive stress (Fig. 4b). There 

are two basic models of trapped fluid phases: either a thin fluid of some nanometres width (Renard 

and Ortoleva, 1997; Weyl, 1959) or an island-channel network (Lehner, 1990; Raj and Chyung, 1981; 

Spiers and Schutjens, 1990). The diffusion flux (product of the diffusion by the thickness of the 
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Figure 4: (a) Basic concept of pressure solution at the grain scale, with diffusive mass transfer along 

a confined trapped fluid phase of thickness w (red), with diffusion along the trapped fluid: length d 

(b), or with fluid advection along a distance D (c). The normal stress on the grain boundary is σ1 and 

the fluid pressure is pf. Schematic representation of closed system at grain scale (d) with diffusion or 

at of larger size (e) with fluid advection. Schematic representation of the effect of undersaturated fluid 

(with free-face dissolution, f) or of oversaturated fluid (with deposition, g). 
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diffusive pathway) along a trapped fluid phase is always very slow in contrast with diffusion flux in a 

free fluid with large pores or open fractures that may be part of the diffusive path (with a much larger 

width of the diffusive pathway). In this case, the length of the trapped fluid phase (thin fluid and/or 

island-channel network) is the key parameter that may control the kinetics of the pressure solution 

process and that appear in the creep law as the mass transfer distance (noted d in the figures and later 

in the text). Moreover, the free fluid in the pores and fractures may even move and fluid advection 

may carry the soluble species kilometres away from the dissolution zone. Therefore, it is worth 

evaluating the size of the closed system, or in other words the size of the system for which the amount 

of dissolution is equal to the amount of deposition. This size depends on the possibility of mass 

transfer away from the dissolution sites. This ranges from micrometres to kilometres (Fig. 4b-c). 

According to the creep laws derived from thermodynamic and kinetic analysis (Section 3) and tested 

under laboratory conditions (Section 4), several creep law parameters can be measured in the field 

from the analysis of natural deformation (this Section): 

- The stress orientation and deformation path are deduced from the orientation of the structures. The 

value of stress, which is of course a key parameter for all the creep laws, may be evaluated from the 

geometry of the dissolution structure, e.g. stylolite roughness or cross-over of successive cleavages. 

- The solubility of the solid in solution is also a key parameter and may be evaluated from the nature 

of the dissolved mineral, the pressure and temperature conditions of deformation and the composition 

of fluid inclusions trapped in the veins associated with solution seams. 

- The mass transfer distance, which appears in creep laws, may be given by the spacing between 

fractures or the grain size. 

- The size of the closed system gives an evaluation of possible mass transfer away from the dissolution 

sites (Fig. 4d-e). 

- Finally, in case of fluid advection, the fluid saturation is not necessarily in equilibrium with the solid: 

non-equilibrium may drive chemical reactions that combine with the stress effect (Lehner, 1995). 

However, the kinetics of the fluid-rock reactions are faster on the free faces than on the faces under 

stress. This is because the flux of matter along a fluid phase trapped under stress is the product of the 

diffusion times the thickness of the path and because this path is most often very thin (some 

nanometres) versus the thickness of the paths of free fluid. Consequently, evidences of fluid reaction 

are likely to be seen on the free faces on the natural structures either as dissolution (indicating 

undersaturated fluid, Fig. 4f) or deposition (indicating oversaturated fluids, Fig. 4g). Such reactions 

modify the porosity of the rocks. 

Unless it were possible to precisely date syn-deformation growth of associated precipitated minerals 

and consequently the duration of tectonic phases, which is not currently the case yet, there cannot be 
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any access to the kinetic parameters (reaction rate, diffusion rate, strain rate) of the creep laws from 

the observation of natural structures. At the present time, we must rely only on laboratory data in order 

to evaluate such parameters (Rutter, 1976), see Section 4. However, new methods for the absolute 

dating of tectonic minerals might help in the future evaluation of such kinetic parameters from natural 

structures. Such methods include either paleomagnetic measurements (Piper et al., 2007) or radiogenic 

dating such as U/Th (Gratier et al., 2012; Watanabe et al., 2008) and Rb/Sr (Muller et al., 2000). 

A discussion is given below of how to recognize pressure solution markers in the field and how to 

deduce the values of creep law parameters and the finite deformation that they are able to 

accommodate. However, the first general problem is to know how mass transfer and volume changes 

may be revealed and evaluated for all these geological markers. 

 

2.2 - How to reveal pressure solution deformation and evaluate volume 

change? 
The problem that arises when trying to observe pressure solution patterns is that when a mono-mineral 

rock dissolves in solution, no trace of the dissolution process is left. Stress-driven pressure solutions 

may be revealed by the observation of some specific geometry of the dissolution contacts such as a 

succession of interpenetrations that define stylolite surfaces. But this is not always the case and, 

anyway, at grain scale undulating contacts may also develop with other mechanisms such as 

recrystallization processes. The only case where it is possible to reveal dissolution without any doubt 

is when it occurs in a poly-mineral rock that contains soluble and insoluble species. In this case, the 

passive concentration of the insoluble species reveals mass transfer in a deformed (exposed) zone if 

this zone can be compared with a zone that has been relatively protected from the deformation. For 

example, mass transfer may be demonstrated by a variation in chemical content of rocks across a 

heterogeneously deformed zone (Gratier, 1983). Chemical composition differences are observed in a 

layer that has been cut by a normal fault, and composed of both soluble (calcite and quartz) and 

insoluble (illite) minerals (Fig. 5a-b). This behaviour can be explained as follows. Before faulting, the 

chemical composition and density of zones A & B were the same: it is the same sedimentary layer. 

During the slow displacement of the fault, soluble species were removed from the “exposed” zone B 

leading to a concentration of insoluble species in this zone and thus to a difference in chemical 

composition between the two zones A & B. Schematically, the relative mass balance  can be 

calculated using the passive concentration of insoluble minerals due to dissolution in the exposed zone 

(B) compared with the (relatively) protected zone (A): 

,        (1) 

and  being the concentration of all insoluble minerals in the protected and in the exposed 
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Figure 5: (a) Example of pressure solution mass transfer along the same initial layer due to normal 

faulting; (b) comparison of the mineral composition in the protected (A) and in the exposed (B) zones, 

adapted from (Gratier and Gamond, 1990); (c) use of the apparent shift in vein (ds) along dissolution 

seams to evaluate the amount of dissolution 

€ 

X = ds tan α( ) . 

 

zones respectively, and 

€ 

Mo  the mass of a representative elementary volume before deformation. 

Following the same mass balance approximation, the mass decrease of each soluble mineral in the 

dissolution areas is: 

  ,         (2) 

 and  being the percentage of each soluble mineral in the protected and in the exposed zones, 

respectively (Gratier et al., 2003). The volume change may also be calculated if the difference in 

density between the two parts of the rock is known (Gresens, 1967). Applications of such mass 

balance calculations can be seen for the various pressure solution markers. For an open system, the 

protected zone is the true initial (undeformed) zone (Eqs. 1&2). For a closed system, the dissolved 

mineral in the exposed zone may precipitate in the protected (Eqs 3&4). In such case: 

  ,      (3) 

 .     (4) 
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.The only limitation of such a method is to be sure that other mass transfer processes have not 

modified the mass balance. One can think of metamorphic or diagenetic processes that involve volume 

changes (dehydration or phase transformation). However, such processes may occur without changing 

the calculation if the associated mass transfer distance is smaller than the mean transfer distance 

associated with pressure solution. This must be verified carefully in the field (Wintsch et al., 1991). 

A geometric method used to determine the amount of dissolution of any localized dissolution seam 

(stylolites or spaced cleavage) involves the measurement of the apparent displacement of veins due to 

the dissolution. The principle is explained in Fig. 5c. The progressive dissolution leads to an apparent 

shift of the veins (ds). The dissolved width X is equal to the product of the measured shift (ds) by the 

tangent of the angle of the veins with the solution seam. It is often convenient to use conjugated veins 

in two directions in order to avoid confusion with a fault shift. 

 

 
Figure 6: The centre-to-centre technique to evaluate strain and volume change values from oolites 

deformed by pressure solution. The distance ds between couples of oolites is plotted against the angle 

α between a given direction and the segment between the centre of the two oolites, adapted from 

(Ramsay, 1967). 

 

Another very convenient method to quantify pressure solution mass transfer is to evaluate the way in 

which the centres of particles, for example oolites, have been displaced relative to each other 

(Ramsay, 1967). In Fig. 6, a section through an undeformed rock, with uniform spherical oolite 

distribution, is compared with a section that has been deformed by pressure solution of the oolites. A 

line is drawn joining the centres of any two adjacent circular oolite sections; the distance is measured 

and plotted versus the angle with a fixed azimuth of the thin section. In undeformed material, the 

points on the graph would scatter along a certain mean distance that depends on the size distribution of 

the oolites. When the material is deformed, the distance between the oolites is modified and the plot 

shows a distribution with a peak, which is proportional to the amount of longitudinal strain. From the 

graph of Fig. 6, the direction of maximum and minimum extension m can be determined and the ratio 
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between the principal strains (mX/mY = X/Y) is obtained by measuring the distances mX and mY. If the 

original size and distribution of the oolites are known, or if it is possible to restore the deformed shape 

of the oolites to their initial shape, the value of m can be determined and the two principal quadratic 

extensions calculated: . Fry (1979) proposed another centre-to-centre technique that gives 

directly the strain ellipse in favourable conditions. 

Finally, and from a more general point of view, any geometric method that allows mass or volume 

change to be evaluated may be used to estimate the amount of mass transfer by pressure solution – see 

(Ramsay, 1967) for a thorough presentation of most of the possible methods. Methods worthy of 

mention are the measurement of angle change of fossils (Fig. 7a), or the measurement of line length 

changes in stretched fossils and folded veins (Fig. 7b). An example is given in Fig. 7c of the use of 

angles changes in a shear zone (Ramsay, 1980b). It is then possible to plot the volume change as a 

function of the change in finite deformation value in a Flinn diagram modified by Ramsay and Wood 

(1974), see Fig. 7d. 

 
Figure 7: Various techniques for calculating strain and global volume change values by pressure 

solution from deformed rocks: (a) change in angle of fossils (ψ): mo, no & m1, n1 = initial and final 

length; (b) change in line lengths (ptygmatic fold and truncated belemnites) lo & l1 = initial and final 

length, Z & X = principal strain axes; (c) change in angle in shear zones (α, β), Δ & γ  = volume and 

shear values; (d) graphical plot of finite deformation (

€ 

ε1 = dl / l
l0

l1

∫ ) showing various paths of volume 

change from the top to bottom layers of Fig. 22. Adapted from (Ramsay, 1967; Ramsay and Wood, 

1974)Contrary to dissolution, precipitation is much easier to identify and quantify. 

Cathodoluminescence techniques, for example, have been used extensively to distinguish successive 

deposition phases (Marshall and Mariano, 1988; Milliken, 1994; Shimamoto et al., 1991). 

 

2.3 – Impressed pebbles and grains with associated veins 
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Impressed pebbles in limestone rocks were among the first markers of pressure solution ever 

described, for example by Sorby (1865) in the molasse conglomerates of the Alpine foreland. 

Limestone pebbles originating from the erosion of alpine relief were deposited in foreland basins and 

pressed together due to alpine tectonic stress (Fig. 1a). The process began several millions years ago 

and is still active. The impressed pebble presented in Fig. 1a was found outcropping in presently 

deforming Quaternary formations in the external French Alps mountain range. The same mechanism 

is described in other collision zones (Mosher, 1976). Pressure dissolution markers are observed at the 

surface of the limestone pebbles as pits of varying size, from a few millimetres to several centimetres, 

due to stress-enhanced dissolution on contact with another pebble. This shows that stress dissolution 

processes may occur at very shallow depth (less than one hundred metres deep). This indication of the 

pressure-temperature conditions for pressure solution development demonstrates that, at least for 

limestone, this process does not require a minimum temperature or confining pressure to develop. 

The same stress-driven dissolution process also occurs at the grain scale through the entire upper crust. 

When considering polycrystalline grains, it can be shown by chemical measurements that the 

depletion in soluble minerals leads to the passive concentration in relatively insoluble minerals. For 

example, in Fig. 8a, maps of chemical composition at grain contacts are displayed and show the 

distribution of elements on thin rock sections. Several Ca-Na-feldspar grains were dissolved against a 

quartz grain in the damaged zone of the San Andreas Fault at a depth of about 3km (samples collected 

from SAFOD borehole). Stress-driven dissolution is demonstrated here by the dissolution (depletion) 

of Ca and Na within the grain contacts along a pressure solution seam associated with horizontal 

contraction, whereas K, Mg, Fe, Ti (phyllosilicates, Fe and Ti oxides, sulphur) are passively 

concentrated (Fig. 8a). There is no evidence here of redeposition: fluid flow carried the soluble species 

away from the dissolution zone. The same mass transfer process around grains occurs at greater depth, 

for example (Fig. 8b) in metamorphic conditions at about 13 km depth (Elliott, 1973). Another 

example is the dissolution of oolites by pressure solution, allowing the strain value and possibly the 

volume change to be clearly quantified (Ramsay, 1967) (Fig. 6). 

 

2.3.1 Nature and volume of dissolved minerals 

The nature of minerals that can be dissolved under stress has been investigated by Heald (1955) and 

Trurnit (1968) who proposed a scale of mobility. However, great care must be taken with such a rule 

because the solubility of minerals under stress strongly depends on the thermodynamic conditions. For 

example, at 25°C the solubility in water decreases from halite to gypsum, calcite, feldspar and quartz. 

Conversely, at 300°C feldspar and quartz have a much higher solubility than calcite or dolomite and 

are therefore much more mobile under stress. The amount of dissolved species is determined using Eq. 

(1). 
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Figure 8: (a) Maps showing the constrasting behaviour of chemical elements in sandstones of the San 

Andreas creeping fault: either soluble (Al, Ca, Si, Na) or insoluble (passively concentrated, K, Fe, Ti) 

adapted from (Gratier et al., 2011); (b) Remnant of clastic grain dissolved by pressure solution with 

preserved boundary of dust rings, adapted from (Elliott, 1973); (c) dissolution of fracturated grains; 

(d) dissolution of a fractured pebble, adapted from (Mc Ewen, 1981). 

 

2.3.2 Effect of the fracturing of grains and pebbles 

Mc Ewen (1981) showed how the development of different types of fracture is related to the 

dissolution of pebbles, either localized along the contact or affecting a large volume of the pebble, 

depending on the mineralogy, the strength of the matrix and the amount of deformation suffered by the 

conglomerate. Evidence of the interaction between fracturing and grain dissolution is seen everywhere 

(Fig. 8) and may even be demonstrated experimentally (see Section 4). The role of fracturing is to 

open paths for diffusion and precipitation sites. In this case the mass transfer distance, that can be the 

limiting step for deformation (see Section 3), is the distance between the fractures since the diffusive 

flux through the fluid in open fractures is several orders of magnitude larger than along the trapped 

fluid phase. However, if the fractures are progressively sealed, this effect slowly disappears as sealing 
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increases the mass transfer distance and consequently reduces the displacement rate (Renard et al., 

2000b) and finally closes the open paths for fast diffusion. So another idea is that pressure solution, at 

least when activated by fracturing, is not necessarily a steady state process but more a cyclical process: 

fracturing activates the creep rate, fracture sealing progressively reduces this rate (Gratier et al., 1999). 

 

2.4 – Stylolites with associated veins 

Stylolites are rock-rock surfaces of localized dissolution that are well known since (Sorby, 1863) who 

rightly interpreted these structure as being linked to a stress-driven process, which was almost about 

the same time as the theoretical study by Gibbs (1877). Historical studies of stylolites are given in 

several papers such as (Bathurst, 1971; Dunnington, 1954; Kerrich, 1977; Park and Schot, 1968; 

Stockdale, 1922). Stylolites exhibit complex mutual column-and-socket interdigitation at millimetre to 

centimetre scale but they extend laterally for tens to hundreds of metres. They are often parallel to the 

bedding (Fig. 9a) and the stylolitization process during diagenesis of the sediments may considerably 

change the shape and reduce the thickness of a sedimentary body (Baron and Parnell, 2007; Bathurst, 

1971; Ehrenberg, 2006; Tada and Siever, 1989). They can also be linked to tectonic processes (Fig. 10 

a-c) and cut across bedding (Arthaud and Mattauer, 1969). Bedding-parallel stylolites can predate or 

postdate transverse stylolites that they intersect, illustrating that bedding-parallel stylolites can also be 

of tectonic origin (Andrews and Railsback, 1997) for example associated with folding processes that 

most often reinforce initial diagenetic stylolites or solution seams. Stylolite seams are often 

highlighted by a thin concentration of darker material, usually assumed to be insoluble material but at 

least in some cases shown to be authigenic (Merino et al., 1983; Thomas et al., 1993) or even post 

deformation mineralization (Gratier, 1979; Sinha-Roy, 2004). 

 

2.4.1 Nature and amount of dissolved minerals 

Stylolites occur most often in sets, in carbonates and other essentially soluble rocks including mainly 

calcite but also dolomites (Carrio-Schaffhauser et al., 1990; Ebner et al., 2009; Ebner et al., 2010b; 

Karcz and Scholz, 2003; Pennock et al., 2006), quartz (Heald, 1955; Wangen, 1998; Weibel and 

Keulen, 2008), feldspars (Thomas et al., 1993), gypsum and halite (Bauerle et al., 2000). Therefore, 

stylolites play an important role in compaction and in creep processes and therefore in the rheological 

properties of the upper crust (Dewers and Ortoleva, 1990). It is also often considered that the 

maximum length of the stylolite peaks gives an indication of the dissolved part. However, this is not a 

very accurate method since the passive concentration of insoluble species most often tends to smooth 

the dissolution surface and because the roughness of the surface can grow non-linearly with time 
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Figure 9: Various morphologies of stylolites: (a) contact between two different layers showing square 

patterns; (b) open stylolite surface in limestone; (c) dense arrays of stylolites with various spacings; 

(d) stylolite peak bounded by microfractures. 

 

(Schmittbuhl et al., 2004). Quantifying the nature and amount of the dissolved matter at stylolite level 

is much more reliable as it is based on the methods presented previously. For example, when using 

geometric markers (Figs. 5, 7), it can be shown that a dense network of stylolites in marble may be 

associated with a degree of shortening as high as 50% (Gratier, 1976). Other such high values up to 50 

to 60% have been evaluated in North Sea chalk and from the absence of visible veins (Safaricz and 

Davison, 2005) this dissolution was interpreted as being linked with a large amount of fluid in an open 

system. It should be noted, however, that veining in chalk may exist even if it is difficult to image, see 

Fig. 10b (Hellmann et al., 2002a). In most cases, veins associated with stylolites represent only a small 

part of the dissolved and redeposited volume. This is probably because stylolites, especially diagenetic 

stylolites, develop in relatively high-porosity rocks so that mass transfer away from the dissolution 

seams may be relatively easy either by diffusion in the free fluid of the pores or even by fluid 

advection. 

 

2.4.2 Relation between stylolite geometry and stress magnitude 

It is generally considered that the principal maximum compressive stress is parallel to the stylolite 

peaks (Koehn et al., 2007). However, this can only be true in the case of co-axial deformation. 

Actually, natural observation of stylolite peaks indicates the incremental displacement of the two 

serrated blocks. It can be seen in Nature that there is a continuous transition between (i) stylolite 

surfaces orthogonal to the displacement direction; (ii) slickolite surfaces orthogonal to the 

displacement direction; and (iii) solution striations parallel to displacement (Simon, 2007). The 
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Figure 10: Interaction between fractures and stylolites: (a) stylolites (S) and fractures (T) in granite 

in the damaged zone of the San Andreas Fault, adapted from (Renard et al., 2000b); (b) sealed 

fractures in a chalk core sample revealed by X-ray computed tomography, adapted from (Hellmann et 

al., 2002a); (c) various geometries of mass transfer from stylolite (S) to veins (C) allowing flattening, 

rotating, or shearing deformation and more generally accommodating folding processes as in the 

Vercors - Chartreuse massifs (see also Fig. 1). 

 

relation between stylolite geometry and stress orientation is easier to visualise in laboratory 

experiments with the transition between stylolite and slickolite surfaces (Gratier et al., 2005), where 

all the peaks are parallel to the imposed maximum compressive stress in a co-axial regime (Fig. 11a). 

However, this experiment also shows that solution striations may develop obliquely to the maximum 

compressive stress in the same regime in case of grain rotation (Fig. 11b). 

It even seems possible to evaluate the paleo-stress value associated with stylolites from a roughness 

statistical analysis (Fig. 12a-b). Analysis of stylolite roughness shows that these structures have a 

fractal morphology over 4 - 5 orders of magnitude in spatial bandwidth, with an average fractal 

dimension D (obtained by spectral and scaled windowed variance analyses) clustering at 1.5 (Karcz 

and Scholz, 2003), 1.3 (Drummond and Sexton, 1998) or 1-1.3 (Hassan et al., 2002). High resolution 

measurements at laboratory scale (Renard et al., 2004b; Schmittbuhl et al., 2004) showed an even 

more complex roughness (Fig. 12c). Stylolite topography was shown by these authors to be described 

by two self-affine scaling invariance regimes. They used the Hurst exponent (H), which is linked to 

the fractal dimension (D) as . At large length, the Hurst exponent is equal to 0.5 and very 

different from its value at small length, which is close to 1. A crossover length scale at around 1 mm  
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Figure 11: Experimental micro-stylolites on quartz grains: (a) microstylolites (Sty) and slickolites 

(Sli) with peaks and spikes parallel to the maximum compressive stress; (b) microstylolites changing 

to solution striation (Slik) due to grain rotation; (c) microstylolite peaks in quartz; (d) evidence of 

dissolution pits developed in front of each microstylolite peak, see also Fig. 30g; adapted from 

(Gratier et al., 2005). 

 

(Lc on Fig. 12c) is well characterized and depends on the stress magnitude (Schmittbuhl et al., 2004). 

These measurements are consistent with a stochastic differential equation model that describes the 

growth of a stylolite surface as a competition between stabilizing long-range elastic interactions at 

large scales or local surface tension effects at small scales and a destabilizing quenched material 

disorder due to the presence of heterogeneities in the rock. Consequently, (Renard et al., 2004b; 

Schmittbuhl et al., 2004) proposed a model postulating that the complex interface morphology is the 

result of competition between the long-range elastic redistribution of local stress fluctuations, which 

roughen the surface, and surface tension forces along the interface, which smooth it. This model was 

also applied, using discrete element modelling, to show how the roughness of the stylolites could be 

related to the amount of heterogeneities in the rock and the state of stress (Ebner et al., 2009; Koehn et 

al., 2007). Experimental stylolites show that, at small scale, the quenched material disorder could be 

the presence of dislocations, see Fig. 11d (Gratier et al., 2005). The model also predicts the 

dependence of the crossover length scale on the mechanical behaviour of the rock. According to this 

idea, the stylolite morphology contains a signature of the stress field during formation and could thus 
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Figure 12: Analysis of stylolite roughness: (a) open stylolite surface in a limestone from the Vercors 

mountains, France; (b) cross-section of stylolites showing roughness at all scales, adapted from 

(Renard et al., 2004b); (c) average wavelet spectral decomposition of stylolite roughness showing two 

fractal regimes and a crossover length scale Lc. The data for 4 stylolites (S12A, S12B, S15A, SJura) 

are represented, adapted from (Schmittbuhl et al., 2004). 

 

be used as a paleo-stress gauge of deformation processes in the upper crust (Ebner et al., 2010a; Ebner 

et al., 2010b). This is a crucial parameter of creep laws. Alternatively, it has also been suggested that 

the roughening could emerge from stress induced instability (Bonnetier et al., 2009). 

A statistical method based on a non-stationary Gaussian model, to estimate the roughness of the 

profiles and quantify the heterogeneity of stylolites, could also lead to classification of the stylolites in 

two families: those for which the morphology is homogeneous everywhere, and those with alternating 

regular and irregular portions (Brouste et al., 2007). 

 

2.4.3 Effect of fracturing on stylolite dissolution 

This effect is observed especially for tectonic stylolites that occur in low porosity rocks where 
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fractures may guide the inter-digitation boundary (Fig. 9d). Stylolites associated with intense 

fracturing were found in damaged zones of active faults (Labaume et al., 2004). An example is given 

from the San Andreas damaged zone (Fig. 10a), (Gratier et al., 2003). In this case, as already 

discussed for impressed pebbles and grains, the mass transfer distance along the stylolite seams (d), 

which appears in creep laws, is the distance between the fractures. This is because there is a large 

difference in the possible flux of matter (product of diffusion coefficient by thickness of the diffusive 

path) between the part that is under maximum compressive stress (the dissolution seams), which is 

very thin (just a few nanometres), and the part that is in the free fluid of the fracture, several microns 

wide. Note that the complexity of the stylolite roughness renders the evaluation of this distance rather 

difficult. In terms of geometry the behaviour of the pressure solution deposition process can be 

summarized as in Fig. 10c where it is shown that pressure solution may accommodate any finite 

deformation: flattening, rotating or shearing by changing the shape of small elements by dissolution or 

precipitation at their boundaries. 

 

2.4.4 Role of clays and phyllosilicates 

Another intriguing feature of stylolites not commonly integrated in the creep law is the catalytic role 

of clay or phyllosilicates (Heald, 1955; Meyer et al., 2006; Renard et al., 1997). From experiments 

using an atomic force microscope (Greene et al., 2009; Meyer et al., 2006) proposed new feedback 

that couples clays and pressure-solution and localizing dissolution along a flat interface (Aharonov 

and Katsman, 2009). This is discussed in more details in Section 3 & 4. 

 

2.4.5 Model of stylolite development 

Finally, many studies have tried to model the development of dissolution interfaces either by means of 

a kinematic approach (Guzzetta, 1984) or a quasi-static mechanical approach, stylolites being viewed 

as ‘‘anticracks’’ (Fletcher and Pollard, 1981). The idea is that a solution seam, considered as weak 

material due to passive clay concentration, propagates in its own plane along the direction of 

maximum mean compressive stress (see spaced solution cleavage below). Complementary models 

show that mode 1 veins, normal to stylolites with large width-to-length ratio, may be induced by self-

similar dissolution (Katsman, 2010). 

 

2.5 - Spaced solution cleavage with associated veins 
Similarly to stylolites, spaced solution cleavages are surfaces of localized dissolution the only 

difference is that they are almost flat instead of being rough. The reason for the difference may be 

related to the composition and structure of the rocks (Railsback, 1993). Contrarily to stylolites that 

develop mainly in heterogeneous granular rocks, solution cleavages develop in homogeneous 
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Figure 13: (a) Solution cleavage patterns showing change from competent to incompetent layer; (b) 

& (c) change from stylolite to solution cleavage within fold; (d) various solution cleavage spacings 

and various behaviours of rigid objects with or without precipitation in pressure shadow; (e) solution 

cleavage and associated veins. The samples are marls and limestones from the sedimentary cover of 

the Belledonne and Pelvoux massifs (Fig. 1). 

 

polymineralic fine-grained rocks (Hobbs et al., 1976; Nicolas and Poirier, 1976; Ramsay, 1967; 

Siddans, 1972; Wood, 1974). This induces several differences: (i) fractures perpendicular to stylolites 

that often bound the stylolite peaks in limestones, do not develop so easily in marls; (ii) 

heterogeneities (initial or induced by the deformation as local porosity changes) are larger in 

limestones or in other monomineralic aggregates than in marls; (iii) when the insoluble mineral 

content is high enough, their passive concentration in the solution seams acts as a “smoothing” process 

as deformation increases. Moreover, lateral development from stylolites to solution seams can be seen 

depending on heterogeneity and progressive finite deformation (Fig.13a - b) so there is no gap 

between the two types of structure but rather a continuous change. Another important feature is that 

spaced cleavages and stylolites do not need any minimum depth to develop. They can develop very 

near the surface (less than 1 km) as soon as sediments are sufficiently consolidated. So, the old idea of 

a “cleavage front” at depth must be discarded. 

 

2.5.1 Model of solution seam development 

Fig. 14 displays how the development of solution seams is induced by heterogeneities in the rock. The 

distribution of various elements is shown around a piece of fossil of about 1mm size, parallel to the 

stratification. A solution cleavage seam is marked by the zone of high content of elements such as Al, 

Fe and K belonging to insoluble minerals (such as illite, and chlorite minerals), associated with a 

depletion of other elements such as Ca and Si belonging to soluble minerals (such as calcite and 

quartz). The maximum compressive stress is parallel to the stratification. The piece of fossil acts as a 

rigid object despite its 100% calcite content. This illustrates the observation, already mentioned for 



 24 

 
Figure 14: (a) Concentration of various chemical elements around a rigid object (piece of fossil 100% 

Ca), marls in the sedimentary cover of the Belledonne massif, adapted from (Gratier, 1987); (b) model 

of solution seam propagation: step 1) local dissolution induced in the maximum stress zone near the 

rigid object; step 2-3) propagation of the solution seams away from the rigid object due to stress 

concentration at the tip, adapted from (Cosgrove, 1976). 

 

stylolites, that the presence of clays or phyllosilicates activates the dissolution rate of the rocks and a 

polymineralic matrix dissolves more easily than a monomineralic element such as fossils (Fig. 14). 

Here, the zone of maximum dissolution is localized in the sector of the matrix subjected to the 

maximum compressive stress. However, the parenthesis shape of the curve of equal insoluble content, 

with a very narrow seam extending far away from the rigid indenter, does not fit the shape of the stress 

distribution near a rigid object, which is theoretically about the size of this indenter (Fig. 14b, step 1 

(Stromgard, 1973)). Pressure solution initiates in the maximum stress zone but the propagation of the 

solution seams perpendicularly to the maximum compressive stress and away from the indenter has to 

be explained (Fig. 14b, steps 2-3). The most common explanation is to consider that the removal of 

soluble minerals constituting the skeleton of the rock disorganizes the rock and leads to a passive 
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Figure 15: Crossing of successive cleavage planes: S1 was the first generation of cleavage planes, 

followed by a second generation S2, schist from the sedimentary cover of the Pelvoux massif (Fig. 1). 

 

concentration of clays and phyllosilicates. Consequently, the dissolution zone becomes relatively less 

rigid than the initial rock. By comparison with the theoretical distribution of the stress values in a 

viscous matrix around an elliptical soft inclusion (Cosgrove, 1976), two zones of maximum 

compressive stress appear in the matrix near the tip of the inclusion (Fig. 14b, step 2). Consequently, 

the dissolution is concentrated in these two zones with progressive propagation of the dissolution zone 

in its own plane. Fletcher and Pollard (1981) used the term “anti-crack propagation” to describe the 

development of such solution seams perpendicular to the maximum compressive stress. It must be 

noted that, in this case, the driving force is the difference in mean normal stresses between the stress 

concentration zone and the deposition site. Observations of Carrio-Schaffhauser et al. (1990) revealing 

high porosity within the dissolution seam propagation zone suggest that it could be associated with 

high fluid pressure. 

 

2.5.2 Relation between spaced solution cleavage and stress magnitude 

Most of the time solution cleavage is considered to be oriented perpendicular to the maximum 

compressive stress. However, as already mentioned for stylolites, surface dissolution may develop on 

surfaces oblique to the maximum compressive stress direction. This can especially occur when the 

dissolution zone develops on preexisting surfaces (bedding, cleavage, faults) that are oblique to the 

maximum compressive stress. This is also attested by the observation that when two solution 

cleavages cross each other at various angles in heterogeneous deformation, there is a minimum value 

for the angle of crossing, for example 30° in the Bourg d’Oisans massif (Gratier and Vialon, 1980), 

Fig. 15. This means that during the development of a second cleavage the dissolution has locally 

continued on the first one without any slip along this plane. An approximate value of the differential 



 26 

stress during pressure solution can thus be evaluated: mechanical experiments on the rocks studied 

(anisotropic slates) show that a low differential stress value of about 10-25 MPa is required to avoid 

slipping on the cleavage when the angle between the normal to the cleavage plane and the maximum 

compressive stress varies from 0 to 30°. 

 

2.5.3 Spacing of solution cleavage 

This is another crucial parameter of the creep laws as it imposes the geometry of the dissolution 

surface. Natural examples show that the heterogeneity of the rocks imposes the initial location of the 

dissolution zone at all scales (Fig. 13). Note, for example, that the spacing between solution cleavage 

decreases from competent to incompetent layer (Fig. 13a,e). Heterogeneity could be due to 

sedimentary or tectonic processes. The effect of fossils (Fig. 14) or veins (Fig. 16) acting as a rigid 

indenter has already been mentioned. Also worthy of note is the possible effect of folding with 

preferential dissolution along or within the limb of the fold leading to crenulation cleavage with 

spacing related to the wavelength of the fold (Fig. 16d). The mean grain size of the rock can also 

impose the cleavage spacing, for example in sandstones (Fig. 17a & b) or in granite (Fig. 1a). 

However, the problem is even more complex since the dissolution/ precipitation process itself is a 

layering process (Fig. 14). It has already been seen that a dissolution zone becomes weaker than the 

initial rock thereby helping cleavage propagation and amplifying the effect of initial heterogeneity. A 

more complex effect is the precipitation that can strengthen part of the system. This is well illustrated 

by the development of a bamboo-like structure (Fig. 16c) (Gratier and Vialon, 1980) where, during a 

boudinage process, the boudins become progressively thinner than the interboudin sealed fractures. It 

is the same for deposition sites in the pyrite pressure shadow that are finally wider than the pyrite in 

rotational deformation (Fig. 16b). The reason is that, when pressure solution is the deformation 

mechanism, it is easier to dissolve a polycrystalline rock that contains both soluble and insoluble 

species (the boudin) than to dissolve a monomineralic rock composed of only one soluble species (the 

interboudin sealed fractures). An explanation is that the diffusion at the contact between soluble and 

insoluble minerals (such as phyllosilicates) is much faster than the diffusion at the contact between 

two soluble minerals. This is probably due to a more efficient healing process of the grain boundary of 

the same minerals. This effect is also demonstrated in laboratory experiments (Hickman and Evans, 

1991; van Noort et al., 2007; Zubtsov et al., 2004). So, in natural processes, the process of fracture 

sealing strengthens the rocks, which become harder than before the fracturing process (at least when 

pressure solution is the main mechanism of deformation) (Gratier, 2011a). This has important 

consequences if precipitation occurs near the dissolution seams because it will consolidate the 

immediate environment of the dissolution seams and strengthen a layer that will become more difficult 

to dissolve. This also commonly happens near stylolites. Starting from a spacing imposed by the initial 
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Figure 16: Relationship between solution cleavage spacing and heterogeneity: (a) dissolution 

parenthesis around a vein; (b) mineral fibre growth in a pressure shadow and schematic evolution; (c) 

bamboo-like structure showing how deposited minerals in interboudins become more rigid than the 

boudin itself; (d) effect of initial heterogeneity on solution spacing; (e) effect of induced heterogeneity 

linked to redeposition near the solution seams on solution spacing, adapted from (Gratier, 1987). 

 

heterogeneity, a new spacing (Fig. 16e) may develop, imposed by the thickness of the zone that has 

been consolidated by deposition. This new spacing is either smaller or larger than the initial one, 

depending on the efficiency of the diffusion – precipitation process away from the dissolution seams. 

Consequently, when applying a differential stress (with  representing the maximum compressive 

stress) on any initial state: (i) layers perpendicular to  (Fig. 14), (ii) scattered heterogeneities (Fig. 

16b) or (iii) layers parallel to  (diagenetic stylolites, Fig. 9), the process of pressure solution 

deposition naturally leads to the development of a new tectonic layering perpendicular to the 

compressive stress. The path of the transformation and the final composition and size of the tectonic 

layers depends both on the deformation conditions: possibilities of mass transfer, nature of the 

solid/fluid phase, state of stress, temperature, and pressure) and on the initial or induced 

heterogeneities. 

 

2.5.4 Nature and amount of dissolved minerals 

Solution cleavage may or may not be associated with veins, depending on the possibility of mass 

transfer away from the solution seams. Consider for example a sample collected in the San Andreas 

Fault creeping zone from a drill hole (SAFOD facility): calcite, quartz and feldspars are depleted in 

the solution seams where chlorites and iron oxides are passively concentrated (Fig. 17). This leads to a 

foliation lying at low angle to the active creeping zone. Calcite minerals fill a network of vein 

fractures that are perpendicular to the solution seams and indicate extension parallel to the foliation. 

Finite deformation can be calculated from mineral distribution. Three zones are distinguished 
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Figure 17: (a) Distribution map of mineral concentration in a sample from the San Andreas Fault 

creeping zone; (b) comparison of the mineral composition between initial, dissolution and 

redeposition sites; (c) restoration of the deformed area to its initial undeformed state, adapted from 

(Gratier et al., 2011); (d) mass balance of diffusive transfer from solution seams to tension gashes 

showing a system closed at centimetre scale (same composition of all the parallel strips), and 

schematic geometric model below, adapted from (Gratier and Gamond, 1990). 

 

according to their mineral content: “dissolution” (with passively concentrated chlorites and iron 

oxides), “deposition” (with precipitated calcite and sometime titanium oxides) and “initial” zones (pre-

deformation zone of quartz, feldspars, chlorites, etc.). Veins open and seal progressively 

(Mittempergher et al., 2011) and minerals from both initial (quartz and feldspar) and deposition 

(calcite) zones are dissolved during the pressure solution process (Fig. 17b). Minimum and maximum 

mass transfer amounts are obtained when comparing either initial and dissolution zones, or both initial 

and deposition zones with dissolution zones. The two calculations give roughly the same amount of 

relative mass decrease for the dissolution zones (-88% to -90%). By taking into account the areas of 

these dissolution zones, the mean value of contraction perpendicular to the foliation can be calculated, 

which is about -60%. The mean extension perpendicular to the veins is evaluated from the ratio of 

deposition to initial areas and is about +50% (Fig. 17). Mineral segregation appears to be linked to 

pressure solution creep with an almost total disappearance of soluble minerals (quartz, K-feldspars, 

Ca-Na-feldspars and calcite) in the dissolution zones. Mass conservation calculations comparing the 

amounts of dissolved Ca-Na-feldspars and deposited minerals in veins show that a large part of calcite 

and titanium must come from outside the studied area, brought by episodic fluid flow. Therefore, the 

system is open in terms of the area studied. 

Parentheses of dissolution may develop at scales much larger than the grain size (Fig. 16a), and the 

same mass transfer scheme is observed. For example, in the Bourg d’Oisans basin (France) affected by 

large deformation by solution cleavage, a local volume loss of -71% is shown in parenthesis shaped 

solution seams around a 10 cm wide belemnite fossil and the decrease in soluble species is very high: -

90% (quartz), -93% (calcite), -82% (dolomite). This means that, at all scales, almost all the soluble 
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species can be removed from the dissolution zone (Richard, 2009). The question is then about the 

location of the deposition site associated with this mass transfer. It is sometimes possible to see 

deposition in a pressure shadow area (Fig. 16b). However, it is not a general case as, at the same place, 

rigid objects with or without deposition can also be found in the nearby pressure shadow areas (Fig. 

13d). In this case, the efficiency of deposition depends on the possibility of opening the interface 

between the rigid object and the matrix. 

 

2.5.5 Size of the closed system 

It is sometimes possible to evaluate the size of the closed system. An example is given in Fig. 17d 

where shear deformation near a fault is accommodated by mass transfer from solution cleavage seams 

to tension gashes. Chemical analyses of strips of sandstone collected parallel to the shear zone were 

compared with the mineral composition of a reference zone away from the shear zone (strip 1). Using 

Eq. (1), the mass transfer is calculated and it is shown that no significant mass transfer occurs between 

the strips. So the maximum size of the closed system is here of the order of magnitude of the width of 

the strips. Filling of the tension gashes by quartz and calcite compensates almost completely for the 

dissolution of the same mineral along the solution seams. Such a closed system is confirmed by the 

geometric analysis of the angles between cleavage planes, veins, and the shear zone (see Fig. 7). A 

schematic model is given for such behaviour (Fig. 17d). In reality, the spacing of the solution 

cleavage, which is here of the order of magnitude of the grain size, is always smaller than the spacing 

of the tension gashes. 

It should be noted that the size of the closed system may be kilometric when fluid flow is involved. 

For instance, in (Gratier and Gamond, 1990) an example is given of kilometre-length mass transfer 

between a compression bridge (with dissolution) and an extensive bridge (with precipitation) along 

segmented faults. 

 

2.5.6 Mass transfer in chevron folds 

Finally, another way of establishing quantitative relations between the amount of pressure solution and 

finite deformation is to analyze the chemical changes associated with solution cleavage in folds. One 

of the main problems in estimating the amount of mass transfer is to identify the insoluble species 

(Grant, 2005). The variation in ratio of element content in a hinge and limb pair versus the angle 

between hinge and limb can be plotted in order to visualize the behaviour of the various elements as a 

function of the increase in deformation values (Fig. 18). It is possible to distinguish the elements that 

remain insoluble during such an increase in deformation (the ratio remains constant) and the other 

elements for which this ratio varies, indicating a mobility that could possibly fluctuate with the 

increasing finite deformation. This can be applied to other types of deformation such as shear zones or  
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Figure 18: Mass transfer in a folded marl sample (sedimentary cover of the Belledonne massif): (a) 

variation in the ratio of concentration of each element in the hinge (Xp) and the limb (Xe) versus the 

angle between these two zones (normalized to Al concentrations), so as to separate soluble and 

insoluble species; (b) plot of the variation in mass transfer in a volume change versus hinge/limb 

angle diagram with line of constant limb length change (bold line), adapted from (Gratier, 1983); (c) 

variation in the amount of dissolution of quartz and calcite versus temperature and depth in the 

sedimentary cover of the Alps.  

 

any other heterogeneous deformation that associates protected and deformed zones with a finite 

deformation marker. Once these soluble and insoluble species are identified for the entire finite 

deformation, the relationship between volume change and finite deformation can be investigated. In 

this case, a simple diagram is used to compare this behaviour (Fig. 18). For example, chemical 

analyses were carried out on several limb-hinge pairs of straight-limbed folds of the same layer and, 

where possible, with various limb-hinge angles (Fig. 18). All the samples were taken from the 

Mesozoic cover of the external Alps (Gratier and Vialon, 1980). A crenulation cleavage parallel to the 

hinge-limb boundary may be seen in all these folds. In all cases, the hinge is taken as reference (as 

protected zone). Equation 1 is applied to calculate the relative volume change between hinge and limb. 

Assuming an open system where no deposition is seen at any place, the relationships between the 

elongation along the hinge, the angle between hinge and limb, and the volume change may be 

established in a diagram in order to follow the variation in these parameters with increasing 

deformation (increasing limb/hinge angle). The effect of shortening parallel to the hinge may be seen 

for low values of the angle 

€ 

α  between hinge and limb. Few fold pairs show low or even no volume 

change. This does not mean that pressure solution is not active but it could simply be because mass 

transfer occurs at a lower distance than the fold wavelength. As the limb rotates, the extension is seen 

to be parallel to the limb and dissolution becomes partitioned between the crenulation cleavage and the 

stratification interface. The deformation path expresses the way pressure solution creep accommodates 

at least part of the folding process. The comparative behaviour of calcite and quartz, deduced from the 

study of various hinge and limb pairs with the same angle (40°), can be seen in Fig. 18c. It appears  
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Figure 19: Geometric model of spaced solution cleavage: (a) diffusive mass transfer around each 

rigid element and precipitation in pervasive vein networks; (b) diffusive mass transfer through the 

element with dense array of dissolution seams and localization of precipitation in a single vein. 

 

that calcite is more mobile than quartz at low temperature and less mobile at high temperature. This is 

due to the opposing variation in calcite and quartz solubility with temperature as solubility is a key 

parameter of the creep laws (see Section 3). It should be noted, however, that calcite mobility does not 

decrease with temperature, unlike its solubility. This is because other kinetic parameters of the creep 

laws (reaction rate or diffusion rate) remain activated by the temperature, which counteracts the 

change in solubility. 

 

2.5.7 Modelling of spaced solution cleavage in creep laws 

Two types of geometry (Fig. 19) summarize the observations of solution cleavage associated with 

veins when considering a difference in the path of diffusive mass transfer. Dissolution and deposition 

may occur around a rigid object, such as a grain or a rock fragment composed of several grains (Fig. 

19a). In this case, mass transfer occurs by diffusion around the rigid element. Taking into account the 

presence of fluid that is a specific feature of pressure solution, the geometry of the mass transfer path 

is analogous to the Coble creep mechanism (Coble, 1963) where mass transport occurs at the grain 
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boundaries. In this case, the strain rate of pressure solution is inversely proportional to the cube of the 

mass transfer distance along the trapped fluid phase (d) when diffusion is rate-controlling (see Section 

3). 

Alternatively, dense arrays of solution cleavage may feed veins that are much larger than the spacing 

between the grains. In this case, dissolution occurs in the whole volume of the element (Fig. 19b). 

Always taking into account the presence of fluid, the geometry of the mass transfer path is in this case 

analogous to the Nabarro-Herring creep mechanism (Herring, 1950; Nabarro, 1948). The strain rate of 

pressure solution is then inversely proportional to the square of the mass transfer distance (d) along the 

trapped fluid phase when diffusion is rate-controlling. It should be noted that, in all the cases, the size 

of the closed system (where the volume of the dissolved minerals equals the volume of the deposited 

minerals) is not necessarily the size of the element. For example if diffusion is rate-limiting, it is only 

the path along the trapped fluid phase that has to be taken into account as the distance d in the creep 

laws since it is the slowest part of the path. Diffusion in open space or infiltration may evacuate the 

soluble species. 

 

2.6 - Aseismic sliding along a fault by pressure solution 

Competition and interaction between cataclastic and pressure solution creep deformation is well 

illustrated by considering the mechanisms of development of lineations in faults. Two different types 

of striations and corrugations need to be distinguished. One type has a mechanical origin, comparable 

to mechanical wear (Goguel, 1948), which may be associated with friction during slip. This type of 

striation is well known on natural fault surfaces that moved during earthquakes or in stable friction 

mode (Engelder, 1974). Other type of “striation“, which is also very common on naturally formed 

faults (Durney and Ramsay, 1973; Means, 1987) consists of crystal fibres (Fig. 20a). The development 

of such fibres may be explained as follows (Gratier and Gamond, 1990). If two rock parts are 

separated by an irregular fault surface, a slow displacement of one part of the rock may be 

accommodated by the dissolution of the asperities that prevent the displacement. At the same time, 

deposition may occur in the cavities created by the displacement along the fault. The redeposited 

material is derived by pressure solution from the rock matrix, the crystals growing within these 

cavities sometimes have a typical fabric (fibre minerals), first described by Ramsay (1980a) and 

explained as linked to a succession of microcrack openings followed by their immediate sealing 

(crack-seal process). The mean width of each crack opening is commonly about 10 to 50 micrometres 

and, as each crack is limited to one or two crystals, several thousand crack-events would be required to 

achieve a displacement of 1 cm. Note that the same mechanism of aseismic sliding by pressure 

solution is also very commonly observed accommodating layer-parallel sliding in folding process 

(Ramsay, 1967). 
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Figure 20: Pressure solution as mechanism of aseismic sliding on a fault: (a) crystallization of calcite 

fibres in open spaces along a fault in a limestone from the Chartreuse Mountains (Fig. 1); (b) cross-

sectional view of the various arrangements of dissolution precipitation patterns along a fault with 

either only precipitation (top), both dissolution and precipitation (middle) and only dissolution 

(bottom); (c) transition between aseismic sliding (top, crack seal) and seismic sliding (bottom, open 

void with euhedral crystals); (d) measured length of asperities along a fault (F) versus fibre length (A 

= displacement), adapted from (Gratier and Gamond, 1990). 

 

2.6.1 Brittle and creep deformation in fault zones 

Another feature that shows the interaction with brittle deformation is the observation whereby, in 

some cases, the fibres are kinked or broken and cut by cataclastic scratching faults with perfect 

polishing. This demonstrates that, on the same fault, brittle deformation may be associated with 

pressure solution creep. Evidence may even be found of voids opening in the redeposited material 

linked to large displacement on the fault and filled by euhedral crystals that indicate growth in free 

fluid (Fig. 20c). This attests to possible successive periods of brittle (fast) and creep (slow) events on 

the fault. An explanation is that the creep process could relax the stress only if the loading rate is not 

too high. When pressure solution cannot accommodate the imposed loading rate, the stress increases 

and a brittle rupture may nucleate. Since evidence can be found of fracturing events over more than 

ten orders of magnitude (from micrometre fibre rupture to the breaking of all the asperities at the pluri-

kilometric scale), it is not easy to define a boundary between brittle and creep processes. It may simply 

be considered that if an event breaks several asperities, it is a cataclastic event for the fault. On the 

contrary, if an event only occurs at fibre (microns) scale within an asperity without significant 

associated displacement on the fault, this must be considered as linked to the pressure solution 

creeping process. Of course, some of these microcracks may be induced by regional seismicity but the 

brittle/creep transition must be defined for a given fault. 

 

2.6.2 Nature and amount of dissolved minerals 

Volume transfer balance along faults may be discussed through a simple geometrical plane-strain 



 34 

model with the volume dissolved along the dissolved part of the asperity being balanced by the 

volume redeposited in the gaps opened by sliding on the fault. On a section perpendicular to the fault 

surface, the change in area depends on the geometry of the asperity and on the angle between the 

displacement (indicated by the fibres, noted A in Fig. 20d) and the mean plane of the fault (F). All 

mechanisms are possible, between sliding with only deposition, with only dissolution or in a closed 

system (Fig. 20b). These values can be determined from measurements on natural faults, for example 

using a shape tracer (Fig. 20d). On various examples in limestone in the external Alps, the length of 

the asperities (A) is seen to vary from 5 to 30 cm, as the length of the fibres (F) varies from 1.5 to 20 

cm. The F/A ratio, which expresses the portion of the asperity dissolved during aseismic slip, depends 

on the geological context and ranges here from 0.3 to 0.5 with extreme values of 0.25 to 0.7. The 

spacing between the asperities is more difficult to estimate, but is most often of the same order of 

magnitude as the size of the asperities. The angle between dissolution surface and mean displacement 

on the fault remains low, with a narrow range (from 5° to 15°). Conversely, the angle between the 

deposition surface and the fault varies more widely from 30° to 80°. Note also that the lengths of the 

fibres along each fault surface are not necessarily constant due to various effects: in case of fault 

segmentation, cavities may develop within the bridge while others are already opened in the fault 

segments, some asperities may break during sliding, and a decrease in displacement along the fault 

often appears near the end of the fault associated with heterogeneous volume change around the fault. 

All the minerals that are dissolved in the other pressure solution markers can be dissolved along the 

fault in order to accommodate aseismic creep sliding. 

 

2.6.3 Seismic to aseismic sliding along faults 

The geometries of the fault displayed in Fig. 20b-d may be used to model aseismic creep sliding, with 

mass transfer from the part of the asperity that opposes the displacement to the part that opens during 

this displacement. Mass transfer can occur either along the fault contact or through the rocks, as 

shown in Fig. 17d. However, as the length of the asperities decreases with the progressive 

displacement, aseismic sliding is most often a transitory process since the strength of the asperities 

progressively decreases with decrease in asperity length. It is likely that, at one time during the sliding 

process, the energy required to break the remnant of the asperity becomes lower than the energy 

needed to promote pressure solution (Gratier and Gamond, 1990) and this may explain the shifting 

from one mechanism to the other. This is seen in nature (Fig. 20c) where it seems likely that seismic 

sliding can recreate asperities that are dissolved and so on. 
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Figure 21: (a, b, c) slaty cleavage in the sedimentary cover of the Pelvoux massif (Fig. 1); (d) 

ptygmatic fold in slaty cleavage, adapted image from (Ramsay and Huber, 1987). 

 

2.7 - Slaty cleavage with associated veins 

Slaty cleavage is a type of foliation that expresses the tendency of a rock to split along parallel planes 

(Hobbs et al., 1976; Nicolas and Poirier, 1976; Ramsay, 1967; Siddans, 1972; Wood, 1974). It results 

from the parallel orientation of phyllosilicate minerals. It is most often associated with large finite 

deformation values. This finite deformation may be evaluated using, for example, both fossil 

deformation, such as truncated belemnite fossils, and ptygmatic folds (see Fig. 1a & 7b). Shortening 

values ( ) commonly range from 0.5 to 0.25 (Fig. 21), with associated values of the extension 

ranging from 2 to 4 depending on the volume change at the deca-kilometre scale of a massif. When the 

rock contains a certain amount of soluble minerals such as quartz, feldspar or calcite, the reorientation 

of the phyllosilicates requires ductile deformation of these other minerals. As shown in the diagram of 

the variation in deformation mechanism through the entire upper crust, three types of mechanism are 
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possible (Fig. 1b): cataclasis is the first but most of the time is not seen as the main mechanism of 

deformation in slates. Dislocation glide is another possibility, which is relatively easy to identify 

because it leads to a preferred orientation of the minerals. This mechanism is highly sensitive to 

temperature and does not develop at less than 400°C. Finally, pressure solution is the third mechanism 

that is the more likely to occur through the upper crust. In this case, the dissolution of soluble minerals 

leaves enough space for the passive concentration and rotation of the insoluble minerals such as 

phyllosilicates. It has been argued that preferred orientation of phyllosilicates developed by 

crystallization under stress may contribute to the development of slaty cleavage (Kamb, 1959). It may 

be a complementary process that occurs along passively rotated phyllosilicates, but it cannot explain 

the large deformation values associated with slaty cleavages. The transition from spaced solution 

cleavage to slaty solution cleavage occurs by a change in the spacing between solution seams that 

decreases ultimately toward the grain size. Slaty solution cleavage is not easy to identify directly as 

mass transfer occurs at the grain scale. In this case, as already mentioned, the dissolution of pure 

monomineralic grains leaves no evidence. The way to reveal pressure solution in this case is to study 

heterogeneously deformed areas such as indented, boudinaged, sheared or folded structures that could 

reveal the stress-driven chemical differentiation (Fig. 21-22). 

 

2.7.1 Nature and amount of dissolved minerals 

Fig. 22 presents an example derived from chemical analyses of samples cored within two slate layers 

adjacent to a folded competent layer (quartz and calcite) (Gratier, 1983). One of the layers is located 

just above the competent ptygmatic layer and, for this layer, the sample located near the ptygmatic 

fold extrados is considered as a (relatively) protected zone as it is the zone of minimum deformation. 

The other layer above is horizontal. The insoluble species are determined by plotting the ratio between 

protected and exposed zone versus the deformation value represented here by the increase in the layer 

dip (Fig. 18a): Fe, Ti, Al and K are insoluble while Ca, Mg, Si are mobile. The relative change in 

mineral composition may thus be evaluated (Fig. 22b) as the volume change (Fig. 22c) since densities 

have been measured to be constant. Of course, this volume change is at the scale of the samples. 

Measuring no chemical change along the horizontal layer does not mean that pressure solution does 

not occur. It just means that the size of the closed system is smaller than the size of the samples (close 

to 5 cm in the present case). Relative volume change is calculated according to Eq. (1) and displayed 

on Fig. 22c. A map view of the volume change is presented in Fig. 22d. As it stands however, it is 

difficult to say whether these values are relevant. To overcome this difficulty, the compatibility of 

these values can be tested by restoring the deformed area. This can be done using the technique 

developed by Cobbold (1979), whereby finite deformation is removed using strain trajectories. Strain 

trajectories are evaluated using both the volume change and the finite strain values. Strain values are 
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Figure 22: Mass transfer during a folding process in schist of the sedimentary cover of the Pelvoux 

massif: (a) location of cored samples; (b) mineral content in protected (9) and exposed (5) samples of 

the same initial layer; (c) volume change along the same folded layer; (d) map distribution of the 

volume changes, adapted from (Gratier, 1983). 

 

deduced both from the cleavage dip and from the strain values at the boundary of the studied area. The 

shortening is given by the unfolding of the ptygmatic fold assuming that it did not change thickness 

during the deformation (  = 0.4). The vertical extension is obtained from the measurement of 

elongated belemnites (  = 2.5). It can be seen that no significant deformation occurs along the third 

axis. The whole area is divided into small elements with homogeneous deformation. Each element is 

undeformed and restored to its initial state using a best fitting technique. It is clear here that volume 

changes calculated by comparing chemical analyses are entirely compatible with the studied strain 

pattern (Fig. 23a). Once the volume change is evaluated, it is possible to discuss the volume change 

associated with the slaty cleavage. It can be seen that a large amount of matter can be removed from 

decimetre sized sample and this can completely modify the chemical composition of the rock. 

An important application is the change in fault gouge that always shows substantial depletion in 

mobile elements and such depletion may well be connected with pressure solution creep. When 

plotting the volume change Δ values along layers of the slaty matrix on a Flinn diagram (Fig. 7d), the 

variation in deformation path can be monitored by assuming that the spatial variation along each layer 

is equivalent to a time-dependent change (Gratier, 1987). Note that a linear relationship appears 

between volume change and internal deformation for the less deformed layer (blue path in Fig. 7d). 

However, for the most folded layers, there is a non-linear variation (red path in Fig. 7d) with a 

maximum value of the volume change of about 50% that expresses the fact that almost all the soluble 

species have been removed from the most deformed zone. 
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Figure 23: (a) Test of the compatibility of volume change value (Fig. 22d) by removal of finite 

deformation using strain trajectories; (b) Cleavage refraction during folding of layers with variable 

material properties; (c) Folding with axial plane cleavage (from photos) in schist of the sedimentary 

cover of the Pelvoux massif with large deformation: horizontal shortening = 50%, vertical extension 

= 100%, S = axial plane slaty cleavage, adapted from (Gratier and Vialon, 1980). 

 

2.7.2 Slaty cleavage in a folding process 

Pressure solution slaty cleavage is also frequently associated with a folding process (Fig. 23c). The 

axial plane cleavage shows cleavage refraction that underlines the differential behaviour of competent 

and incompetent layers (Fig. 23b). The angle between the cleavage plane and the stratification is 

related to the variation in cleavage with progressive deformation. The most competent layer (i.e. the 

layer with the minimum content in clays and phyllosilicates) could show an angle up to 90° between 

cleavage and stratification. This angle was acquired during the first stage of deformation when vertical 

cleavages developed in a formation with horizontal stratification. This angle did not change with the 

folding process; therefore the cleavages indicate here the first step of deformation. Conversely, the 

cleavages in the most incompetent layer are destroyed and reoriented at each step of the deformation 

in a shear process parallel to the stratification accommodating layer-parallel slip. Its final orientation is 

in agreement with the last orientation of the horizontal compressive stress. All intermediate cases are 

possible (Fig. 23b). Note that, frequently, cleavage planes in the most competent layers are filled with 

soluble minerals along veins. This intriguing behaviour may be explained by shear motion along the 

refracted cleavage surface producing dilatation of the competent layer and opening of mode I fractures 
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(Ramsay, 1967). However, when this process occurs for cleavages in the hinge a fold, that always 

remained perpendicular to the horizontal stress, another explanation is needed that may rely on the 

hydraulic fracturing process of the anisotropic rocks: opening a surface perpendicular to the maximum 

compressive stress  is less energy consuming than opening a surface parallel to  when the 

differential stress value is lower than the difference between the tensional strength parallel and 

perpendicular to the cleavage. This is in agreement with the idea expressed above that solution 

cleavages develop under low differential stress and near lithostatic fluid pressure. 

 

2.7.3 Slaty cleavage and characteristic length of creep laws 

It will be shown in Section 3 that a key parameter to distinguish between the various creep laws is the 

functional relationship between the strain rate  and the mass transfer distance . The strain rate is 

inversely proportional to  when the kinetics of reaction is rate limiting (Raj, 1982), or when it is the 

infiltration rate (Gratier, 1987), it is inversely proportional to  when the rate-limiting step is the 

diffusion through the whole rock formation (Fig. 19b) and it is inversely proportional to  when the 

rate-limiting step is the diffusion around the deforming element (Fig. 19a). Assuming that the 

deformation duration is the same for all the structures of a given area, it is possible to explore the 

relationships between the intensity of the deformation and the characteristic length of the structures. 

For example, Fig. 24a displays a linear relation between finite deformation associated with pressure 

shadows (the length of the fibres in the pressure shadow) and the size of the rigid object. In terms of 

mechanism, two interpretations are possible. (i) Either the amount of deposition is linked to the 

amount of dissolved species in the associated dissolution parentheses, so that the mass transfer 

distance is proportional to the size of the pressure shadow: closed system at the pressure shadows 

scale have been proposed and modelled by Berton et al. (2006). The result of Fig. 24a indicates that 

the strain-rate would not be sensitive to the mass transfer distance. (ii) Or the amount of deposition is 

only dependent on the possible void opening between the matrix and the rigid object. As seen in Fig. 

13d, neighbouring rigid objects with dissolution parentheses may or may not show associated 

deposition within their pressure shadows. It seems that the second interpretation is more likely. In this 

case, this indicates that pressure solution develops at grain size scale by diffusion-accommodated 

grain sliding, whereas solutes are free to precipitate in any available void or vein. In this case, the 

relation of Fig. 24a cannot be used in terms of mechanism. However, since pressure shadow shape 

does depend on the deformation mechanism it may be assimilated to a strain ellipse and used as strain 

markers. In parallel, the variation in mineral fibres within pressure shadows (Fig. 16b) can indicate the 

change in deformation path (Beutner and Diegel, 1985; Etchecopar and Malavieille, 1987). 

Another diagram concerns the boudinaged structures that develop at all scales in slate massifs. 

Contrary to pressure shadows, which remain almost undeformed, the boudins (the rock between 
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Figure 24: Slaty cleavage and the characteristic length of creep laws: (a) linear relationship between 

fibre length in pressure shadows and the width of the rigid object; (b) log-log plot of finite extension 

(e) versus the width of deformed area (d) showing the change in the power law exponent of d from 2 to 

1, sedimentary cover of the Pelvoux massif. 

 

extension veins) deform differently according to their size. When plotting on a log-log diagram the 

width of the boudins (d) versus the intensity of deformation (Fig. 24b), the slope varies from 1 to 2 

when the distance d decreases. Unfortunately, for this example, it is not possible to cover 

characteristic length scales smaller than several millimetres. However, this clear change in slope 

somewhere between decimetre and hectometre length scales could correspond to a change in mass 

transfer mechanism. Diffusion processes are not likely to be efficient above some decimetres. Above 

this length scale, advection is required and the deformation mechanism is probably different (see 

§2.7.5). In the present case, the exponent of 2 for d is compatible with the geometric model of Fig. 

19b, where numerous solution cleavage seams, with a spacing of the same order as the grain size, feed 
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sparsely spaced veins. Finally, note also that, contrary to pressure shadows, the veins cannot be used 

as strain markers since the extension value given at one scale is not the same as that given at another 

scale as 3 orders of magnitude of strain difference could be measured. 

 

 
Figure 25: Geometric model of slaty cleavage deformation by grain-boundary sliding with diffusive 

accommodation by pressure solution. The mass transfer distance is noted (d), adapted from (Ashby 

and Verrall, 1973). 

 

2.7.4 Modelling of slaty cleavage in creep laws 

The models of spaced cleavage presented in Fig. 19 allow large finite deformation in the shortening 

direction. However, they are less efficient in the extension direction. It is very rare to see an extension 

of more than 50% accommodated by parallel veins of quartz or calcite. An example of a sample with 

50% extension is presented in Fig. 17a. This sample was retrieved from the creeping zone of the San 

Andreas Fault, California, where much higher extension values are likely to occur. Moreover, when 

observing slaty cleavages no evidence can be seen of large elongation of grains that could fit the 

observed measured extension at the massif scale, which commonly ranges from 100 to 400%. Ashby 

and Verrall (1973) proposed a flow mechanism for large finite deformation that differs fundamentally 

from other diffusion-accommodated plasticity mechanisms such as Nabarro-Herring and Coble creep 

(Poirier, 1985). In their model, polycrystalline matter can deform by grain-boundary sliding with the 

high strain levels being accommodated by a diffusion process along grain boundaries: grains switch 

neighbours and do not elongate significantly (Konstantinidis and Herrmann, 1998). Boullier and 

Guéguen (1975) explained the origin of some mylonites by such superplastic flow. As for pressure 

solution creep law, (Ashby and Verrall, 1973) suggested that the strain rate may be controlled either 

by diffusion or by interface reactions. When controlled by diffusion, the constitutive equation 

resembles the Nabarro-Herring-Coble equations but the model predicts strain rates, which are roughly 
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one order of magnitude larger. This type of model may be extended to pressure solution if a fluid 

phase is trapped along the grain boundaries (Fig. 25). It should be noted that such a diffusion-

accommodated process may be coupled with very local internal deformation such as “dislocation 

creep” and/or to mechanical sliding on some specific mineral such as clays in the case of 

polymineralic aggregates with both soluble and insoluble minerals. However, for the best efficiency of 

the pressure solution process accommodating grain sliding, the grain size must be as small as possible 

since the strain rate is inversely proportional to the cube of this grain size (see Section 3). Such 

pressure solution creep laws (Fig. 19 & 25) are used to model the viscous behaviour of folding 

processes: (Laubsher, 1975; Nino et al., 1998). 

 

 
Figure 26: Geometric model of pressure solution deformation with large veins being sealed by fluid 

advection: change in fluid pressure with time: general head gradient and transient drop in fluid 

pressure in the veins. 

 

2.7.5 Modelling of veins filling with fluid advection in creep laws 

Another common observation in slate massifs is the presence of large veins, oriented perpendicular to 

the maximum extension direction, for example large horizontal veins, of hectometre size, associated 

with the vertically-extended sedimentary cover of the alpine crystalline massif (Fig. 24b & 26). No 

significant change in composition of the slate rocks is seen near the veins and so mass transfer by 

diffusion from the matrix must be ruled out. It is more likely that the filling of veins is linked to a high 

degree of fluid advection (Cox and Etheridge, 1989). Evidence of such a high degree of advection is 

seen in mountain ranges (Marquer and Burkhard, 1992; McCaig, 1988) and associated with large 

crustal faults (Kennedy et al., 1997; Rice, 1992; Sibson, 1990). It should be noted that even in the case 
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of fluid infiltration, a diffusion step along the fluid phase trapped under stress is required if dissolution 

occurs along solution cleavages. In this case, the limiting process is often diffusion. An alternative 

possibility is that dissolution occurs in the free fluid near the stressed contact. The difference can be 

seen easily from geological observation since free pore fluid dissolution must lead to an increase in 

porosity. In this case, the driving force may be either the difference in fluid pressure between 

dissolution and deposition sites or the difference in strain energy (Engelder, 1982). As already seen, 

when the path of diffusion from dissolution site to deposition site is in free fluid, diffusion is generally 

not the limiting process. Therefore, it is not easy to predict the limiting step in case of fluid advection 

but it is not excluded that it could be the infiltration rate and in this case the strain rate is inversely 

proportional to . 

Finally, a last problem with such a model is the way the veins open. Developing mode I fractures at 7 - 

10 km depth in the Alpine massifs (Gratier and Vialon, 1980), requires an elevated fluid pressure close 

to the lithostatic pressure. However, a drop in fluid pressure is required in order to precipitate minerals 

in the veins. Such a pressure drop at each incremental growth has been demonstrated by fluid 

inclusion studies (Mullis, 1975). It may result from sudden opening of the vein. However, a rather 

complex scenario is required to model the deformation associated with such large veins: (i) a general 

pressure gradient is required to move the fluid and (ii) transitory fluid pressure drop events must occur 

in the veins to precipitate the minerals sufficiently rapidly before the vein closes under the weight of 

the overlying rock (Fig. 26), so it could most often involve open self-supported cavities. Another 

possibility is that the minerals in the veins, growing in highly oversaturated fluid, may crystallize 

under stress (Gratier et al., 2012; Noiriel et al., 2010; Weyl, 1959). Moreover, precipitation in these 

large veins most often occurs by successive small opening and sealing (1 – 100 microns) (Ramsay, 

1980a) and so may be connected with microseismic activity. 

 

 

3 - Thermodynamics and kinetics of the processes 
As mentioned in the introduction, many mechanisms may be active during ductile deformation in the 

upper crust: subcritical crack growth, grain sliding, crack healing and stress driven dissolution-

precipitation. In this section, we focus on the latter, three step process at work during pressure solution 

creep. Firstly, minerals dissolve at grain contacts because of a concentration of stress. Secondly, 

solutes diffuse along wet grain boundaries. The third and last step is precipitation of solutes at less 

stressed mineral faces ((Dewers and Ortoleva, 1990; Renard et al., 1999; Rutter, 1976; Weyl, 1959). 

The local mass transport at the grain scale induces deformation at grain boundaries and free surfaces, 

causing an overall deformation of the rock. If one of these three steps is slower than the two others, it 

will control the overall deformation rate. We start by the nature of the interface between two grains 



 44 

that is crucial because it is the medium of dissolution and diffusion of matter. The presence and 

structure of a fluid phase in the grain interface controls the kinetics of the process. 

 

3.1 Setting the scene: Thermodynamics and kinetics of the fluid phase 

trapped at grain contacts 

The most important site in pressure solution is the grain contact where stresses are transmitted, solid 

material is transferred to the fluid phase and subsequently transported to the pore space. Theory, 

experiments and molecular simulations have taught us a lot about the state of the grain contact 

(Bresme and Cámara, 2006; Dysthe et al., 2002b; Horn et al., 1988; Israelachvili, 2012; Pashley and 

Israelachvili, 1984; Renard and Ortoleva, 1997). We will first consider the properties of a small region 

of two solids where the two solid surfaces are atomically flat and parallel and where Δ is the 

separation of the two surfaces and also the thickness of the fluid film between the surfaces. When Δ is 

too large to form covalent bonds between the two solids the interactions between the solids shown in 

Fig. 27 are described by electrostatic interactions and van der Waals interactions (Israelachvili, 2012). 

The disjoining pressure, the disjoining pressure, pd, must, at large separations Δ, be considered as a 

fluid pressure in excess of the pore fluid pressure, pf. Theory, experiments and simulations all show 

that the mean disjoining pressure increases with decreasing fluid film thickness. Solid surfaces have a 

different dielectric constant from that of water or brine. In addition, solid surfaces often have charged 

species; they may even have a net non-zero total charge. It is therefore clear that the environment of 

ions entering the confined “fluid” phase will in general experience more than just a change in the fluid 

pressure (French et al., 2010; Kjellander and Marcelja, 1984). The properties of the confined fluid 

phase are very variable and dependent on the exact nature of the surfaces and the fluids. Experiments 

(Horn and Israelachvili, 1981; Horn et al., 1989; Israelachvili, 1986; Israelachvili, 2012; Vigil et al., 

1994) and molecular simulation (Frenkel and Smit, 2002; Magdar et al., 1985) have demonstrated that 

the confined fluid properties like pressure, ion concentration, and solubility are not simple, continuous 

functions of separation, Δ. Care must therefore be taken when applying continuum models to 

processes at the grain contact scale. 

As direct observations and measurements of the grain boundaries are difficult, the transport properties 

of grain boundaries are often characterized by the product between an effective thickness of the 

interface, Δgb, and an effective diffusion coefficient D. The fluid film thickness, Δgb, can vary from 

about 1nm (four molecular water layers) to possibly 100nm depending on the nature of the mineral, 

fluids and the normal stress (Dysthe et al., 2002b). The diffusion coefficient, D, of ions in water at 

room temperature is of the order 10-9 m2s-1 and may be reduced by one to two orders of magnitude 

(Alcantar et al., 2003; Dysthe et al., 2002a) by the structure of a confined fluid film, depending on the 
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Figure 27: Interaction energies between two closely spaced planar solid surfaces in a fluid. Two 

atomically flat, planar, parallel solid surfaces brought towards contact with a fluid in between will 

experience two main interactions resulting in three regions of attraction and repulsion. The 

electrostatic interaction of charged solid surfaces (black) with its diffuse liquid layer of water plus 

screening counterions will in general result in a positive interaction energy. The van der Waals 

interaction (blue) has negative interaction energy. The resulting total interaction energy (red) has 

both positive and negative regions, most notably there is an energy gain in expelling all fluid and 

bringing the two solids into contact. At intermediate distances r the total interaction energy is positive 

and the so-called disjoining pressure between the two surfaces 

€ 

pd = −dU dΔ  is positive. At larger 

distances there may be an attractive region as well.  

 

film thickness. Consequently, the product of fluid film thickness and diffusion coefficient Δgb D is of 

the order 10-20 to 10-16 m3s-1. 

Using resistivity measurements, (van Noort et al., 2007) measured the product ΔgbD for halite-halite 

and halite-glass contacts and found values in the range 10-19 to 10-17 m3.s-1. They showed that this 

value decreased by one order of magnitude when increasing the normal load across the contact from 1 

to 10 MPa. Using indenter experiments on quartz, (Gratier et al., 2009) found values ΔgbD in the range 

2.5 to 10*10-19 m3.s-1 at 350°C. On glass/silica interfaces, impedance spectroscopy measurements have 

revealed larger values of ΔgbD, close to 6*10-18 m3.s-1 at 300-350°C (van Noort et al., 2011). Molecular 

dynamics simulations of water confined between calcite surfaces have proposed that the thickness of 

the water film decreases from 100 nm at 1 km burial depth to 0.95 nm at 10 km depth and that the 
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product ΔgbD decreases from 3.2*10-17 to 8.6*10-19 m3.s-1 for the same depth range (Dysthe et al., 

2002a). These values are consistent with the experimental results. 

In the seminal work of Weyl (1959) on pressure solution and the force of crystallization, he used two 

models, one assuming an exponential relation between disjoining pressure pd and surface separation Δ 

and one with pd independent of Δ. Weyl (1959) had some evidence of the existence of a fluid film, but 

at the time it was still considered hypothetical. He considered the fluid film to be continuous with the 

bulk fluid, with the same thermodynamic properties like the dependence of solubility on pressure. The 

fluid pressure inside the fluid film was taken to be the surface normal stress transmitted to the solid 

surfaces. Furthermore the assumption of continuity, i.e. no jump in pressure and mass conservation 

resulted in the solution of a continuously varying fluid film thickness in pressure solution (saturated 

bulk solution) and a growth rim of a certain width during crystallization (supersaturated bulk solution). 

This continuous stress distribution model of Weyl has recently been shown to be in contradiction with 

experimental results (Røyne and Dysthe, 2012). 

To summarize so far, the fluid-like phase confined between the solid surfaces: 

• transmits normal stress between the solid surfaces;	
  

• does not transmit shear stress;	
  

• allows molecular diffusion at rates comparable to a normal liquid;	
  

• should only with the greatest care be treated as continuous with the fluid in the pore space and 

is perhaps better treated as a separate thermodynamic phase.	
  

Actual grain contacts are not necessarily atomically flat and several conceptual models of rough grain 

contacts have been proposed. These models all consider the deformation of the solid surfaces: the 

grain contacts are formed by the non-equilibrium process of pressure solution itself. We will return to 

these models in due course. 

 

3.2 The protagonists: Thermodynamics of pressure solution 

In this section we will first develop a small example of the effect of pressure on the solubility of 

quartz. Then we consider the effect of non-hydrostatic stress and the driving force of pressure solution. 

There are many different approaches, both equilibrium and non-equilibrium, to deriving the driving 

forces of pressure solution. Luckily, they all end up with essentially the same driving forces. To 

increase the readability we have chosen to give a simple exposition of the thermodynamics and 

kinetics of the process first and present a historical overview of different contributions to the field in a 

separate section. Except for temperature, T, we will use capital letter symbols for extensive quantities 

and lower case symbols for intensive quantities. Specific quantities are molar quantities, for example 

the molar volume is , where N is the number of moles in volume V. We will use subscript s 

for solid and subscript l for liquid. 
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3.2.1 Effect of pressure on the chemical potential of dissolved quartz 

The state of pressure of a solid has a significant effect on its chemical potential. The effect is to 

increase the molar free energy of a solid pressurized at p compared to that at a reference pressure state 

p0 (Gibbs, 1877). At constant pressure and temperature, the state of energy of solids can be fully 

described by the solid chemical potential µs. If tangential stress on the solid surface is zero, the 

chemical potential can be written: 

  

€ 

µs T, pn( ) = µ0 T, p0( ) + p − p0( ) vs       (5) 

where µs is the chemical potential of the solid component in contact with the solution, µ0 is the 

chemical potential for the solid at pressure p0 and temperature T, p is the hydrostatic pressure on the 

solid surface and = V / N is the molar volume of the solid at pressure p. The equilibrium of a solid 

with its solution depends on temperature and is described by an equilibrium constant Keq. For a typical 

reaction such as quartz dissolution, the chemical equilibrium is described by 

           (6) 

where  is a solid and  is the silica in solution. The equilibrium constant of this reaction 

is calculated using the ratio of the activity coefficients of the products and the reactants: 

          (7) 

where, for dilute aqueous solutions, the activity of water  is equal to 1. The activity of dissolved 

silica  is the product between the activity coefficient  that varies 

slightly around 1, depending on salinity and solute concentration, and the concentration of silica in 

water . For the purpose of simplification, we will consider that  in the following; 

this is a reasonable assumption for aqueous solution with low solute concentration. 

For the dissolution of quartz, it remains from Eq. (7) that the equilibrium constant is equal to the 

concentration of silica in a solution at a given pressure and temperature. The chemical potential is 

related to the equilibrium constant through . Thus, the equilibrium constant varies 

with pressure 

  

€ 

Keq = cH4SiO4 ,eq
= K0 T, p0( )⋅ exp

p − p0( ) vs
RT

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟     (8) 

where  is the equilibrium concentration of silica in solution, K0(T,p0) is the equilibrium 

constant for the solid (quartz grain for example) at a pressure p0, whose value depends mainly on  
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Figure 28: Driving force of pressure solution: (a) Surface normal stresses on a grain and the chemical 

potentials of the solid and liquid at the different interfaces; (b) Grain deformation by transfer of a 

volume ΔV = l2δl under the same stresses resulting in the deformation work , 

enlargement on the right: contributions of surface curvature, r, to the Helmholtz energy, , the 

“electrochemical” contribution of the surface charges, fsc, and the contribution of dislocations, fd, in the 

original crystal. If a steady state deformation is reached, the typical surface curvatures and surface 

charges must be constant and the only energy change on deformation is proportional to the change in 

contact area ΔA=lδl (l is the characteristic dimension of the crystal). If the precipitated material is 

without dislocations and unaffected by the stress component σ11 these energy terms, fd and fel are 

proportional to the displaced volume ΔV. (c) Geometry of uniaxial compaction of a simple cubic 

packing of spheres: grain radius, l, grain contact radius, a, and corresponding height in the packing 

h(t), where h(0)=h0. (d): Four cartoon models of the grain boundary during pressure solution and the 

parameter combinations that distinguish them. The rate limiting transport length, r, is either the entire 

grain boundary radius, a, or an average island size, disl ~ (0.1-10) µm, that is either a constant or that 

increases with time, disl(t) ~ t1/3. The grain boundary width, Δgb, is either the fluid film thickness Δgb,ff ~  

1-10 (possibly 1–100) nm or an effective width of a rough contact Δgb,ff ~ 0.1-10µm. The diffusion 

coefficient is either that of the bulk fluid, typically Dbulk ~ 10-9m2/s at 25°C, or that of a confined fluid 

film, Dff  ~ (10-1 - 10-2)Dbulk. 
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temperature. For quartz, taking = 22.68 10-6 m3/mol, T = 298 °K, R = 8.32 J.mol-1.°K-1, p0 = 0.1 

MPa, p = 100 MPa (hydrostatic fluid pressure at 10 km depth) and the solubility of quartz 

 mol.m-3 at room temperature and pressure (T0 = 298°K, p0 = 0.1MPa) given by Rimstidt 

and Barnes (1980), one obtains a concentration of quartz of 0.25 mol.m-3, a 2.5 times increase 

compared to atmospheric pressure. 

 

3.2.2 Chemical potential of solids in contact with their solution 

We choose to start by the Gibbs, G, and Helmholtz, F, free energies of a solid of volume V subject to a 

hydrostatic pressure p: 

          (9) 

Dividing by the number of moles, the chemical potential at surface i of a solid (Fig. 28a) may be 

expressed as: 

      (10) 

where fs is the specific Helmholtz free energy of the solid and σii is the stress normal to surface i, 

defined as positive when pointing into the solid, thus . The five terms contributing to 

the chemical potential are summarized in the following: 

1. The work related to the change of volume under surface normal stress accounts for the largest 

contribution to the chemical potential of the solid adjacent to the surface: 

€ 

µsp,i = vsσ ii , 

€ 

µsp = vsp  

2. The elastic term of the specific Helmholtz free energy accounts for the non-hydrostatic strain 

energy: 

 

€ 

fel = vs(σij − p)dε ijij
∑ =

vs(σij − p)dσij

(1−ν )Eij
∑ ,        (11) 

where the latter equality is valid for isotropic solids with Young’s modulus E and Poisson’s 

ratio ν. The ratio between the energy due to hydrostatic pressure and energy due to elastic 

strain (for the same magnitude of hydrostatic pressure and non-hydrostatic stress) is 

€ 

µsp

fel
= (1−ν) E

σ ii

≤1000  for quartz because the Young’s modulus is typically 1000 times 

larger than the yield stress. Thus for most rock materials and stress conditions, the energy 

related to surface normal stress is much larger than the non-hydrostatic strain energy term. 

3. The plastic strain energy, fd, of a crystalline solid is stored in defects, such as dislocations. For 

a large enough density of dislocations, for example greater than 1010 dislocations per cm2 for 

quartz, the free energy of a crystal can be significantly increased (Table 1). The energy of a 
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dislocation can be divided in two terms: the energy of the core of the dislocation itself, and the 

strain energy due to the deformation of the crystalline lattice (Wintsch and Dunning, 1985). 

This induces an increase of the solubility of quartz. For example, at 400°C and 300 MPa, a 

value of 1010 dislocation per cm2 in quartz may induce an increase of solubility close to 1%. 

For non-deformed quartz crystals, the density of dislocation is usually smaller than 109 cm-2 

which is not sufficient to obtain a significant increase of the chemical potential of the solid. 

4. The surface energy contribution, , to the Helmholtz energy may be viewed as an 

enhanced pressure contribution to the chemical potential (Kingery et al., 1976). The Laplace 

pressure difference over a curved interface is , thus for typical interfacial energies of 

mineral-water interfaces of 0.1-1J/m2 (Parks, 1984) a radius of curvature of 10-­‐6m corresponds 

to pressures in the range 0.2-2MPa. This contribution to the Helmholtz energy affects a 

volume of typically the surface area A times the typical radius of curvature, r, of surface 

roughness: rA, thus the effects can only be found on small length scales, like for the 

organization of the grain boundary. 

5. The last term, fsc, is also a surface contribution to the Helmholtz energy accounting for the 

effect of surface charges and ionic environment affecting the local solubility and strength of 

intermolecular bonds of the solid. The term fsc will only contribute to the change of energy of 

the system if the state of the interface (ion concentrations etc.) changes during the process or if 

the area of contact changes. The solid volume affected by this surface effect is the area times 

some small length scale, ξ, typically a few molecular layers thick, ie. ~10-9m. This may be 

very important on a local grain boundary scale when the interface structure is modified, but 

during the deformation of whole grains the total change in surface energy is small compared 

to volume energies like µs,p, fel and fd. 

Although the four latter terms are much smaller than the first term (Table 2), they may be very 

important in determining the local shape and organization of the grain boundary and thereby the 

kinetics of the process. 

 

3.2.2 Driving force of pressure solution 

The classical way of considering the thermodynamic driving force of a process is to calculate changes 

to a well defined thermodynamic system. Fig. 28b portrays the most important contribution in pressure 

solution, the work W performed by the surroundings on a solid grain when a volume ΔV is moved 

from face 1 to face 2: 

         (12) 
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 (dislocations. cm-2) 109 1010 1011 1012 

€ 

fd  (Joule/mol), min. 2.24 19.70 169.76 1425.68 

€ 

fd  (Joule/mol), max. 3.03 29.06 290.62 2906.25 
 

Table 1: Effect of the density of dislocation  inside a quartz crystal on the internal energy, at 400°C 

and 300 MPa (Wintsch and Dunning, 1985). The range of minimum and maximum values is given. 

 

 

Energy 
contribution 

€ 

µsp  

€ 

fel  

€ 

fd  

€ 

fγ  

 Work energy Elastic strain 
energy 

Plastic strain 
energy 

Surface 
tension 
energy 

Joule.mol-1 6800 13 3 0.4 
 

Table 2: Order of magnitude of the different energy contributions given in Eq. (10) for a quartz grain, 

100 micrometres radius, at 400°C, 300 MPa, with a concentration of dislocations of 109 cm-2. 

 

Identifying this work as the change in free energy of the grain and dividing by the mass of the volume 

ΔV displaced one obtains the “work term of the driving force” of pressure solution: 

 

€ 

ΔµW = µsp,1 − µsp ,2 = vs(σ11 −σ 22) ,      (13) 

which we may identify as originating from term 1 of the chemical potential of the solid in the list 

above. Considering Fig. 28b, the total change in free energy of the solid grain is 

 

€ 

νsΔG = ΔV (µsp,1 + fel,1 + fd ,1 − µsp,2 − fel,2 − fd ,2 ) + ΔAr( fγ ,1 − fγ,2 ) + ΔAξ( fsc,1 − fsc,2)   

Dividing by the volume change ΔV: 

 

€ 

Δµtot = (µsp,1 + fel,1 + fd ,1 − µsp,2 − fel,2 − fd ,2 ) +
r
l
( fγ,1 − fγ ,2) +

ξ
l
( fsc,1 − fsc,2)

= µs,1 − µs,2

      (14) 

This demonstrates that the surface tension and surface charge effects are negligible as driving forces 

unless the grain size, l, is very small. The smaller terms (2-5 in the list above) of the chemical 

potential may, however contribute significantly to the organization of the interfaces and thereby to the 

kinetics of the process. 

We have already mentioned that pressure solution is a three steps process. During the process the 

system is out of equilibrium and one must consider the chemical potential along the entire path of the 

process. The first step is the subdivision shown in Fig. 28a into the three steps and three driving 

forces. 

• Dissolution        (15) 
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• Transport        (16) 

• Precipitation        (17) 

For a closed system, all three steps are necessary and one regains Δµtot of Eq. (14) where the driving 

force is determined by the solid grain only. For an open system, µl,2 may be determined by long 

distance advection or diffusion of material and one may consider only the first two steps of the 

process. Alternatively one may choose to split the transport step as consisting of two parts, grain 

contact diffusion (short range) and long range transport. 

 

3.3 The action: Kinetics of pressure solution 

It is conceivable to perform a direct simulation of the whole three steps process and treat the chemical 

potential as a continuous variable from µs,1 to µs,2 (Dewers and Ortoleva, 1990; Gundersen et al., 

2002a; Raj, 1982). There is however much insight to be gained in the traditional approach of assuming 

that one of the three steps is much slower than the other two processes. These assumptions may for 

closed systems be translated into conditions on the driving forces: 

• Dissolution limited kinetics   

• Transport limited kinetics   

• Precipitation limited kinetics   

Using these assumptions, the driving force for pressure solution is identical for the three cases; 

however the rate at which this occurs will depend on the limiting step. Pressure solution of quartz is 

known to be dissolution limited at low temperature, below 150°C (Bjorkum et al., 1998) but is 

controlled by diffusion at higher temperature (Gratier et al., 2009), that of soluble salts like NaCl 

(Spiers and Brzesowsky, 1993) to be transport limited, however, special impurities that attach to the 

surfaces of calcite (Zhang et al., 2010) and quartz (Bjorkum et al., 1998; Bjorlykke and Hoeg, 1997) 

may render pressure solution of these minerals precipitation limited. We will consider the two first 

steps in the following sections. The kinetics of precipitation in this context does not distinguish itself 

from precipitation and crystal growth in other geological context and we will not discuss it any further. 

 

3.3.1 Geometry of aggregates, fluxes and strains 

The main processes we consider here relate to two grains with a single grain boundary. A sediment or 

a rock consists of an aggregate of grains and the deformation of the sediment or rock is the sum of 

discrete dissolution-transport-precipitation processes.  

 

 3.3.1.1 Strain rate, fluxes and grain dimension 
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Consider an aggregate of spherical grains of average radius l. Let the grain boundary radius be a and 

let the grain boundary fluid thickness be Δgb. Then the average grain boundary region has an area of 

€ 

πa2 facing the grains and an area 

€ 

2πaΔ gb  facing the surrounding fluid. The fluxes of dissolution, jD, 

and transport, jT, (moles per unit time per unit area) are related by conservation of 

mass,

€ 

jDπ a
2 = jT 2π a Δ gb. The strain rate of the grain aggregate is then: 

 

€ 

˙ ε = 1
l
dl
dt

=
1
l
vs jD =

2Δ gb

la
vs jT =

2ν s jTΔ gb

l2(a / l)
     (18) 

We will see that for compaction by pressure solution it is practical to express the shape change of the 

grains as the ratio of grain boundary radius to grain radius a/l. Equation 18 will be the basis for rate 

laws for aggregates’ deformation, whatever expression of fluxes we choose. For low porosity rocks a/l 

= 1 and this factor is of little interest. 

 

 3.3.1.2 Simplest model: spherical grains 

In Figure 28c we show one spherical grain of radius l in a simple cubic stack. The distance from the 

grain center to the grain boundary is h(t) and h0 = h(t = 0). The uniaxial strain of the aggregate is  

  

€ 

ε =
h0 − h
l

≈1− h
l
, for h0 ≈ l .       (19) 

The grain boundary radius is 

€ 

a = l2 − h2  and we obtain a simple relation between the uniaxial strain 

and the ratio between grain boundary radius and grain radius: 

  

€ 

a
l

= 1− h
l

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2

= 1− h
l

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1+

h
l

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ε(2 −ε) .    (20) 

Finally, this yields a simple relation between the stress imposed on the aggregate, σ0, and the contact 

stress σ11(ε) as a function of strain: 

  

€ 

σ11(ε) =σ0
l
a
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2

=
σ0

ε(2 −ε)
∝
σ0
ε

.      (21) 

The last proportionality signifies that to leading order the contact stress scales inversely with strain. 

Hexagonal packing, random packing or other packings of spherical grains have the same scaling of the 

contact stress with strain, only a multiplicative factor changes. 

 

3.3.2 Rate of dissolution 

 

 3.3.2.1 Non-equilibrium thermodynamics 
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We have already established that the driving force of dissolution is . There are 

several ways of treating the kinetics of dissolution. In non-equilibrium thermodynamics the dissolution 

flux jD (moles per unit time per unit area) is considered to be linear in the jump condition  at the 

sharp interface (de Groot and Mazur, 1984): 

 ,         (22) 

where jD is the dissolution flux and  a dissolution rate constant. This relation is also inherent in 

diffuse interface (as opposed to sharp interface) models like the Cahn-Hilliard equation (Cahn and 

Hilliard, 1958) where transport in both bulk and through the interface is treated as diffusion. If one 

wants to model the process in a self-consistent manner the value of  will depend on k (or the 

diffusion coefficient of the interface) and the other parameters of the model. For the dissolution 

limited case the work term of the driving force is 

€ 

ΔµD = vs(σ11 −σ 22) and the strain rate of the 

system is from Eq. (18): 

 ,       (23) 

where  may be exchanged for the pore fluid pressure, , in deformation of porous aggregates. 

The strain rate is linear in stress, that is, the dissolution limited strain rate is a Newtonian viscous 

rheology. 

 

 3.3.2.2 Concentration-based jump conditions 

An alternative path to develop the dissolution rate is to consider the fluid chemical potential 

 ,      (24) 

where  is the universal gas constant, 

€ 

a = χc  is the activity of the solute χ is the activity coefficient 

(χ = 1 for an ideal solution) and c the concentration of the dissolved solid material in the fluid, and 

subscript 0 signifies the reference state of c = 0. Using the dissolution limited case as an example 

again: 

 .    (25) 

Here we have used the solid-fluid equilibrium condition,  and we have assumed 

that the surface normal stress is equivalent to the fluid pressure of a “normal fluid” in this equilibrium 

condition. Then, the interface jump expressed in concentration is 

 

€ 

Δc = c(σ11) − c(σ22) = c(σ22) e
(σ11 −σ 22 )vs

RT −1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .     (26) 
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If one assumes the dissolution rate to be proportional to the concentration jump, , one 

may then conclude that the strain rate is 

 

€ 

˙ ε = vs jD
l

=
kcvsc(σ 22)

l
e

(σ11 −σ 22 )v s

RT −1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,     (27) 

that is, a non-linear viscous rheology. It is worth discussing in what range of stresses  the 

strain rate above represents a non-linear rheology. The approximation  is wrong by a factor 

2 for . Thus for quartz at 300 K we may calculate the reasonable range of stresses for the 

linear approximation to be      

 .     (28) 

However, this is not a test of the assumption  or the assumption of the state of the 

confined fluid. 

 

 3.3.2.3 Activation barrier to dissolution 

We will now discuss dissolution kinetics based on the basic concept of rates of change limited by an 

activation barrier. This is the basis of many statistical mechanical models and of the Arrhenius 

equation, Eyring rate theory or transition state theory of chemical reactions. The following example is 

not rigorous and is included to illustrate a possible rationale of three aspects: non-linear rheology, 

electrochemical effects and confined fluid films. 

Consider a liquid in a state where dissolved solid molecules are characterized by µl and a solid at 

chemical potential µs>µl. Assume that there is an interfacial phase or state between the solid and 

liquid where the solid molecules going from solid to dissolved state (or inverse) have to be “activated” 

to the molar energy gA>µs. This assumption of an activated transition state differs from the non-

equilibrium thermodynamic assumption of a sharp or diffuse interface with a linear transport 

coefficient. The probability Ps-l of some molecule in the solid to cross the activation barrier is 

 

€ 

Ps− l =
Ns

Zs

e−(gA −µs ) /RT ,        (29) 

where Zs is the partition function of the solid and Ns is the number of molecules in the solid adjacent to 

the interface. The probability of the opposite jump is 

 

€ 

Pl−s =
Nl

Zl

e−(gA −µ l ) /RT ,        (30) 

where Nl is the number of molecules in the liquid adjacent to the interface.The dissolution rate is 
proportional to the difference in probabilities: 
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€ 

jD ∝
Nl

Zl
e−(gA −µ l )/RT Ns

Nl

Z l

Zs
e(µ s −µ l )/RT −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

˙ ε ∝ jD ∝ e−gA /RT e(µ11 −µ22 )v s /RT −1( )
     (31) 

Here we have assumed that NsZl/NlZs~1, that the system is dissolution limited and regained an 

expression of the dissolution rate of the same form as Eq. (27). Thus in cases where dissolution studies 

have shown that there is a significant activation barrier, one may have to consider dissolution 

controlled pressure solution as a non-Newtonian rheology. The apparent contradiction between Eqs. 

(23), (27) and (31) is equivalent to the result of de Groot and Mazur (1984) (p205) that "the linear 

relations of thermodynamics of irreversible processes hold for chemical reactions when the condition 

A<<RT is satisfied". This is similar to the condition in Eq. (28). More recent work (Kjelstrup et al., 

2010), (chapter 7) demonstrates that one may obtain non-linear flux-force relationships in the 

framework of irreversible thermodynamics if one integrates the entropy production along the reaction 

pathway (that includes the energy barrier). We hope this simple illustration will prompt research into a 

proper formulation of the transition state theory of pressure solution and how this relates to an 

irreversible thermodynamics formulation. This would clarify the question of pressure solution being a 

linear or non-linear rheology we have raised here. A proper treatment of transition state theory of 

dissolution in confined fluids and under stress will also be necessary to understand the electrochemical 

effects of ions in solution and surface charges. 

Finally we will mention that for dissolution rate limitation the only strain hardening effect is through 

the grain contact stress (see Eq. 21): 

  

€ 

˙ ε ∝ σ 0

ε l
 from Eq. (23), or 

  

€ 

˙ ε ∝
exp(σ 0vs

ε RT
) −1

l
 from Eqs. (27) or (31). These scaling relations may be compared 

to the expressions in Table 3 and experimental exponents in Table 5. 

 

3.3.3 Rate of transport 

The transport flux, jT, by diffusion may be expressed as a diffusion coefficient, D, times the gradient in 

chemical potential: 
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,    (32) 

where r is the transport length. This expression for the transport flux may be inserted into Eq. (18), but 

there are still some parameters to be determined. It is worth noting that unlike dissolution, that is an 

activated process, diffusion in a liquid phase is truly linear in the chemical potential. We state this 
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mechanism of deformation stress-strain rate relationship reference 
Pressure solution creep 
(limited by diffusion)  

Rutter (1976) 

Pressure solution creep 
(limited by surface kinetics)  

Raj and Chyung (1981) 

Pressure solution creep 
(limited by diffusion)  

Raj and Chyung (1981) 

Pressure solution creep 
(diffusion + surface kinetics)  

Raj and Chyung (1981) 

Pressure solution creep 
(limited by surface kinetics), exponential 
dependence on stress  

see Eq. (27)  

Pressure solution creep 
(limited by diffusion) exponential 
dependence on stress  

see Eq. (35) 

Pressure solution creep 
(limited by diffusion) taking into account 
grain deformation  

Equation 8 in Spiers and 
Brzesowsky (1993) and Eqs. 
(21) & (33) here 

Table 3: Flow laws of deformation by pressure resolution, depending on the limiting rate for deformation. Notations: σe : effective stress (load stress minus pore 

pressure or difference of normal stress between two faces of a grain) (Pa); T: temperature (K); kcin: kinetics constant for dissolution (mole.m-2.s-1); c: solubility of 

the mineral (mole.m-3); d: grain size (m); Δgb:  water film thickness (m); λ: stress exponent: usually close to 1 at low stress (Rutter, 1976) up to 1.75, or 

exponential dependance, see Eq. (27 & 35); η: viscosity of the interface (Pa.s); D: diffusion coefficient along the interface (m2.s-1); : molar volume of the solid 

(m3.mole-1); R: gas constant (J.mole-1.K-1); : strain. 
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although many authors like for example Dewers & Ortoleva (1990) used an exponential form for the 

strain rate vs. stress relation for both dissolution and diffusion limited kinetics. Since the work term 

(Eq. 13) dominates ΔµT the transport rate (Eq. 32) must be linear in stress (σ11-σ22). The factor δc/δµ = 

c/RT (for activity coefficient χ = 1, see Eq. 32) may be said to represent a non-linearity, but it remains 

to work more to quantify this.  

 

 3.3.3.1 Grain boundary models 

When material dissolves into the grain boundary region it has to be transported through this grain 

boundary region to a less stressed region. The important phenomenological parameters for this 

transport are the diffusion coefficient of the material in the grain boundary region, D, the effective 

grain boundary fluid thickness Δgb and the limiting transport length, r. Figure 28d summarizes the four 

main models of the grain boundary and the “realizations” of the transport parameters associated with 

each model. The model names have varied somewhat through time and our naming scheme is specific 

to the parameter realizations tabulated in Fig. 28d. The oldest model, the thin film (F) model of Weyl 

(1959) assumes that the entire grain boundary is smooth and kept apart by a fluid film as described in 

section 3.1. The limiting transport length, r, is therefore the grain boundary radius a (as in section 

3.3.1), the thickness of the grain boundary fluid is Δgb = Δgb,ff~1-10(-100)nm and the diffusion 

coefficient D = Dff = (10-1-10-2)Dbulk, where Dbulk is the bulk fluid diffusion coefficient. The next 

model we will mention, which is a cartoon model of the formal treatment of dynamic grain boundary 

structure proposed by Lehner and Bataille (1985), assumes a dynamic roughness (DR) of the grain 

boundary. The real contacts supporting stress are small and change from place to place as old contacts 

dissolve and new contacts form. These points of contact do not limit the transport, the limiting 

transport length is the grain boundary radius and the fluid that limits the transport is not under stress, 

thus Δgb = Δgb,r~0.1-10µm and D = Dbulk. The third model, the Island-Channel (IC) model, that has 

been ascribed to Gratz (den Brok, 1998; Gratz, 1991) and assumes that transport is limited by 

diffusion in thin fluid films between contacting islands, thus r = disl, D = Dff and Δgb = Δgb,ff. The island 

size disl is some constant, presumably in the range 0.1-10µm. The fourth model, the Dynamic Island 

Channel (DIC) model, based on quantitative experimental data for NaCl (Dysthe et al., 2003) is much 

like the IC model except that the island size increases with time t since the last stress change (be it an 

earthquake or a local grain rearrangement) as disl(t) = t1/3, which results in a dramatic strain hardening. 

We may summarize all four models using the fundamental parameters D, Δgb and r and rewrite Eq. 

(18) using r and using Eq. (32): 
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    (33) 

We have used the work term of the driving force of pressure solution (Eq. 13) for Δµ. Once again it is 

worth noting that the nonlinear relations between strain rate and stress arise only for dissolution 

limited kinetics with large stresses (see Eq. 28). These relations may be compared to the expressions 

in Table 3 and experimental exponents in Table 5. 

The last 15 years much theoretical work has focused on the stability of the grain boundary in order to 

give a rational basis for the cartoon models presented here. We choose to review the theoretical 

development together with the experimental advances presented in section 4.1. 

 

3.4 – Historical developments and further reading 
 

3.4.1 Thermodynamics and kinetics 

Since the mention of a correlation between chemical and mechanical forces in rocks (Sorby, 1863; 

Thomson, 1861) and the Gibbs’thermodynamic theory of phase equilibrium (Gibbs, 1877), which 

proposed that both interfacial tension and pressure variations could be responsible for chemical 

potential gradients, the driving force and kinetics for pressure solution creep have been debated. Weyl 

(1959) developed analytical solutions for the dissolution and diffusion of solutes along grain contacts 

because of higher stress there, assuming an isothermal system and a diffusion limited process along a 

thin film. Almost at the same time, (Kamb, 1959; 1961) treated non-hydrostatically stressed systems, 

taking into account the local equilibrium between the fluid and the solid and the fact that a given solid 

in contact with its fluid can display various state of stress along its surface. In this approach, the 

chemical potentials are assigned to the components of solid dissolved into the fluid (i.e. the solutes) 

and not the solid itself, Kamb stating that “it is not possible to usefully associate a chemical potential 

or Gibbs free energy with a non-hydrostatically stressed solid, even though it is possible [...] to 

discuss the equilibrium between the solid and the adjacent fluids” (Kamb, 1961) p. 267). 

The full elastic parameter tensor was also incorporated in the calculation of the effect of elastic strain 

on the Helmholz free energy (Kamb, 1959), and the fact that this tensor is anisotropic was used to 

explain preferred crytallographic orientation in some metamorphic rocks. For this situation, even an 

isotropic state of stress would lead to non-isotropic strain because of non-isotropic elastic moduli. 
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Paterson (1973) wrote a review article on the thermodynamics of non-hydrostatically stressed solid 

and proposed an approach where, starting from hydrostatic thermodynamics, the non-hydrostatic 

effects were derived as perturbation of the hydrostatic situation. For this, he considered a thought 

experiment where a solid is surrounded by a porous belt, which applies a force on its surface. The 

solid deforms by dissolution-precipitation processes along its surface that tend to decrease the whole 

internal energy of the system, providing a physical basis for the deformation process (Green 1984). A 

local equilibrium at the interface between the solid and the belt is considered and a chemical potential 

for the recrystallization process, similar to that of Kamb’s but with another physical interpretation, is 

proposed. This hydrostatic approach (Paterson, 1973) was used to interpret the first experiments of salt 

pressure solution creep (Rutter, 1976) and to calculate the rate of pressure solution at quartz grain-

grain contacts (de Boer, 1977; Robin, 1978). 

In the framework of non-equilibrium thermodynamics, (Lehner and Bataille, 1985) derived a 

dissipation jump condition along a non-coherent grain-thin film interface, generalizing the Gibbs’ 

condition of equilibrium between a solid under stress and a fluid and proposing a treatment of 

microscale variations in equilibrium chemical potential along an interface. They also cast the basis for 

solving the deformation along a rough grain-grain contact whose geometry evolves continuously. The 

driving force for pressure solution, in addition to the so-called work term, may also contain 

contributions due to elastic strain, plastic strain and interfacial tension (Heidug, 1995; Heidug and 

Leroy, 1994; Shimizu, 1992). Finally, the contribution of the fluid composition (i.e. undersaturated or 

supersaturated) can also be included into the driving force for pressure solution creep (Lehner, 1995). 

 

3.4.2 The dynamic grain boundary: undercutting, rough interface and the Asaro Tiller 

Grinfeld instability 

Several studies (Pharr and Ashby, 1983; Rutter, 1983; Spiers and Brzesowsky, 1993; Tada and Siever, 

1986) have discussed the possibility of grain contacts deforming plastically. Due to the large 

dislocation density, the Helmholtz energy contribution in Eq. (10) becomes larger than the other terms 

and deformation occurs by undercutting (i.e. strain enhanced dissolution) at the contact margins until 

the actual contact surface area becomes so small that a yield limit is reached and the contact collapses 

on itself by a plastic or brittle process. The whole process of dissolution at the margin and collapse 

continues over and over, leading to increments of deformation. In such a process, the strain rate is 

assumed to be controlled by the kinetics of dissolution at the margin (Spiers and Brzesowsky, 1993). 

Conversely, (Weyl, 1959) assumed a continuous fluid film along which dissolution occurs, leading to 

the convergence between grains and deformation (Fig. 28d). Later, a more complex model of grain-

grain interface was proposed (Raj, 1982), where dissolution occurs inside the contact, along a rough 

grain-grain contact that contains a fluid phase that could be discontinuous (Fig. 28d). Lehner and 
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Bataille (1985) developed a theoretical framework for such the grain-grain boundary with a dynamic 

interface in terms of irreversible thermodynamics. In such system, the diffusive transport of solutes 

along the grain-grain boundary can become the limiting step for deformation and the diffusion 

distance can be either the grain contact radius (Robin, 1978; Weyl, 1959) or the size of the actual 

contacts (den Brok, 1998; Gratz, 1991) in the island-and-channel model of grain boundary. Such an 

approach of dynamic grain contact was used to model pressure solution creep rate for complex 

contacts (Renard et al., 1999; van Noort et al., 2008a). 

A set of thought provoking experiments by Schutjens and Spiers (1999) imaging the grain boundary 

contact during pressure solution showed that the grain boundary roughened upon a stress increase and 

the roughness then coarsened with time. Both theoretical and experimental studies followed. A 

dynamic grain boundary could be argued to correspond to the so-called Asaro-Tiller-Grinfeld 

instability (ATG instability) (Asaro and Tiller, 1972; Grinfeld, 1986) that was originally formulated 

for a solid stressed along its surface in equilibrium with its melt and was experimentally observed on a 

free surface of a stressed sodium chlorate crystal (den Brok and Morel, 2001). Gal and Nur (1998) and 

Gal et al. (1998) and later Angheluta et al. (2008) and Angheluta et al. (2010), have shown how this 

may be applied to two solids under normal stress. Numerical models of this instability (Kassner et al., 

2001; Koehn et al., 2003) have predicted that the ATG instability may develop into dissolution cracks. 

However, there is no experimental evidence under controlled load conditions that demonstrates such a 

change. Well controlled experiments in confinement (Dysthe et al., 2003; Dysthe et al., 2002b) and for 

free surfaces (Bisschop and Dysthe, 2006; Jettestuen et al., 2009) clearly suggest that the incorporation 

of dislocations during growth and the anisotropic surface tension of facet-forming crystals bring other 

mechanisms into play that override the ATG and cause the roughness length scale to coarsen and the 

surface to smoothen. The most ambitious theoretical and numerical investigation into the dynamic 

behaviour of the grain boundary (Ghoussoub and Leroy, 2001) performed a finite size domain stability 

analysis of the same instability as ATG and used numerical simulations to study stabilizing and 

destabilizing factors leading island-channel-like geometries to the extreme cases of a thin fluid film or 

a dry contact. Ghoussoub and Leroy (2001) performed a finite size domain instability analysis to study 

numerically destabilizing and stabilizing factors to probe the possibilities going from a stable thin 

fluid film to a dry contact. More recently, van Noort et al., 2008b proposed a comprehensive study of 

the grain-grain contact by taking into account a large number of microscopic processes, including 

grain boundary healing. 

 

3.4.3 Rate laws for aggregate deformation: the linear case 

We have introduced the rate laws for dissolution and diffusion control. Historically, two kinds of 

approaches have been proposed. On the one hand, analytical rheological laws were proposed for 
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diffusion (Raj and Chyung, 1981; Rutter, 1976), dissolution or precipitation (Raj and Chyung, 1981) 

as the limiting step (Table 3). On the other hand, analytical or numerical laws were derived that take 

into account the three steps, and select automatically the limiting step depending on the initial values 

of the thermodynamic and kinetics parameters. Raj and Chyung (1981) proposed to combine the 

effects of diffusion and dissolution in a single law (Table 3), while other studies involved the 

numerical combination of dissolution, diffusion and precipitation steps as well as grain deformation 

(Dewers and Ortoleva, 1990; Niemeijer et al., 2002; Renard et al., 1999) and the coupling with fluid 

flow (Gundersen et al., 2002b) or the enhanced kinetics of dissolution due to the effect of clay 

particles (Gundersen et al., 2002a).  

Conceptually these laws are very similar to the Cobble and Herring Nabarro creep laws (Coble, 1963; 

Herring, 1950; Nabarro, 1948) with grain boundary or intragranular diffusion, respectively. The 

difference is that, due to the lower activation energy of diffusion in water than in solids or at grain 

boundaries, pressure solution creep develops at lower temperature than these two other mechanisms. 

The existence of several mechanisms of irreversible deformation allows defining the field of each of 

these mechanisms in a diagram where the axes are the control parameters of deformation: stress, 

temperature and grain size. Phase diagrams for pressure solution creep were then proposed to account 

for the possibility of deforming rocks by different mechanisms in the lithosphere (Farver and Yund, 

2000; Rutter, 1976; Rutter, 1983; Urai et al., 1986). 

 

3.4.4 Rate laws for aggregate deformation: the non-linear case 

Pressure solution creep flow laws, derived theoretically, are used to fit experimental data of either 

contact indentation or aggregate compaction. Note, however, that empirical laws have also been 

experimentally measured and showed another category of strain-stress relationship where 1) a 

dependence of the strain rate on the total strain was observed (Niemeijer et al., 2002; van Noort et al., 

2008a); 2) the strain rate displays a power law dependence on time during deformation along a single 

contact (Dysthe et al., 2002a; Dysthe et al., 2003) or during compaction of aggregates (Chester et al., 

2007; Croize et al., 2010b; Renard et al., 2001). Such power law behaviour in time was related either 

to some dynamics of grain boundary roughness, or the presence of another mechanism of deformation, 

for example subcritical crack growth or fracturing processes (Gratier, 2011b; Gratier et al., 1999), that 

acted concomitantly with pressure solution creep. Finally, the fact that individual grains deform and 

that their shape changes (see Fig. 29) is also responsible for a non-linear relationship between strain 

and strain rate (Dewers and Ortoleva, 1990; Lehner, 1995; Lemée and Gueguen, 1996; Niemeijer et 

al., 2002; Renard et al., 1999; Spiers and Brzesowsky, 1993). To summarize, the non-linearity in time 
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Figure 29: A cross-sectional view of a cubic-packed network of truncated spheres used to model 

pressure solution at the grain scale. The grain shapes vary due to pressure solution as shown: the 

grain radius Lf increases while the grain flattens (Lz decreases) resulting in a decrease in porosity and 

pore surface, adapted from (Renard et al., 1999). 

 

may come from 1) the action of several deformation mechanisms at the same time; 2) the variation of 

grain geometry during dissolution precipitation (i.e. increase of contact surface area during 

deformation); and 3) some other processes responsible for the roughening of grain boundaries. 

 

4 - Pressure solution creep experiments 
Experiments have three main roles in science: testing theoretical models, measuring coefficients that 

models cannot predict, and producing evidence of new phenomena that may lead to the development 

of new models. We will show how experiments have provided evidence of the main theoretical 

framework of pressure solution but at the same time have cast some doubts on our understanding of 

the governing processes. We will also try to summarize some of the data that may be used in pressure 

solution modelling. 

There are two types of experiments probing the nature of the pressure solution process. On one hand, 

experiments on single interfaces attempt to isolate the basic mechanisms of dissolution – transport – 

precipitation. On the other hand, experiments on aggregates or rock core samples test how stress-

driven dissolution and precipitation processes contribute to a larger scale deformation. Examples of 

the former are grain indentation and precipitation in open pores and veins, examples of the latter are 

compaction, fault gouge creep and strengthening, friction and stylolite formation. In an attempt to 

illustrate the various kinds of experimental studies done in the past 40 years, Table 4 displays a 

selection of experiments performed on various materials, under various thermodynamic conditions, 

where slow creep has been measured under the influence of the coupling between mechanical and 

chemical forces. 
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Table 4 Selected expérimental studies on pressure solution and solution transfer creep 
 

 

reference material composition load 
conditions σ eff (MPa) T (°C) 

grain 
size 

(µm) 

duration 
maximum 

(h) 
fluid composition initial 

porosity 

maximum 
compaction 

strain 
achieved 

strain mechanism / 
observations 

[Renton et 
al., 1969] 

Aggregate: quartz crystals or chert 
pieces + zircon grains 

hydrostatic 
loading 

69 to 117 
(hydrostatic 

pressure) 
272 to 560 180 to 

1000 12 to 325 
air or distilled water + various 
aqueous solutions NaOH, Na2CO3, 
NaCl 

40 to 
55% 

reduction of 
porosity by 
45 to 70% 

pressure solution creep with 
grain indentation 

[Rutter, 
1972] Rock: limestone, marble triaxial 

loading 150 200 to 500 5 to 20, 
200 - water or air 5%, 

0.1% - 

no effect of pressure solution 
creep observed in these 
experiments,  weakening 
effect of water due to its 
action at grain boundaries 

[Sprunt and 
Nur, 1976] 

Rock: sandstone core sample (hollow 
cylinder) 

hydrostatic 
loading 50 270 to 280 250 to 

300 336 distilled water 13% 
reduction of 
porosity by 

50% 

pressure solution creep rate 
measured when varying pore 
pressure and confining 
pressure 

[Rutter, 
1976] 

Salt slab made of a compacted 
aggregate: Na2CO3, K2CO3, SrSO4 

uniaxial 
compaction 880 22 - ~240 water - - 

observed strain partly due to 
pressure 
solution creep 

[Sprunt and 
Nur, 1977] 

Rock slabs or single crystals: 
novaculite/granite/carbonates/halite 
slabs drilled with a hole 

uniaxial 
loading 

up to 45 
Mpa 

22 
(carbonate) 

- 260 
(granite) 

- 170 to 840 

air or  
saturated/undersaturated/dilute HCl 
or acetic acid aqueous solution (< 
0.1M) 

- 
10% (salt), to 

30% 
(limestone) 

free face dissolution and 
deformation of an initially 
circular hole due to elastic 
strain energy 

[de Boer et 
al., 1977] 

Aggregate: quartz + 
kaolinite/bentonite/illite + organic 
matter 

uniaxial 
compaction 55 340 170 6100 water + 1M NaCl 42% ~10% 

compaction of quartz sand by 
pressure solution creep (grain 
indentation and cementation), 
clay should increase the strain 
rate 

[Rutter and 
Mainprice, 
1978] 

Rock: sandstone core sample isotropic 
loading 150 20 to 400 150 1700 water or air - - 

significant water weakening 
effect interpreted as due to 
stress corrosion (subcritical 
microcracking), pressure 
solution may have occurred 

[Baker et al., 
1980] 

Aggregates: carbonate sediments, 
calcite, clastic sediments, basaltic glass 

triaxial 
compaction 45 to 100 200 62 to 

300 21 to 240 
sulfate-free sea water, with 
monitored oxygen isotope 
composition 

10 to 
49% - 

precipitation of carbonate 
driven by surface energy and 
strain energy 

[Raj and 
Chyung, 
1981] 

Aggregate: glass ceramics three point 
bending 7 to 21 950 500 to 

2000 80 melt at the grain boundaries - - 

interface-controlled 
dissolution-precipitation 
creep with island model of 
grain boundary 
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[Raj, 1982] Aggregate: salt uniaxial 
compaction 1.5 to 2.85 35 to 45 200 to 

3000 40 saturated brine - 10% 
pressure solution creep may 
be controlled 
by interface reaction 

[Rutter, 
1983] Aggregate: K2CO3 + kaolinite uniaxial 

compaction 2.5 to  5 20 to 41 ~2 3 unsaturated brine - -   

[Tada and 
Siever, 1986] Single crystal: halite single 

contact 4.5 to 15 50 260 48 to 408 saturated brine or air or nitrogen - - 

undercutting below the 
indenter, pressure solution by 
free-face dissolution 
enhanced by strain energy 
and microcracking 

[Gratier and 
Guiguet, 
1986] 

Aggregate: quartz uniaxial 
loading 50 360 80 to 

125 
1200 (up to 

27600) 
saturated aqueous solution + 0.1M 
NaOH - - 

diffusion-limited pressure 
solution on quartz at low-
crust conditions 

[Rutter et al., 
1986] Aggregate: quartz + kaolinite triaxial shear 

loading 175 up to 600 up to 
200 3600 water or air - - 

creep in the presence of 
water, importance of 
compositional heterogeneity 
(quartz vs. clay), 
microstructure similar to what 
is observed in fault gouge 

[Lockner et 
al. 1986] Aggregate: crushed granite triaxial shear 

loading 140 to 210 22 to 845 90 - distilled water or air - - 

strength of a gouge increases 
with heal time, calculation of 
parameters of the rate-and-
state friction law 

[Spiers et al., 
1990a] Aggregate: halite uniaxial 

compaction 0.5 to 2.2 20 to 90 
100, 
200, 
275 

240 saturated brine 42% up to 35% 
grain boundary diffusion 
controlled pressure 
solution creep 

[Schutjens, 
1991] Aggregate: quartz sand uniaxial 

compaction 9.0 to 20.7 150 to 350 20 to 
100 

340 to 
2200 saturated aqueous solution or air 45 to 

52% 8 to 16% 

compaction by micro-
cracking at 250°C and 
reaction-controlled pressure 
solution creep above 300°C 

[Cox and 
Paterson, 
1991] 

Aggregate: quartz triaxial 
compaction 100 925 3.7 4 to 8 purified water 16% 

porosity 
decrease up to 

50% 

compaction creep by 
dissolution at grain-grain 
contacts with island-channel 
grain contact microstructure 

[Hickman 
and Evans, 
1991] 

Single crystal: halite against halite or 
lens of fused silica 

single 
contact 1 to 14 50 500 to 

1000 71 to 572 saturated brine - - 

no deformation observed for 
halite-halite contacts, 
pressure solution creep when 
using halite-silica contacts, 
competition between contact 
healing and pressure solution 
creep 

[Elias and 
Hajash, 
1992] 

Aggregate: quartz uniaxial 
compaction 0 to 69 150 180 to 

250 7000 saturated aqueous solution (static or  
flow through) 35% 4% 

compaction creep increases 
with effective pressure and is 
controlled by pore fluid 
chemical composition 

[Chester and 
Higgs, 1992] Aggregate: quartz triaxial shear 

loading 150 600 < 1 to 
100 ~28 water or air - - 

creep by a solution 
precipitation mechanism may 
explain fault healing during 
the interseismic period 
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[Gratier, 
1993] Single crystal: halite single 

contact 1 or 65 30 to 40 0.2 to 
1.6 

720 to 
6430 

saturated (or slightly undersaturated) 
brine - - 

diffusion controlled pressure 
solution creep with saturated 
brine, elastic strain 
undercutting with slightly 
undersaturated brine 

[Hickman 
and Evans, 
1995] 

Single crystal: halite against halite or  
fused silica (+ layer of 
montmorillonite) 

single 
contact 0.5 to 13.5 8.3 to 90.2 300 to 

700 100 to 572 saturated brine or air or nitrogen - - 

diffusion-controlled pressure 
solution creep; clay minerals 
increase the rate of pressure 
solution creep by a factor 5 

[Dewers and 
Hajash, 
1995] 

Aggregate: quartz sand triaxial 
compaction 0 to 55 150 to 200 10 to 

300 13800 saturated fluid - 10% 

exponential dependence of 
pressure solution creep rate 
on effective stress, 
competition between pressure 
solution and 
micro-cracking 

[de Meer et 
al., 1997] Aggregate: gypsum uniaxial 

compaction 0.5 to 2.5 22 30 to 
280 120 

saturated CaSO4 aqueous solution, 
open system (fluid flow) or closed 
system 

- ~4% 
precipitation controlled 
pressure solution 
creep 

[de Meer and 
Spiers, 1997] Aggregate: gypsum uniaxial 

compaction 0.5 to 2.5 22 32 to 
282 168 to 840 

saturated CaSO4 aqueous solution, 
open system (fluid flow) or closed 
system 

~45% 4 to 16% 

precipitation controlled 
(closed system), diffusion or 
dissolution controlled (open 
system) pressure solution 
creep 

[Karner et al. 
1997] Aggregate: quartz triaxial shear 

loading 175 230 to 636 2 to 3 28 distilled water - - 

strength of a gouge increases 
with heal time and 
temperature, calculation of 
parameters of the rate-and-
state friction law 

[den Brok et 
al., 1999a] Aggregate: sodium chlorate uniaxial 

compaction 2.4 or 5 22 75 to 
500 14 to 83 air or saturated NaClO3 aqueous 

solution - up to 27% 
grain indentation, pressure 
solution creep 
limited by diffusion 

[Martin et 
al., 1999] Single crystal: halite (+sheet of mica) single 

contact 0.1 to 2 30 to 50 3000 to 
9000 1000 saturated brine - - 

no effect of stress on strain 
rate, observation of sudden 
fast creep events without any 
clear trigger 

[Gratier et 
al., 1999] Single crystal: halite single 

contact 0 to 80 25 200 to 
600 700 saturated brine - - 

the formation of microcracks 
enhances 
pressure solution creep 

[Bos et al., 
2000a] 

Aggregate: halite+kaolinite or 
quartz+kaolinite 

rotary shear 
loading 

5 to 9 
(normal 

load) 
22 100 

(NaCl) up to 6 air or oil or saturated brine - - 
pressure solution creep may 
control frictional-viscous 
flow of fault gouge 

[Bos and 
Spiers, 2000] Aggregate: halite+kaolinite rotary shear 

loading 
2.5 (normal 

load) 22 100 1.7 saturated brine - < 8% 
pressure solution creep may 
control fault 
healing, effect of clays 

[Bos et al., 
2000b] Aggregate: halite rotary shear 

loading 

0.5 to 3 
(normal 

load) 
22 50 to 

200 - mixture of saturated brine + 
methanol or air or silicone oil - - 

strain of the sheared 
aggregate is controlled by 
both pressure solution and 
cataclasis 
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[Renard et 
al., 2001] Aggregate: halite + clays uniaxial 

compaction 0.1 to 4.7 22 106 to 
250 360 saturated brine or air - 8% 

clay promote pressure 
solution  creep, strain follows 
a power law in time 

[Zhang et al., 
2002] Aggregate: calcite uniaxial 

compaction 1 to 4 22 15 to 
70 600 saturated aqueous solution or decane 

or air 50% 1% 
pressure solution creep in 
calcite controlled 
by precipitation kinetics 

[de Meer et 
al., 2002] Single crystal: halite single 

contact 1.5 to 20 28 50 to 
180 288 saturated brine - - 

in-situ measurement of the 
diffusivity of the grain 
boundary during pressure 
solution creep 

[Dysthe et 
al., 2002a, 
2003] 

Single crystal: halite single 
contact 1 to 20 23 to 90 30 to 

200 
~10 to 
1000 saturated brine - - 

no steady state during 
pressure solution creep, 
power-law time dependence 
of both strain and grain 
boundary geometry, 
observation of precipitated 
material, stress cycling 
variations increases the strain 
rate 

[Hellmann et 
al., 2002a, 
2002b] 

Aggregate: chalk rock core samples triaxial 
loading 4 to 8 25 to 80 ~1 16800 saturated aqueous solution (+NaCl) 

or dry or propanol 40% 1.6 to 2.8% 

fluid composition controls the 
compaction rate of chalk, , 
nonlinear compaction with 
time 

[Niemeijer et 
al., 2002] Aggregate: quartz isotropic 

loading 50 to 150 20 to 600 28 to 
125 250 saturated aqueous solution or dry 25 to 

31% up to 24% 

compaction by intergranular 
pressure solution creep, some 
evidence of subcritical 
microcracking 

[Alcantar et 
al., 2003] Single crystal: quartz against mica single 

contact 
up to 50 

Mpa 22 up to 
25 - distilled water + NaCl/CaCl2 - - 

measurement of the thickness 
and transport properties of the 
water film trapped at grain 
boundaries by a surface-force 
apparatus. 

[He et al., 
2003] Aggregate: quartz or novaculite uniaxial 

compaction 34,5 150 10 to 
350 5900 distilled water (static or  flow 

through) or air 
35 to 
44% up to 5% 

compaction creep is enhanced 
by the flow of undersaturated 
fluid 

[Skvortsova 
et al., 2003] Single crystal: halite single 

contact 20 to 30 22 2000 1700 saturated brine or heptane - - 

diffusion-limited pressure 
solution creep efficient below 
30MPa, dislocation glide 
mechanism above 

[Renard et 
al., 2004a] Aggregate: halite uniaxial 

compaction 0.1 to 0.6 22 100 to 
150 72 to 168 saturated brine - 18% 

3D X-ray tomography 
imaging during pressure 
solution creep, permeability 
variation due to compaction 
and precipitation, observation 
of precipitated material 

[Zubtsov et 
al., 2004] Aggregate: halite + calcite uniaxial 

compaction 2.3 33 80 to 
100 120 saturated brine or brine or paraffine 47% 27% 

competition between 
diffusion-limited pressure 
solution creep and grain 
boundary healing that 
decreases the strain rate 
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[Zhang and 
Spiers, 
2005b] 

Aggregate: calcite uniaxial 
compaction 1 to 4 22 6 to 14 480 saturated aqueous solution + 

addition of 10-6 to 10-3 M phosphates 
46 to 
56% 2.6% 

pressure solution creep 
controlled by interface-
reaction kinetics, phosphate 
ions decrease the strain rate 
by two orders of magnitude 

[Zhang and 
Spiers, 
2005a] 

Aggregate: calcite uniaxial 
compaction 1 to 4 22 2 to 68 288 

saturated aqueous solution + 
addition of various salts (NaCl, 
MgCl2, phosphate) or silicon oil or 
air or alcohol or decane 

39 to 
52% 2% 

diffusion-controlled pressure 
solution, salinity (up to 0.5 
M) increases the rate of 
pressure solution creep for 
calcite. The presence of some 
inhibiting ions or oil reduces 
the strain rate 

[de Meer et 
al., 2005] Single crystal: halite against CaF2 

single 
contact 1 to 5 22 180 to 

460 360 saturated brine - - 

in-situ infra-red spectroscopy 
measurement of the thickness 
of the grain boundary during 
pressure solution creep, 
observation of dynamic grain 
boundary 

[Jordan et al., 
2005] Single crystal: halite against SiO2 

single 
contact 5 to 15 30 200 to 

1000 720 saturated aqueous solution or air - - 

local plastic deformation in 
the loaded interface enhances 
dissolution, which controls 
the overall fluid-assisted 
strain, observation of 
precipitated material 

[Zubtsov et 
al., 2005] Single crystal: calcite single 

contact 50 to 200 40 50 to 
300 1000 saturated aqueous solution or 5% 

NH4Cl or air - - 

diffusion-controlled pressure 
solution, microcracks 
increase the strain rate for one 
order of magnitude at least 

[Gratier et 
al., 2005] Aggregate: quartz uniaxial 

loading 50 350 100 to 
125 1200 saturated aqueous solution + 0.1M 

NaOH - - 

observation of corrugated 
grain contacts during pressure 
solution creep, interpreted as 
micro-stylolites 

[Kay et al., 
2006] 

Aggregate: quartz from crushed 
sandstone 

isotropic 
loading 13.8 120 75 to 

425 800 distilled water - - 
compaction creep by Ostwald 
ripening + 
precipitation of quartz 

[Karcz et al., 
2006] Single crystal: halite single 

contact 20 to 69 50 170 to 
275 100 saturated brine - - 

observation of a dynamic 
grain interface with channels 
and islands using confocal 
microscopy 

[Anzalone et 
al., 2006] 

Single crystal: quartz against mica or 
mica against mica 

single 
contact 1 to 50 21 250 to 

350 110 distilled water +  CaCl2 (0.03 to 
0.06M) or NaCl (0.6M) - - 

evidence of electrochemical 
process driven dissolution 
using surface force apparatus, 
interface reaction rate 
controlling dissolution 

[He et al., 
2007] Aggregate: quartz 

triaxial 
loading + 
fluid flow 

54.5 150 10 to 
1000 5900 supersaturated to saturated aqueous 

solution 
34 to 
45% 4.3% 

quartz compaction under 
diagenetic conditions, 
microgranulation at grain 
contact, resulting in ultra-fine 
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particules, may drive 
dissolution 

[Chester et 
al., 2007] Aggregate: quartz uniaxial 

compaction 34.5 150 35 to 
255 4300 distilled water 33 to 

46% 4.4% 

creep deformation by 
microcracking (subcritical 
crack growth), no observation 
of pressure solution creep,  

[Le Guen et 
al., 2007] Rock: limestone, sandstone 

triaxial 
loading + 
fluid flow 

2.2 to 8 25 to 80 - 11800 saturated aqueous solution + 
dissolved CO2 

16 to 
30% 1% 

enhancement of creep in 
limestone by injection of 
dissolved CO2 

[van Noort et 
al., 2008a] Aggregate: quartz uniaxial 

compaction 25 to 100 300 to 600 3 to 
129 310 saturated aqueous solution 30 to 

41% ~30% 

interface-reaction controlled 
pressure solution is the main 
compaction mechanism, ESD 
imaging of grain boundaries 
after deformation 

[Niemeijer et 
al., 2008a] 

Aggregate: halite, halite+muscovite, 
quartz shear loading 5 to 10 65 106 to 

212 3 saturated aqueous solution or air ~40% - 

restrengthening of an 
analogue fault gouge by 
pressure solution creep and 
grain boundary 
healing/welding 

[Liteanu et 
al., 2009] Aggregate: limestone uniaxial 

compaction 30 80 28 to 
106 58 

saturated aqueous solution + 
supercritical CO2 + salts (0 to 3M 
NaCl or MgCl2) 

25% 2% 
supercritical CO2 or high salt 
content increases the 
compaction rate of calcite 

[Greene et 
al., 2009] Single crystal: quartz against mica single 

contact 0.2 to 0.3 25 - 30 distilled water + 0.03 M CaCl2 - - 

the electric potential 
difference drives quartz 
dissolution, as measured 
using a surface force 
apparatus 

[Gratier et 
al., 2009] Single crystals: quartz single 

contact 25 to 350 350 to 360 200 6200 saturated aqueous solution or NaOH 
1M saturated aqueous solution or air - - 

diffusion-limited pressure 
solution creep with 
exponential stress 
dependence, grain surface 
roughness controls the strain 
rate 

[Traskin et 
al., 2009] 

Single crystals or aggregates: halite, 
calcite, ammonium nitrate 

single 
contact and 
uniaxial 
compaction 

0.6 to 1 22 20 to 
350 30 saturated aqueous solution or 

paraffin or heptane - - cyclic stress variations 
increases the strain rate 

[Niemeijer et 
al., 2010] 

Aggregate: halite or halite + muscivite 
mixtures shear loading 5 22 106 to 

212 3 saturated brine or air 10 to 
20% - 

restrengthening of an 
analogue fault gouge by 
pressure solution creep and 
grain boundary 
healing/welding 

[Croizé et al., 
2010a] Aggregate: carbonate uniaxial 

compaction 10 to 30 22 63 to 
500 250 saturated aqueous solution + 5% 

NH4Cl or decane 
28 to 
48% 47% pressure solution creep has 

power-law time dependence 
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[Croizé et al., 
2010b] 

Single crystals: calcite against glass or 
sapphire 

single 
contact 430 to 830 22 40 to 

80 25 saturated aqueous solution - - 

nanometer resolution 
roughness measurements 
indicate that the rate of 
pressure solution creep in 
calcite is controlled by 
interface roughness and 
formation of cracks 

[Hangx et al., 
2010] Aggregate: quartz or feldspar uniaxial 

compaction 35 to 100 20 to 100 25 to 
425 60 saturated solution + CO2+ NaOH, 

Ca(OH)2 or air 
39 to 
44% up to 3% 

creep observed by subcritical 
cracking inducing corrosion 
damage, no pressure solution 
creep 

[Zhang et al., 
2010] 

Aggregate: calcite or crushed 
limestone 

uniaxial 
compaction 20 to 47 28 to 150 12 to 

86 960 saturated solution or air or oil, 
intermittent flow 

25 to 
34% up to 10% 

diffusion-controlled pressure 
solution creep at low strains; 
for high strains, the strain rate 
decreases (interface-
controlled process) 

[Pachon-
Rodriguez et 
al., 2011] 

Single crystal: gypsum single 
contact - 22 0,04 - undersaturated solution - - 

stress-enhanced dissolution 
measured under the tip of an 
atomic force microscope and 
interpreted as pressure 
solution creep 

[Zhang et al., 
2011] 

Aggregate: calcite or crushed 
limestone 

uniaxial 
compaction 30 to 40 150 14 to 

37 460 saturated solution + NaCl,  Mg2+, 
HPO4

2-, intermittent flow 
27 to 
36% up to 10% 

flow of fluid may modify the 
strain rate and may induce a 
switch from diffusion- to 
interface-controlled pressure 
solution creep 

[Kristiansen 
et al., 2011] Silica glass against gold single 

contact 0.2 to 0.5 23 - 2 distilled water + Ca(NO3)2 solution - - 

evidence of electrochemical 
process driven dissolution 
using surface force apparatus 
with electrochemical cell 

[van Noort et 
al., 2011] Single crystal: quartz or lense of glass single 

contact 12 to 15 301 to 353 ~60 648 saturated aqueous solution - - 

impedance spectroscopy 
allows calculating the 
diffusivity of the interface 
during pressure solution 
creep, observation of a rough 
interface 
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Earlier experiments (Baker et al., 1980; de Boer et al., 1977; Raj, 1982; Renton et al., 1969; Rutter, 

1972; Rutter, 1976; Sprunt and Nur, 1976; Sprunt and Nur, 1977) attempted to identify the stress 

conditions under which dissolution and precipitation of matter could induce a measurable strain. To 

this end, either core samples or aggregates produced by crushing rocks or sand particles were used. 

Such experiments were extended to various kinds of minerals (quartz, calcite, feldspar, gypsum and 

clays), various conditions of stress, temperature and fluid composition relevant to geological creep 

processes occurring in the Earth’s upper crust. These experiments show a collective strain behaviour 

of a sample made of a large number of deforming particles, and the end-result is an average strain-

stress relationship. They are also useful for testing how the variations in control parameters modify the 

creep rate and its rate-limiting step. However, it is sometimes difficult to identify the underlying 

deformation processes: for example pressure solution creep may compete or interact with other 

deformation mechanisms such as stress corrosion creep (Chester et al., 2007; He et al., 2003; He et al., 

2007) or dynamic fracturing (Gratier et al., 1999). For this reason, (Tada and Siever, 1986) designed 

an experiment where dissolution under a knife-edge was monitored, thus proposing, to the authors’s 

knowledge, the first study of a single contact undergoing pressure solution creep. This was following 

later by the development of experimental techniques where a single grain-grain contact could be 

imaged optically during pressure solution creep (Gratier, 1993; Hickman and Evans, 1991; Hickman 

and Evans, 1995). In such kind of experiments, it is also possible to measure in-situ the strain (Croize 

et al., 2010b; Dysthe et al., 2002a; Dysthe et al., 2003; Hickman and Evans, 1991; Karcz et al., 2006; 

Zubtsov et al., 2005), and the transport properties of the interface under stress using infra-red 

spectroscopy (de Meer et al., 2005; de Meer et al., 2002), impedance spectroscopy (van Noort et al., 

2011) or surface force apparatus (Greene et al., 2009; Kristiansen et al., 2011). The two families of 

experiments – deformation of aggregate or single contact studies – are described in more detail in the 

following sections. 

 

4.1 - Single interface experiments 

The last 20 years has seen a range of experiments (Table 4) demonstrating that, even in the simplest 

possible case of a single solid interface under pressure immersed in a saturated solution, the behaviour 

is always complex mainly due to the coupling of pressure solution with other processes such as 

plasticity, fracturing and electrochemistry. The experiments have revealed the key problem in our 

understanding of the pressure solution process: the stability of the pressure solution interface, and 

more specifically the conditions under which a pressure solution interface will be smooth with a fluid 

film as described in the seminal work of Weyl (1959). And when the fluid film model breaks down, 

how does the interface evolve towards an island-and-channel structure? Experiments have been 
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performed on four different materials, ionic salts (de Meer et al., 2002; Dysthe et al., 2002a; Dysthe et 

al., 2003; Gratier, 1993; Gratier et al., 1999; Hickman and Evans, 1991; Hickman and Evans, 1995; 

Jordan et al., 2005; Karcz et al., 2006; Martin et al., 1999; Skvortsova et al., 2003; Tada and Siever, 

1986; Traskine et al., 2009), calcite (Croize et al., 2010a; Zubtsov et al., 2005), gypsum (Pachon-

Rodriguez et al., 2011) and quartz (Alcantar et al., 2003; Anzalone et al., 2006; Gratier et al., 2009; 

Greene et al., 2009; Kristiansen et al., 2011; van Noort et al., 2011) with a wide range of solubilities, 

interface kinetics and elastic/plastic properties. 

 

4.1.1 Coupling with other processes: plasticity, fracturing and electrochemistry 

Most single interface experiments have been performed on sodium chloride (NaCl, halite) 

monocrystals. The main reason for this is its high solubility: 26 weight % (Pinho and Macedo, 2005) 

and rapid interface kinetics at room temperature. However, few rock-forming minerals are as 

plastically deforming as NaCl.  

 

4-1-1-1 Plasticity: NaCl 

Tada and Siever (1986) designed a single interface experiment pressing a knife edge onto polished 

(001) surfaces of halite single crystals in the presence of 0.15 l of NaCl saturated brine at a 

temperature of 50 +/-0.5°C. They reported that the knife edge indented into the halite crystal with a 

typical rate of 4 µm per day. However, the dissolution was even greater in the grooves that formed 

next to the contact between the knife edge and the crystal. Their interpretation was that pressure 

solution is not a process of dissolution and transport in a thin fluid film, but plastic deformation under 

the knife edge and rapid dissolution at free surfaces of the plastically deforming material. This so-

called “undercutting” model of pressure solution has been highly influential. 

There are two main concerns with the generality of their results. First, NaCl, like all halides, easily 

deforms plastically at room temperature unlike other major rock-forming minerals. Secondly, the bulk 

dissolution and precipitation of NaCl due to the temperature variations in such a large volume of brine 

relative to the surface area of the crystal amounts to about 40 µm height change of the entire crystal 

per temperature cycle, i.e. ten times more than the daily indentation. In fact, the +/- 1% weight change 

of their samples corresponds to an overall height change of +/- 30 µm. Thus, the most important 

lesson learned from this experiment is perhaps to use small fluid volumes. 

Both earlier (Sprunt and Nur, 1977) and later (den Brok and Morel, 2001; Koehn et al., 2004; Morel 

and den Brok, 2001) studies have shown the effect of strain energy on dissolution and precipitation. If 

there is a bulk dissolution-precipitation cycle due to temperature changes this would tend to dissolve 

preferentially at free surfaces with high strain energy, i.e. next to the knife edge. 
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Later studies by Hickman and Evans (1991) and (Gratier, 1993), where the brine volume to crystal 

surface area ratio was at least 100 times smaller than in the experiments of Tada and Siever (1986), 

showed that the indentation was directly underneath the piston. It was also demonstrated that the 

indentation rate depended on the piston diameter and the normal stress under the indenter and, thus 

semi-quantitatively supporting the diffusion limited dissolution in a trapped fluid phase. 

Different suggestions for the interplay of water with plasticity have been proposed. In siliceous 

minerals and glasses water is known to split the strong Si-O bonds and replace them by much weaker 

hydrogen bonds. In high temperature plasticity of siliceous minerals this “hydrolytic weakening” has 

been studied extensively since the first observation by Griggs (1967). The same water weakening 

mechanism is known to be responsible for high rates of subcritical crack growth in siliceous minerals 

and glasses (Lawn, 1993). Recent studies suggest that even in the brittle, subcritical fracture of 

siliceous glass at room temperature there is a plastic process zone affected by water (Bonamy et al., 

2006). A suggested mechanism applicable to salts (Skvortsova, 2004) and other minerals (Traskin, 

2009; Traskin et al., 1998) is the so-called Rehbinder effect (Rehbinder and Shchukin, 1972). The 

original work of Rehbinder in the 1930s was refuted by Andrade et al. (1950) and has since not been 

mentioned outside Russian scientific literature. The current use of the term “Rehbinder effect” seems 

to be generalized to all effects of a surrounding medium on the mechanical properties of the crystal. 

This non-specific definition implies that several mechanisms may be at work. The Joffe (or Ioffe) 

effect is more specific: ionic crystals fracture when dry, but deform plastically when wet (Joffe et al., 

1924 ). Joffe explained this as a pure surface phenomenon: water blunts cracks and removes stress 

concentrators on the crystal surface. Fractures do not therefore grow in the ionic crystals (which have 

high dislocation mobility at room temperature) and plastic deformation becomes the most efficient 

response to the exerted stress. For some time, the explanation was challenged by theory and 

observation of water inside wet ionic crystals (Barnes, 1933), but more careful experiments later 

refuted this idea and firmly supported Joffe’s explanation (Kellogg and Pohl, 1964). Rock salt has 

been shown to be “weakened” by water (Carter et al., 1993; Urai et al., 1986) by aiding 

recrystallization. This recrystallization is not an intracrystalline creep process, but a process where 

grains with higher energy (due to higher dislocation density and higher surface energy, i.e. smaller 

grains) are dissolved and lower energy grains are precipitated. This process is also known as Ostwald 

ripening. In conclusion, to the authors’ knowledge there is only evidence of direct interplay between 

plasticity and water in point defects for high temperature siliceous minerals and possibly for siliceous 

glasses at low temperatures. The undercutting mechanism of pressure solution can therefore be viewed 

as a dissolution-recrystallization process where the increased strain energy (with or without defects) 

drives dissolution (Spiers and Brzesowsky, 1993). 
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Figure 30: (a) Radial fractures emanating from a cylindrical hole in NaCl created by a piston 

indenter, adapted from (Gratier et al., 1999); (b) Dissolution hole in quartz with branched corrosion 

fractures, adapted from (Gratier et al., 2009); (c) Dissolution hole connected to a radial fracture in 

calcite, adapted from (Croize et al., 2010b); (d&e) Cataclastic solution creep in a large grain pressed 

against small grains of NaClO3 and (f) Grain boundary models adapted from (den Brok et al., 2002): 

(i) Thin fluid film, adapted from (Rutter, 1976; Weyl, 1959), (ii) island-channel model, adapted from 

(Lehner, 1990; Raj, 1982; Spiers and Schutjens, 1990), (iii) island-crack model, adapted from (den 

Brok, 1998; Gratz, 1991); (g) axial view of dissolution pits along a dislocation at the bottom of a 

microstylolitic peak (Fig. 11) and cross sectional view in inset, adapted from (Gratier et al., 2005). 

 

An example of this was given by Karcz et al. (2006) and Karcz et al. (2008) who demonstrated the 

plastic deformation and undercutting mechanism in in-situ experiments performed with a confocal 

microscope to follow the deformation of a NaCl cone against a silica window. Due to thermal 

gradients, the undercutting dissolution is fast enough to drive the system into a state where the normal 

stress at the glass-NaCl interface fluctuates around 40-60 MPa, a stress where NaCl undoubtedly 

deforms plastically. One interesting result of their study is that if a grain contact should at some stage 

be stressed beyond a certain threshold and if the loading of the grains is constant, the contact may be 

auto-maintained in a plastic state with rapid undercutting dissolution. 

 

4-1-1-2 Effect of fracturing: NaCl, quartz and calcite 

A study of the interplay between fracturing and pressure solution was performed by Gratier et al. 

(1999) combining field evidence, modelling and indenter experiments on NaCl (Fig. 30a). They 

showed that pressure solution rates were higher when the sample fractured radially under and around 
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the indenter. The fractures reduced the diffusion distance, d, along the indenter-NaCl interface and the 

rate increased as d-2. A larger experimental study on quartz (Gratier et al., 2009) did not show radial 

fractures as for NaCl, but circular fractures that aided free surface dissolution driven by strain energy 

(Fig. 30b). They found that displacement rates of the indenter increase with roughness of the 

dissolution surface, but concluded that the indentation rate was limited by diffusion in the fluid phase 

trapped under stress. Zubtsov et al. (2005) measured pressure solution indentation rates on calcite and 

observed the tendency towards radially and crystallographically oriented fracturing. Croize et al. 

(2010b) (Fig. 30c) were able to demonstrate that the indentation rates were greater for cracked 

interfaces than for non-cracked interfaces. In some experiments the fractures propagated slowly, 

through so-called subcritical crack growth. The combination of pressure solution and sub-critical crack 

growth has also been demonstrated in aggregate compaction experiments on halite (Bos et al., 2000a), 

calcite (Liteanu and Spiers, 2009) and quartz (He et al., 2007; Niemeijer et al., 2002; Schutjens, 1991). 

den Brok et al. (2002); den Brok (1998); den Brok and Morel (2001); Morel and den Brok (2001) 

observed that the grain contacts that had undergone pressure solution were structured and that sodium 

chlorate contacts under stress in brine caused stress corrosion cracks to appear normal to the grain 

contact (Fig. 30d – e). Such observations support the so-called static island channel model (Gratz, 

1991) of grain contact (Fig. 30f), where the limiting factor is either diffusion through a 1-10nm thick 

fluid film over the width, disl, of a typical island or outward diffusion through the channel network 

with a greater fluid thickness.  

On the other hand, in polycrystalline aggregates like in Fig. 30d and e, tension stresses may easily 

occur that may cause subcritical cracks to grow. Note that at grain scale, microstylolitic peaks are 

rooted on dissolution pits that developed where a dislocation emerged at the solution cleavage surface, 

(Gratier et al., 2005) (Fig. 30g). 

 

4-1-1-3 “Electrochemistry”: quartz and clays 

As mentioned previously, there is ample field evidence for the accelerating effect of clays on pressure 

solution. Because of the very slow dissolution rates and low solubility in this system it has been 

difficult to study this experimentally. A series of high-resolution experiments was performed with a 

Surface Forces Apparatus (SFA) on mica and quartz interfaces (Alcantar et al., 2003; Anzalone et al., 

2006; Greene et al., 2009; Kristiansen et al., 2011; Meyer et al., 2006). The SFA provides very 

accurate control of the normal force and extremely accurate measurement of the contact area and 

dissolution of the surfaces. Unwanted effects such as fracturing or plastic deformation are thus 

avoided. In addition, to obtain accurate measurements of dissolution rates, (Greene et al., 2009) were 

able to control the electrical potential difference between isolated electrodes located less than 30µm 

from the active interface (Fig. 31). The most striking result of their study is an exponential relationship 
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Figure 31: Dissolution force atomic experiments on mica-quartz interfaces adapted from (Greene et 

al., 2009): (a) Schematic drawing of the “grain contact” and the electrodes in this experiment; (b) 

Dissolution rate with no imposed electrical potential over the electrodes and 10-fold increase in 

dissolution rate immediately after a 10V electrical potential was applied; (c) The measured electrical 

potential over the interface varied from experiment to experiment, and varied with time for a single 

experiment. There was, however an exponential relation between the electrical potential difference 

and the dissolution rate. 

 

between the electrical potential difference and the dissolution rate (Fig. 31c). For like surfaces (quartz-

quartz and glass-glass) there was no passive electrical potential difference and dissolution rates were 

very small. For unlike surfaces the passive electrical potential difference varied between 15 and 30 

mV (glass-mica) and 50 and 150 mV (quartz-mica). When the electrical potential difference over a 

quartz-mica surface was suddenly imposed to a value of 10 V, the dissolution rate increased tenfold 

instantaneously (Fig. 31b). When the applied potential difference was turned off the dissolution rate 

slowly returned to “normal”. However, they were not able to demonstrate acceleration of like surface 

dissolution with forced electrical potential difference. The rates and electrical potential differences 

also vary with pH and ion content of the solution. It should be stressed that the electrodes were 

isolated from the electrolyte and therefore there was no electrochemical circuit transporting charges 

and no electrochemical work was performed. The mechanism at work is not an electrochemical cycle 

but rather an asymmetric ion distribution in the fluid film due to the asymmetric surface charge 
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distributions of the two surfaces (or due to the external electrical field). Greene et al. (2009) suggest 

that calcium ions participate as a catalyst to SiO2 dissolution. It follows that, as previously suggested 

by Bjorkum et al. (1998), pressure is unimportant for this process, only the proximity of the mica and 

quartz surfaces matter and they conclude that “This electrical potential difference, for as yet unknown 

reasons, appears to be the driving force for the dissolution, rather than pressure.”	
  

Since no electrochemical work is done the electrical potential difference cannot be considered a 

driving force in the sense of irreversible thermodynamics. We have explicitly included such 

electrochemical effects in our treatment of the driving force and of the dissolution kinetics above, see 

Eq. (14). Greene et al. (2009) also report a cyclic (but not periodic) slowing down and sudden 

speeding-up of dissolution that resembles that described by Martin et al. (1999). The “rejuvenation” of 

the interface does not depend on changes in normal stress as for NaCl (Dysthe et al., 2002a; Dysthe et 

al., 2003). Kristiansen et al. (2011) have recently shown how the electrochemical potential at the 

contacting surfaces influences quartz dissolution. They present a microscopically based equation for 

the change of quartz thickness, H, as a function of the electrochemical potential ΔU and the pressure 

dependent activation energy, Ep: 

.        (34) 

This equation expresses the strain rate as a product between a dissolution kinetic factor and a pressure 

factor. This study brings us a long step forward in detailing the microscopic influence of ionic 

concentration, pH and ionic strength on the surface electrochemical potential ΔU, and by giving 

microscopic parameters to calculate the prefactor C. Another study by the same group (Valtiner et al., 

2011) also demonstrates the effect of surface roughness on ΔU. Unless electrochemical energy is 

supplied to working electrodes the only source of energy to perform deformation work is still the 

surface normal stress. It is evident from all these studies that the electrochemical potential is extremely 

important in changing the dissolution rate of quartz (gAin Eq. 31) but the equation (31) shows that the 

strain rate is also proportional to a pressure dependent factor, which is the thermodynamic driving 

force. These results bring us much closer to an understanding of the nature of pressure solution at 

clay-quartz interfaces. Since field evidence also shows that clays enhance pressure solution, one may 

speculate whether there is a similar mechanism there.  

 

4.1.2 The interface stability: thin film, island - channel or contact healing 

We have already discussed the existence of a fluid film between two solid surfaces that can withstand 

a normal pressure much higher than the bulk fluid pressure: the so-called disjoining pressure. The 

fluid film thickness can vary from about 0.5nm (two molecular layers) to possibly 100nm depending 

on the nature of the mineral, fluids and the normal stress. 
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Grain contacts during pressure solution cannot in general be assumed to be atomically flat, they are 

rather rough and dynamically changing. If it is assumed that local normal stress varies with local fluid 

film thickness and if one or both surfaces dissolve faster at points of higher stress (i.e. closest contact), 

a straightforward analysis predicts that the closest contacts will dissolve first and the interface will 

tend to become smoother. There are however, some possible destabilizing mechanisms: surface energy 

gain by creating solid-solid contacts (also called grain contact healing), transport or instabilities due to 

stress distributions that are non-uniform and/or not normal to the surface. The interfacial energy 

between two solids of the same material is much lower than the energy of a solid-confined fluid-solid 

phase. This means that, although the confined fluid phase can exist between two atomically flat solids, 

it is mostly a metastable phase. Thus, given enough time, it is to be expected that such grain 

boundaries would find a path to expel the fluid and gain interfacial energy. Fig. 32a shows an example 

of the dynamics of healing a crack or a grain boundary. 

 

4-1-2-1 Experiments on solid/fluid/solid interface stability 

Hickman and Evans (1991) opened the debate on the interface stability by demonstrating that a halite 

lens pressed gently onto a halite flat slab would promote contact healing (Fig. 32b) with no pressure 

solution occurring, while a halite lens pressed onto a silica flat slab would cause pressure solution in a 

(supposed) thin fluid film. The experiments were carefully controlled to avoid large contact stresses, 

surface damage of the crystals and temperature variations. They measured shape changes of the halite 

lens by microscopic imaging of interferometric fringes. Fig. 32c–d includes two examples of grain 

contacts obtained by pressure solution of NaCl and quartz where the patterns resemble healed contacts 

with trapped fluids. 

Schutjens and Spiers (1999) took up the problem again using halite-halite and halite-glass contacts. 

They used prismatic crystals instead of rounded, polished crystals. Like Hickman and Evans (1991) 

they made in situ observations of changes in the interface. They also oriented the contacting crystals 

either parallel or at 45 degrees to each other. It should be noted that in neither study (Hickman and 

Evans, 1991; Schutjens and Spiers, 1999) did they have any independent measure of the convergence 

of the crystals apart from microscopy. In no experiment did (Schutjens and Spiers, 1999) observe 

healing of the grain contacts. The contact areas clearly seemed to grow due to (pure) pressure solution. 

They compared their results to those of Hickman and Evans (1991) and concluded that the most 

probable reason for contact healing in the earlier experiments was the small radius of curvature at the 

contact perimeter of the lens against the flat. This small curvature is a major driving force for 

recrystallization. Since there is an interfacial energy gain when γss<2γsl, the state of a grain contact is 

dependent on its geometry and history. They also calculated the product ΔgbD to be in the range of 10-

19 to 10-16 m3s-1, i.e. the higher values are larger than what can be explained with the fluid film model. 
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Figure 32: Interface destabilization and subsequent stabilization by (a-d): healing (expelling fluid) 

and (e-g) Asaro-Tiller-Grinfeld (ATG) instability and subsequent Ostwald ripening: (a) Crack healing 

dynamics in laponite initiating at one point, driving fluid out while leaving a cylindrical track that 

ends up as small fluid inclusions, adapted from (Renard et al., 2009); (b) NaCl lens pressed carefully 

against flat NaCl crystal: the growing black region is a dry grain boundary with crystallographically 

oriented fluid tubes and inclusions, adapted from (Hickman and Evans, 1991); (c) Trace of pressure 

solution grain boundary of a small quartz grain indenting on polished quartz, adapted from (den Brok 

and Spiers, 1991); (d) NaCl grain boundary from compaction by pressure solution of NaCl powder, 

fluid tubules and circular inclusions are seen, adapted from (Ghoussoub and Leroy, 2001), courtesy of 

C. Spiers; (e) In situ image of NaCl-glass contact immediately following a normal force increase that 

induced roughness formation of the surface, and the same interface 150 hours later where all the 

small scale roughness has disappeared, adapted from (Schutjens and Spiers, 1999); (f) Ex situ white 

light interferometry surface measurements of NaCl-gold contacts where surface smoothing was 

stopped after 1, 10, 100 and 1000 hours, adapted from (Dysthe et al., 2002a; Dysthe et al., 2003); (g) 

Illustration of ATG instability mechanism, adapted from (Angheluta et al., 2009) and subsequent 

smoothing driven by surface tension as in Ostwald ripening and spinodal decomposition 

 

Another, very interesting observation reported by Schutjens and Spiers (1999) was that, when the 

normal load was increased, the grain contact immediately became rougher, creating a dynamic island-

channel geometry (Fig. 32e). This roughness gradually disappeared with time after the load increase. 

This roughening and time-dependent restructuring of the rough surface was later studied 

systematically by Dysthe et al. (2002a) and Dysthe et al. (2003) using high resolution dilatometers and 

a white light interferometer (Fig. 32f). The most probable explanation of the destabilization leading to 
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immediate roughening is the Asaro-Tiller-Grinfeld (ATG) instability (Fig. 32g) that occurs under 

normal stress between two solid surfaces when they have different dimensions or elastic properties 

(Angheluta et al., 2009; Gal and Nur, 1998; Gal et al., 1998) or if there is a fluid film that does not 

transmit shear stress (Bonnetier et al., 2009) (see discussion in section 3.4.2). Most single interphase 

experiments have found similar curves with initial rapid convergence (indentation) that slows down 

progressively (Fig. 33a-b-c). When the vertical resolution of the experiment is not sufficient, the data 

is often interpreted as reaching a steady state. Careful analyses of high resolution measurements have 

revealed, however, that the pressure solution convergence is a power law with a time exponent of 1/3, 

like the time exponent of the length scale of roughness in the contact (Fig. 33d–e). Dysthe et al. 

(2002a) found accordingly that the characteristic length scale of the dynamic island channel structure, 

disl, increased with time to the power 1/3: 

€ 

disl ∝ t
1/ 3 . This is characteristic of diffusion-limited 

coarsening driven by surface tension (like Ostwald ripening). Since the size of the islands of contact 

determines the diffusion distance for pressure solution, the scaling of the island sizes could also 

explain the measured change of convergence rate with time to the power -2/3: . 

The determination of these scaling relations provided an explanation of the characteristic slowing 

down of pressure solution rate. 

Another instrument constructed to study the surface dynamics was a Linnick interferometer (Jordan et 

al., 2005; Lohkamper et al., 2003) that measured crystal topography in situ. These studies showed that 

damaged surfaces evolve in a complicated manner, but the convergence rate decreases with time as 

found in other studies. 

Schenk et al. (2006) were able to visualize directly the brine in grain boundaries and pores of halite 

aggregates. By quenching the samples to -190°C the brine segregated by spinodal decomposition to a 

fine-grained (R~100nm) foam of “hydrohalite” and ice. Cryo-SEM observations then clearly 

distinguished between the quenched foam, halite grains and air. The study confirmed the existence of 

both thin (<30nm) brine films, irregular (island channel like) boundaries and healed grain boundaries. 

It may therefore be concluded that, for single contacts with NaCl, unless some special geometry 

causes the grain contact to heal, pressure solution occurs in grain contact with dynamic island-channel 

geometry where the length scale coarsens with time due to surface tension and the pressure solution 

rate (which is controlled by outward diffusion from the island contacts) slows down with time. We 

may also conclude that the breakdown of the Weyl’s type continuum picture of the fluid film does not 

provide (for now) any new, usable model of basic mechanisms. It should also be noted that grain 

contact healing and intergranular sealing plays a major role in natural sedimentary rocks. 
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Figure 33: Typical indentation-time curves following stress increase: (a) NaCl-CaF2 glass, adapted 

from (de Meer et al., 2005); (b) NaCl-gold, adapted from (Dysthe et al., 2003) (1 = 36 nm/h; 2 = 21 

nm/h; 3 = 43 nm/h; 4 = 7 nm/h; 5 = 5 nm/h); (c) calcite and plaster indenting with dynamic loading: 

dropping ball (shock), adapted from (Gratier, 2011b); (d) Compilation of many indentation 

experiments with a single load (black) and with load increments (red) showing the same power law 

exponent 1/3; (e) Power law scaling 1/3 of roughness length scale characteristic of Ostwald 

ripening/spinodal decomposition, adapted from (Dysthe et al., 2002a). 

 

4-1-2-2 The real confined film 

de Meer et al. (2005) and de Meer et al. (2002) employed two new experimental techniques to study 

the nature of the grain boundary contact during pressure solution of NaCl. In the first study they used 

resistivity measurements to estimate independently the product of diffusion coefficient and fluid film 

thickness, ΔgbD, where D is the diffusion coefficient in the grain boundary and Δgb is the average 

thickness of the disjoining fluid film. They measured ΔgbD values between 10-19 and 10-17 m3s-1, in 

good agreement with values estimated from pressure solution experiments and the range of values 

estimated for an atomically flat interface. They also found an inverse relationship between  ΔgbD and 

normal stress. The optical resolution was not high enough to resolve the structure in the grain contact. 

In the second study, they applied infrared spectroscopic microscopy to a NaCl-CaF2 grain contact. The 

general conclusion was that the amount of water measured in the interface was too large to be 

explained by a fluid film model and that there had to be some sub-optical roughness in the grain 
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contact. The convergence rates increased every time the stress was increased and then slowed down 

continuously (see Fig. 33a). Thus both observations are compatible with the dynamic island channel 

model of Dysthe et al. (2003). 

Experiments performed by Espinosa-Marzal et al. (2012) with the SFA using two mica surfaces in 

solutions of water and KNO3 gave interesting results. KNO3 has a bulk solubility of about 3M at room 

temperature. At high ionic concentrations (c>0.1M) attractive forces are observed between the mica 

surfaces at separations between 2 and 5nm. At separations below 2nm there is a strong repulsive force. 

When the surfaces are pressed together to 2nm separation there is still a liquid film between the mica 

surfaces and there is no hysteresis in the force curve when moving the surfaces apart. It was found 

however, that when the bulk solution concentration was increased to 1M the force curve on 

approaching 2nm showed a disjoining pressure and when moving the surfaces apart an attractive force 

appeared between the surfaces. Such an attractive force appears when two solid surfaces are in 

contact. The appearance of an attractive force at a distance of 2nm may be interpreted as a 

solidification of the 2nm thick film between the mica surfaces. In one experiment at 1M bulk 

concentration, the two surfaces were kept under constant compressive force initially at a separation of 

2nm and the separation was measured to increase by 0.5nm to 2.5nm. The questions that arise are:  

- Does the confinement induce crystallization at a bulk concentration that is far smaller than the 

saturation concentration? 

- Can this be related to other effects of confinement like capillary condensation and a twofold 

lowering of solubility of NaCl in a 0.8nm slit pore (Malani et al., 2006)? 

- Can an undersaturated bulk solution supply ions to a confined “crystal” that performs work 

(0.5nm*force) on solid, spring-loaded mica surfaces? 

- What is the energy source of such work? The only available energy source must be a gradient in the 

chemical potential between the bulk fluid and the confined phase? 

- For how long can the confined phase perform such a work? Only as long as the resulting confined 

“crystal” has a lower chemical potential than the bulk fluid? 

If the resulting confined “crystal” grows to macroscopic dimensions it will be a macroscopic crystal 

under stress, which should normally have a larger chemical potential than an unstressed crystal. And 

since the bulk fluid is at 1/3 of the saturation concentration, it clearly has a chemical potential lower 

than that of an unstressed crystal. It must therefore be concluded that the solidification of the confined 

phase and the work performed by this solid-like phase has an effect of small linear extent and cannot 

be sustained. However, it is also clear that the confined phase should be treated as a separate 

thermodynamic phase. This is the most recent example in this field that new high resolution 

experiments bring radically new knowledge and new questions. 
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4.2 - Deformation of aggregates 
Single interface experiments performed over the past 20 years have demonstrated that grain contacts 

may evolve to a number of different states (fluid film, island – channel, solid (healed), plastically 

flowing) depending on whether the contacts are monomineralic, their orientation, the interface angles 

(driving healing), the initial contact stress (causing plastic or brittle deformation) and the time-

dependent changes in contact stress. When reviewing aggregate experiments, it is useful to remember 

that an aggregate will have a large number of grain contacts with a distribution of (single contact) 

properties. As the aggregate is deformed, grains will move relative to each other causing rupturing and 

reforming of contacts and changing contact stresses at intact contacts. Several experiments performed 

on rock core samples or relatively large slabs of crystals (Hellmann et al., 2002b; Le Guen et al., 2007; 

Rutter and Mainprice, 1978; Sprunt and Nur, 1977) show very small strains even after durations 

lasting for almost two years in certain cases. For this reason, most pressure solution experiments have 

been based on uniaxial or triaxial creep compression tests of monomineralic granular aggregates of 

various materials: ionic salts (den Brok et al., 1999; Raj, 1982; Renard et al., 2004a; Renard et al., 

2001; Rutter, 1976; Spiers et al., 1990; Zubtsov et al., 2004), calcite and other carbonates (Baker et al., 

1980; Croize et al., 2010b; Liteanu and Spiers, 2009; Rutter, 1983; Zhang et al., 2002; Zhang and 

Spiers, 2005a; Zhang et al., 2010; Zhang et al., 2011; Zhang and Spiers, 2005b), quartz (Chester et al., 

2007; Cox and Paterson, 1991; de Boer et al., 1977; Dewers and Hajash, 1995; Elias and Hajash, 

1992; Gratier and Guiguet, 1986; Gratier et al., 2005; Hangx et al., 2010; He et al., 2007; Kay et al., 

2006; Niemeijer et al., 2002; Renton et al., 1969; Rutter et al., 1986; Schutjens, 1991; van Noort et al., 

2008a), and gypsum (de Meer et al., 1997; Meer and Spiers, 1997). The experimental conditions are 

summarized in Table 4. These studies most often include micrographs of the microstructures showing 

truncated/indented grains and overgrowths. They show that several processes are at work and are 

responsible for the observed strain: pressure solution creep, grain boundary healing, subcritical crack 

growth, dynamic fracturing They normally compare the rate of compaction to experiments without 

water to show that a water mediated process is at work. Some of the studies also quantify the 

compaction rates. 

In another kinds of experiments, the aggregate is sheared in the presence of a reactive fluid and the 

shear strength of the medium is measured using slide-hold-slide tests (Bos et al., 2000a; Bos et al., 

2000b; Bos and Spiers, 2000; Chester and Higgs, 1992; Karner et al., 1997; Lockner et al., 1986; 

Niemeijer et al., 2010; Niemeijer et al., 2008b). These kinds of studies were aimed at understanding 

the frictional properties of fault gouge (Fitzenz et al., 2007) and demonstrated how healing of the fault 

gouge proceeds during the interseismic period. 

 

4.2.1 Treatment of aggregate compression data 
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The experimental compaction of originally loose aggregates of mineral grains subjects the aggregate 

to the same processes as in Nature. Most published studies of wet compacted aggregates show 

microstructures evidencing grain indentation, truncation and overgrowth. The laboratory timescale of 

these experiments is compatible with the pressure solution process. Grain contact healing is, however, 

not so simple to prove in microstructures (see (Schenk et al., 2006) for a positive exception). Contact 

healing has clearly been identified as rate limiting in the experiments of Zubtsov et al. (2004) where 

the volume ratio of grains that undergo pressure solution (and contact healing) and inert grains was 

varied. The maximum compaction rate was found for a finite volume of about 33% of inert particles, a 

result that could be explained quantitatively by the number of grain contacts that could heal or not. It 

is in general not always clear whether the time scale of grain contact healing is comparable to the 

experiment timescale. It is also not clear what functional form an experimental porosity-time curve 

should have and what the limit should be, φ = φc or φ = 0. Models using simple geometrical stacks of 

spherical grains predict a slowing down of compaction rate due to growth of the grain contact areas 

(Gundersen et al., 2002a; Gundersen et al., 2002b), but the functional form of these compaction curves 

does not fit experimental data well and one ends up with purely empirical fits of the data. 

Experimental compaction of aggregates by pressure solution (Fig. 34) can usually be described by a 

power law behaviour expressed by the equation 

€ 

ε = α(t / t0)
β  (Renard et al., 2001) or equivalently, 

€ 

t0
dε
dt

= κε−τ  (Spiers et al., 1990), where ε is strain, t is time,

€ 

τ =1+1/β, 

€ 

κ = βα1/β  and t0 is a time 

base. This is a purely empirical relationship that has not been derived from first principles except for 

the specific exponents τ = 1 for dissolution rate limitation (Eq. 21) and τ = 2 (Eq. 33). The time 

exponent β (or τ) can be argued to be the same for aggregates deforming by the same mechanism and 

with the same particle size distribution function (irrespective of the mean value). When the relative 

importance of processes (like contact healing versus pressure solution) changes, the time exponent 

changes (Zubtsov et al., 2004). It should be noted that unless data are plentiful and of good quality it is 

difficult to determine accurately time exponents β smaller than 0.5 and to be sure that the data are not 

in fact logarithmically time-dependent, as proposed for example for the healing rate of gouge materials 

(Karner et al., 1997; Lockner et al., 1986). The prefactors κ and α are functions of mean particle size, 

d, and stress, σ. If experiments are performed over a sufficiently wide range of particle sizes and 

stresses the data can be fitted to a power law 

€ 

κ = βα1/β ∝ d−vσ λ , where ν = 3 and λ = 1 for thin film 

diffusion-limited pressure solution and ν = 1 and λ = the order of the rate law for 

dissolution/precipitation limited pressure solution (Table 3), assuming no influence of contact healing. 

Experimental data from compaction experiments have often been plotted individually to extract the 

exponents τ, ν and λ, (Fig. 34b-c-d) but only a few studies have combined all data (Fig. 34e) in a 

single regression to obtain serious estimates with error bars (Fig. 34f) (Renard et al., 2001). When the 



 85 

 
Figure 34: Graphical representation of compaction data: (a – e) raw compaction data; (a) strain 

versus time; (b) strain rate versus strain deduced by numerical differentiation of curves in (a). 

Straight line fits to 

€ 

t0
dε
dt

= κε−γ  are performed individually; (c) Strain rates for a single grain size at 

different strains versus applied stress; (d) Strain rates for a single applied stress at different strains 

versus grain size; (a-d) adapted from (deMeer and Spiers, 1997); (e) experimental compaction curve 

for various clay contents: without clay (square), 10% clay (circle), SiC (open circle); (f) simultaneous 

fit of all data in e to a single master curve 

€ 

ε = α(t / t0)
β

, no differentiation is performed first as in b. 

(e-f) adapted from (Renard et al., 2001) vertical stress = 4.7 bars, temperature = 22°C, salt grain size 

180-250 µm. 
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Material  σeff T d tmax τ ν λ 

  MPa C µm h    

NaClO3 A 2.4-5 22 75-500 80 2-4 2-3 1-2 

Gypsum B 1-4 22 74-282 840 2-4 3-4 2-3 

NaCl C 0.1-4 22 106-250 360 3.5 - - 

NaCl D 0.5-2.2 20-90 100-275 240 2-5 2-3 1-2 

CaCO3 E 1-4 22 6-22 480 3 4-5 1-3 

CaCO3 F 20-47 28-150 12-86 926 - 2-3 1-3 

Quartz G 9-20 150-350 20-100 2200 1-8 - 2-4 

Quartz H 50-300 400-600 28-125 250 5-10 0.5-

1.5 

3 

Quartz I 25-100 300-600 3-129 310 10 1 3-4 

 

Table 5: Experiments of compaction of granular aggregates that have been used to fit the power law 

relation 

€ 

dε
dt

∝ d−νσ eff
λε−τ , where ε is strain, d the mean grain size and σeff the effective stress driving 

pressure solution. Cited work: A (den Brok et al., 1999); B: (de Meer and Spiers, 1999); C (Renard et 

al., 2001); D (Spiers et al., 1990); E (Zhang et al., 2010) F (Zhang et al., 2010); G: (Schutjens, 1991) 

H: (Niemeijer et al., 2002 ; van Noort et al., 2008a). 

 

data have been treated at separate strains and not been subject to a single regression it is hard to know 

how to pick data to predict compaction rates for a given situation. For example, using Figure 6 in 

(Zhang and Spiers, 2005a) to extrapolate to a mean grain size of 3µm a value of α = 0.023 is obtained. 

A more conservative extrapolation is obtained from the final strains in their figure 3 yielding α = 

0.00058, smaller by a factor of 40. This may not seem too bad, but since β = 0.25 from the same data 

this translates to a factor 106 difference in the estimated time needed to reach a strain ε = 1 (40 days 

vs. 300 000 years). More elaborate models to fit experimental data have been based on a geometrical 

model of regular grain stacks (van Noort et al., 2008b; Zhang et al., 2010) or explicit modelling of the 

grain contact (van Noort et al., 2008b), but none of them can be said to fit the time-dependent (strain) 

change in compaction very well. 
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4-2-2 Dependence on time, grain size and stress 

Very many labs around the world have at some time published a study of uniaxial compaction of 

granular aggregates of a mineral (Table 4). Most of these studies are qualitative in nature although 

some curves and numbers are presented. Although these studies have often contributed to a gradual 

enhancement of our understanding, the focus here will be on a selection of them that have been 

quantitative to the extent that some generalization may be achieved from least square fits. The Utrecht 

group has pioneered quantitative compaction experiments and has contributed by far the most data on 

different systems. They also pioneered the use of compaction data to determine the rate limiting 

process. Table 5 lists some quantitative compaction studies on different minerals, the experimental 

parameters and the power law exponents of time, τ, grain size, ν, and stress, λ that have been derived. 

Note that the uncertainty in the exponents is often large. Determination of the rate limiting process 

through the grain size exponent, ν, is therefore approximate. It is not always sufficient only to know ν. 

In the case of gypsum (de Meer and Spiers, 1999) the dependency of the rate on the salinity of the 

solution suggested dissolution/precipitation control, contradicting the diffusion control indicated by 

the exponent ν = 3. The discussion yielding Eq. (28) and the expressions in Table 3 suggest that the 

stress exponent should always be λ = 1 for low stress values (Rutter, 1976; Weyl, 1959) and 

exponentially dependent on stress for higher stresses (Dewers and Ortoleva, 1990; Gratier et al., 

2009). For gypsum and quartz it is found that 

€ 

λ ≥ 2. The time exponents, τ, are also found to be much 

larger for quartz than for other minerals. In fact the raw strain-time curves flatten out completely 

(within the error bars) at long times. This indicates that the decrease of porosity is limited or that the 

time dependence is logarithmic. It is also interesting to note that for quartz compaction the stress 

exponent is typically λ = 3, that is much higher than for other minerals. However, this may result from 

the effect of the coupling of several processes: strain rates are higher in the lab than in nature, the 

higher the strain rate the more the time-independent processes (friction, plasticity) dominated the time-

dependent process (viscosity). From the study of Greene et al. (2009) the addition of muscovite would 

be expected to increase compaction rate and change the stress exponent to λ = 1. This is not always 

the case due to the complex interaction between several mechanisms (Niemeijer and Spiers, 2002; 

Zubtsov et al., 2004). Niemeijer and Spiers (2005); Niemeijer and Spiers (2006) showed the velocity 

dependence of strength and healing behaviour in a simulated phyllosilicate-halite bearing fault gouge. 

They found that “at low velocity, strength increases with increasing velocity and normal stress and a 

foliation develops. This behaviour results from pressure solution in the halite grains, which 

accommodate sliding on the phyllosilicates.” They also show no healing during low velocity 

permanent deformation probably due to the absence of halite-halite contact in this case. In contrast, at 

high velocity, velocity-weakening frictional behaviour occurs with cataclastic deformation and healing 
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occurs during periods of zero slip. This is a good example of the transition between viscous (velocity-

strengthening) and cataclastic (velocity-weakening) processes. 

 

 

5 – Applications in sedimentary basins, faults and shear zones 

 
5.1 - Viscous versus plastic rheology during compaction of sediments 
The porosity reduction of sedimentary rocks with burial depth has been the subject of extensive 

research since Athy proposed an exponential porosity–depth equation more than 80 years ago (Athy, 

1930; Giles et al., 1998). Most compaction processes observed in Nature and those described 

theoretically vary slowly in space and time. Compilations of porosity-depth data for sedimentary 

basins around the world typically show a slow, exponential-like variation in porosity with depth 

(Athy, 1930; Giles et al., 1998; Sclater and Christie, 1980). 

Tentative models of quartz sediment compaction using grain scale processes were proposed either 

with immobile pore fluid (Dewers and Ortoleva, 1990) or allowing pore fluid flow (Gundersen et al., 

2002b; Lehner, 1995; Lehner and Leroy, 2003). Their idea was to represent grains by truncated 

spheres (Fig. 29) where the dissolution along the grain contacts induces an overall deformation of the 

aggregate. This approach was applied to calculate the porosity-depth relationship for North Sea 

sandstones (Renard et al., 2000b). Depending on the sedimentation rate, that imposes the time scale of 

the compaction process, different porosity-depth relationships could be calculated and fit reasonably 

the natural data (Fig. 35). 

Other studies have proposed a porosity-effective stress relationship that is independent of burial time 

and that describes a plastic rheology in the sense that an increment of finite stress results in a finite 

porosity decrement. Microstructural studies of sediments and experimentally compacted samples show 

that grain rearrangement, grain crushing, and pressure solution are the main compaction mechanisms 

which smoothly and sequentially overtake each other in importance with progressive depth of burial 

(Bjorlykke and Hoeg, 1997). The first two mechanisms lead to plastic rheologies whereas, on the other 

hand, pure pressure solution of an unconsolidated aggregate is a time-dependent creep process that, for 

any finite effective stress, will (given enough time) result in zero porosity. Thus, even when pressure 

solution is the mechanism responsible for indentation and truncation of grains leading to porosity loss, 

grain contact healing and overgrowth may inhibit the pressure solution process and stop compaction at 

a finite porosity φc. Even though the question of a finite porosity φc was clearly posed in 1976 (Sprunt 

and Nur, 1976), little research has been conducted on understanding the change towards consolidation 

during compaction and it is not clear whether the consolidated porosity φc is mainly a function of time  
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Figure 35: Porosity-depth relationships in North Sea sandstones: the porosity decreases with depth 

(data from (Ramm, 1992). The curves represent simulations of porosity-depth relationships assuming 

that porosity is reduced by pressure solution creep, adapted from (Renard et al., 2000a). The gray 

zone is the extent of various exponential porosity-depth models for sandstones, the heavy line being 

the mean value, adapted from (Giles et al., 1998) 

 

or of stress. Revil (1999) and Revil (2001) started from observations that a viscous type rheology was 

not sufficient to explain compaction of sedimentary basins and constructed a “poro-visco-plastic” 

model of pressure solution with a plastic bulk modulus β in parallel with the creep viscosity  in the 

deformation law . The characteristic timescale for crossover between viscous 

behaviour at short times and plastic behaviour at long times is given by . The parameters may 

be calculated from measurable quantities in this phenomenological model and were used for 

comparison with quartz compaction data. The model has been modified and refined by others (Taron 

and Elsworth, 2010; Yasuhara et al., 2003) to include the strain hardening effect of growing grain 

contact areas. The idea of finding a time scale for the transition between viscous and plastic is 

intriguing, it would help analysis and application of compaction data, but the basis of this model is in 

our opinion incorrect: a plastic pore compressibility does not relieve stress from the grain contacts 
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where pressure solution occurs, in other words the viscous and plastic elements should be in series, not 

in parallel. 

Strain hardening during pressure solution compaction is found partially in the change in grain packing 

and contact sizes, and partially in the grain contact structure. van Noort et al. (2008b) formulated a 

model based on the changing grain contact structure. They assumed a specific island-channel type 

structure with width (heights of channels) δ and where the load-bearing solid area fraction is α. The 

balance between chemical potential driving dissolution (strain energy, Eq. 9 above) and that driving 

precipitation/healing (surface tension, Eq. 10 above) yields a simple criterion for the stability of the 

island channel structure:  where σn is the normal stress, Pf is the fluid 

pressure, E is the Young’s modulus of the solid, γ is the surface tension, δ is the size of the channels 

and α is the fraction of the surface area that contains actual contacts. This general criterion was 

applied to quartz aggregates to predict a finite porosity-stress relationship where the dynamic 

dissolution and growth of island contacts stop due to contact healing. van Noort et al. (2008b) also 

included a dihedral angle term that has been omitted here because the finite width geometry chosen 

renders this factor useless. They compared their model with experiments and field data with α and δ as 

free parameters because experiments do not allow their limits to be accurately defined. The lack of 

theoretical bounds on the width parameter δ in the model calls for more fundamental studies that do 

not assume the structure to start with. The question points back to the importance of the stability of the 

intergranular liquid film discussed above. 

 

5.2 – Steady state pressure solution creep law: modelling an aseismically 

creeping zone such as the San Andreas Fault 
In this section, a pressure solution creep law is applied to explain how a fault zone may creep and data 

on the San Andreas Fault (SAF) in California are used for this purpose. Because a pressure solution 

creep law, derived experimentally, requires a large number of parameters, it is necessary to combine 

studies of rock microstructures and experimental results. The goal is to show that pressure solution 

creep is a viable deformation mechanism to explain the aseismic strain observed on the aseismic creep 

segment of the SAF. There is a well-known 175 km long creeping zone in the central part of the San 

Andreas Fault, north of Parkfield. Geodetic measurements reveal a permanent displacement rate of 

about 28 mm/year at its maximum over a narrow zone of less than 20 m (Titus et al., 2006). Bore hole 

drilling through the SAF allowed to correlate fault rock microstructures with real time geophysical 

data and therefore provides useful information to identify aseismic mechanisms (Bradbury et al., 2011; 

Holdsworth et al., 2011; Schleicher et al., 2009; Solum et al., 2006; Zoback et al., 2010). 
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Based on microstructural studies of rock samples collected from the San Andreas Fault Observatory at 

Depth (SAFOD) (Gratier et al., 2011) proposed that pressure solution mass transfer can account for 

aseismic deformation. Experimental data on minerals such as quartz and calcite are used to 

demonstrate that such a creep mechanism can accommodate the present displacement rate of the SAF 

creeping zone. An experimental pressure solution creep law can be written as: 

€ 

˙ ε = Δd /(dΔt) =  8 D δ c Vs (e
3Δσn Vs /RT −1) /  d3

     (35) 

where c is the solubility of the diffusing solid (mol m-3), Vs is the molar volume of the stressed solid 

(m3 mol-1), R is the gas constant (8.31 J mol-1 K-1), T is the temperature (K), D is the diffusion constant 

along the stressed interface (m2 s-1), δ is the thickness of the fluid interface (m) along which diffusion 

occurs, t is time,  is the driving stress defined as the difference between normal stress on a 

dissolution surface and the fluid pressure in the open spaces (cracks, pores), and d is the indenter 

diameter (Gratier et al., 2009). From experiments, all the parameters of the law are known for quartz at 

350°C. The values of the parameters at other temperatures for quartz and for other minerals that are 

seen to dissolve (Fig. 8a & 17a, b) may be derived from the literature, see references in (Gratier et al., 

2009): (i) solubility: at 3 – 10 km for quartz (0.003 x 103 - 0.03 x 103 mole/m3), calcite (0.005 - 0.0005 

x 103 mole/ m3), feldspar (0.0003 x 103 - 0.001 x 103 mole/m3); (ii) molar volume: for quartz (2.2 x 10-

5m3/mole), calcite (3.69 x 10-5m3/mole), feldspar (10.3 x 10-5m3/mole); (iii) activation energy of the 

diffusion in water (15 kJ/mole/K) is used to calculate the variation in D, δ being considered as 

constant of the order of 1-10 nanometres. 

For an application to Nature, the imposed displacement rate is known and the creeping zone at depth is 

estimated to range from 1 to 3 metres width. The displacement rate at the SAFOD site is about 20 

mm/y. Such a displacement rate accommodated by a 1-metre thick shear zone implies a total shear 

strain 

€ 

γ = 0.02 , corresponding to a strain-rate of 3.3 x 10-10 s-1 (

€ 

γ = 2Δl / l). Instead, if the shear zone 

was 3m thick the strain rate would be equal to 1.1 x 10-10 s-1. To complete the modelling, the driving 

force  must be known. The driving stress value was measured to be about 60MPa at 3km depth 

(Hickman and Zoback, 2004). The same value is used at all depths in the model. For these given strain 

rate and stress values, it is possible to model the behaviour of quartz, calcite and feldspar in a mass 

transfer distance versus depth diagram (Fig. 36a). The opposite behaviour of quartz and calcite due to 

the different change in their solubility with temperature is worthy of note. It is clear that a maximum 

mass transfer distance of about 100 microns is required in order to accommodate the shearing 

deformation by pressure solution through the entire upper crust as observed. In nature, the distance d 

is either the spacing between fractures (Fig. 19) or the mean grain size (Fig. 25). In both cases the 

value of d is well below 100 microns. This means that pressure solution can accommodate the 

measured aseismic displacement. However, there are several open questions. 
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Figure 36: (a) Steady state modelling of pressure solution creep of various minerals in the upper 

crust: mass transfer distance d versus depth for various minerals required to accommodate a 20 

mm/yr horizontal displacement rate by pressure solution creep in vertical shear zone of 1 m width 

(dotted line, strain-rate of 3.3 x 10-10 s-1) or 3 m width (dashed lines, strain rate of 1.1 x 10-10 s-1), 

adapted from (Gratier et al., 2011); (b) Schematic variation in the driving force for friction (τ − σn) 

and pressure solution (σn – Pf) depending on the strain rate. 

 

The first is to know how the mass transfer distance was reduced: initial grain sizes found away from 

the creeping zone are much larger. Two processes may combine: fragmentation of the rock that may 

be linked to seismic fault activity and some processes that avoid the healing of these fractures such as 

the relative displacement of the fragments and the growth of phyllosilicates (Holdsworth et al., 2011). 

It must also be noted that the calculation corresponds to a stable behaviour. It has been seen that 

fracturing may accelerate the pressure solution kinetics (Fig. 33c) and, conversely, sealing may 

decrease this kinetics (Fig. 33c). Future models should include this interaction between fracturing and 

sealing that occurs at a time scale ranging from days to millennia (see below). 

Another question is the change in the creeping zone over longer time scales: millennia to millions of 

years. Pressure solution is associated with progressive change of volume (Fig. 7 & 18), or to layering 

development (Fig. 16). Both processes could modify the behaviour of the rock and, consequently, 

strengthening (effect of precipitation, contact healing) or weakening (effect of passive concentration of 

insoluble minerals) may develop with time depending on the deformation conditions. Based on 

observations of the SAF, weakening seems to have occurred in the creeping zone but the damaged 

zone remains rigid enough to promote microseismic activity. 

It has been argued from experiments on a synthetic gouge (grounded SAF gouge) (Carpenter et al., 

2011; Lockner et al., 2011) that the creeping zone has very low friction values (up to 0.15) due to the 

presence of very soft phyllosilicates, such as saponite. This may be true if the effect of grinding the 

gouge is not too great. However, it is also well known that saponite and other soft phyllosilicates such 
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as corrensite are not stable below depths of 3 or 4 kilometres and cannot explain the creep observed 

below these depths. There are no other soft minerals in the gouge except some very rare evidence of 

talc (Holdsworth et al., 2011; Moore and Rymer, 2007). So it is likely that, at depth, pressure solution 

plays a key role in accommodating aseismic deformation. 

Finally, from a more general point of view, friction and pressure solution may be compared in a strain 

rate versus driving stress diagram (Fig. 36b). Friction has a weak, logarithmic dependence on strain 

rate over geological time scales and requires a relatively high shear stress to initiate, of the order of the 

static friction coefficient times the normal stress. Conversely, pressure solution may strongly depend 

on the strain rate and requires more modest shear stress. This diagram shows that at geological strain 

rates (from 10-10 s-1 in active creeping faults to 10-14 s-1 in tectonic processes) pressure solution requires 

much less differential stress than friction. Several key parameters are however necessary: presence of 

fluids, mass transfer distance as small as possible (so most often fragmentation is necessary to achieve 

small grain sizes), some process to avoid the healing of the fractures and the grain contacts and the 

presence of phyllosilicates that activates the process. 

 

5.3 – Non-steady state: fault gouge and shear zone strengthening and 

weakening 
As seen above, steady state modelling of pressure solution is only a very crude approximation of the 

reality, as good evidence of strengthening and weakening processes that must lead to non-steady creep 

is observed in Nature in various active faults and shear zones. 

 

5-3-1 Strengthening processes 

Over the past ten years, increased interest has been shown in studying the mechanism of time-

dependent fault gouge strengthening that is found in all friction experiments. Although the original 

formulation of the rate-and-state friction law (Scholz, 1998) considers plastic deformation of contact 

asperities, there has been an increased awareness that fluid-assisted processes at hydrothermal 

conditions contribute strongly to the changes in strength. There has been a recent wave of 

experimental studies on gouge strengthening in the presence of aqueous fluids (Bos et al., 2000a; Bos 

et al., 2000b; Bos and Spiers, 2002; Kanagawa, 2002; Kay et al., 2006; Nakatani and Scholz, 2004; 

Niemeijer et al., 2008a; Niemeijer et al., 2010; Niemeijer et al., 2008b; Tenthorey and Cox, 2006; 

Yasuhara et al., 2005). They all discuss if dissolution-precipitation processes are compatible with rate-

and-state friction laws and to which extend they are the dominant mechanisms for strengthening. 

Several experiments where the strength will be strongly affected by contact healing are modelled by 

pure pressure solution (Bos et al., 2000b; Yasuhara et al., 2005). It should, however be made clear that  
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Figure 37: Simulation of the compaction of a fault gouge in a sandstone (100% quartz) where grains 

are represented as truncated spheres. a) At the grain scale, the three steps of pressure solution, i.e. 

dissolution, diffusion along the grain boundary, and precipitation on the free face, are calculated. The 

effect of transport between the pores is also accounted for; b) The rock is modelled as a 2D packing of 

individual grains where the gouge zone is made of smaller grains. The system size is 20x20 cm; c) 

With time, the rock compacts. Because the gouge contains smaller grains, it compacts faster; d) 

Dissolved quartz from the gouge is also transported to the two sides on the fault zone and induces 

excess cementation of the walls, adapted from (Gundersen et al., 2002b). 
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several processes at different time scales are also involved in fault gouge strengthening. Also in the 

study of frictional strength, single contact experiments (Renard et al., 2012; Voisin et al., 2007) (as 

opposed to aggregate experiments) may reveal more clearly the distinct mechanisms and rate limiting 

steps. In Nature, characteristic healing times no doubt vary from years (in the case of fast 

microfracture healing, Fig. 32) to millions of years (in the case of slow vein sealing, Fig. 16, 26). 

By representing grains as truncated spheres and modelling pressure solution creep as the collective 

deformation of individual grains (Dewers and Ortoleva, 1990; Lehner, 1995), a model of the 

strengthening and compaction of a gouge was proposed (Gundersen et al., 2002b). Fig. 37a-b presents 

the model where the fault gouge contains smaller grains. With time, the rock compacts (Fig. 37c), as 

compaction occurs faster in the gouge because of the grain size difference, the concentration in the 

pore fluid is slightly higher in the gouge. This induces a concentration gradient between the gouge and 

the walls of the fault. This results in precipitation in the fault walls (Fig. 37d). Fault strengthening thus 

occurs by the combined effects of gouge compaction and walls cementation. 

 

5-3-2 Weakening processes 

In parallel, weakening processes linked to two types of processes have also been described. Dynamic 

indenting experiments show that fracturing accelerates pressure solution by increasing the outward 

diffusion flux from the dissolution contact (Fig. 30, 33c). However, this effect is strongly non-linear as 

fracture healing progressively strengthens the rocks. The characteristic time of such a process is of the 

order of magnitude of the earthquake cycle: from tens to thousand of years (Gratier, 2011a). Another 

weakening mechanism is the change in phyllosilicates content in the rocks. The crucial role of 

phyllosilicates in accelerating pressure solution has already been mentioned (Fig. 14, 31). There are at 

least two different mechanisms that can change the phyllosilicates content in a deforming rock: either 

the passive phyllosilicates concentration by the dissolution of soluble species or the growth of clay 

minerals due to metamorphic reactions. Both processes tend to promote pressure solution by 

facilitating diffusion and by avoiding sealing between the grains. However, the characteristic times of 

these processes are different. Passive concentration occurs at geological times (hundred thousand to 

millions of years) associated with progressive development of tectonic layering (Fig. 16). Conversely, 

fluid flow during inter-seismic periods (years to millennia) may lead to clay deposition and thus to 

local weakening by facilitating pressure solution (Fig. 17) and decreasing friction (Lockner et al., 

2011). 
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6 – Conclusion 
In the past 150 years researchers have compiled much evidence on the importance of pressure solution 

creep in Nature. Thermodynamic pressure solution models have been fortified by theoretical and 

experimental work. Most observations both in Nature and by experiment show a clear relation 

between dissolution structures and stress. However, the driving effects of fracturing, healing, grain 

contact dynamics, and the role of phyllosilicates need to be better understood and will involve a non-

steady-state creep pressure solution model. 

- Fracturing (weakening effect) competes with healing (strengthening effect) during earthquake cycles 

and the change in shear zones, and probably also in all the deformation processes that are triggered by 

human activity (fluid extraction or geological storage). 

- Phyllosilicates content increase (weakening effect) competes with vein sealing (strengthening) at all 

time scales from earthquake cycles to basin compaction or mountain building leading to tectonic 

segregation. 

This complex behaviour is true for all the stress-driven mass transfer mechanisms including 

metamorphic reactions when they imply a thin fluid phase trapped under stress. 

Considerable work has been done on pressure solution creep over the last 20 years, including trying to 

integrate non-linear processes but at least four important questions represent challenges for future 

studies: 

• Is there a time-independent porosity-depth relation for buried sediments? Compilation of data 

from sedimentary basins suggests that this is the case, the simplistic (pure) pressure solution 

model contradicts this. 

• What is the relative importance of pressure solution, fracturing and contact healing in the 

development of a stressed aggregate? Until now, modelling has been based entirely on the first 

process, but some evidence suggests the other two may play a controlling role. 

• How can the stability and development of a grain contact under stress be described? Evidence 

seems to point in different directions. Without answering this, it will be difficult to predict 

anything and to propose a creep law for pressure solution. 

• How can the experimental and natural observations of the crucial role of phyllosilicates in 

dissolution be integrated in creeping laws? 

Only the future will tell whether the solution lies in embracing the complexity and complicated 

nature of reality or whether a simple, comprehensive picture of the processes generally called 

pressure solution does exist. 

 

 



 97 

Acknowledgments: 
We thank R. Van Noort and two anonymous reviewers for their comments that significantly improved 

the manuscript. We also thank P. Vialon, J-F. Gamond and A-M. Boullier for their help in interpreting 

and presenting natural structures and R. Guiguet, L. Jenatton and B. Vial for their help in building and 

running experiments. We also thank Jens Feder and Bjørn Jamtveit for their contributions. 

 



 98 

References 

Aharonov, E., and Katsman, R. (2009). Interaction between pressure solution and clays in stylolites 
development: insights from modeling. American Journal of Science 309, 607-632. 

Alcantar, N., Israelachvili, J., and Boles, J. (2003). Forces and ionic transport between mica surfaces: 
Implications for pressure solution. Geochimica et Cosmochimica Acta 67, 1289-1304. 

Anderson, O. L., and Grew, P. C. (1977). Stress corrosion theory of crack propagation with 
application to geophysics. Review of Geophysics 15, 77-104. 

Andrade, E. N. D., Randall, R. F. Y., and Makin, M. J. (1950). The Rehbinder Effect. Proceedings of 
the Physical Society of London Section B 63, 990-995. 

Andrews, L. M., and Railsback, L. B. (1997). Controls on stylolite development: Morphologic, 
lithologic, and temporal evidence from bedding-parallel and transverse stylolites from the US 
Appalachians. Journal of Geology 105, 59-73. 

Angheluta, L., Jettestuen, E., and Mathiesen, J. (2009). Thermodynamics and roughening of solid-
solid interfaces Physical Review E 79, doi:10.1103/PhysRevE.79.031601. 

Angheluta, L., Jettestuen, E., Mathiesen, J., Renard, F., and Jamtveit, B. (2008). Stress-driven phase 
transformation and the roughening of solid-solid interfaces. Physical Review Letters 100, 
doi:10.1103/PhysRevLett.100.096105  

Angheluta, L., Mathiesen, J., Misbah, C., and Renard, F. (2010). Morphological instabilities of 
stressed and reactive geological interfaces. Journal of Geophysical Research-Solid Earth 115, 
doi:10.1029/2009JB006880  

Anzalone, A., Boles, J., Greene, G., Young, K., Israelachvili, J., and Alcantar, N. (2006). Confined 
fluids and their role in pressure solution. Chemical Geology 230, 220-231. 

Argand, E. (1924). "La tectonique de l'Asie, XIII° Congrès géologique international 1922." 
Arthaud, F., and Mattauer, M. (1969). Exemples de stylolites d'origine tectonique dans le Languedoc, 

leur relation avec la tectonique cassante. Bulletin de la Société Géologique de France 11, 738-
744. 

Asaro, R. J., and Tiller, W. A. (1972). Interface morphology development during stress corrosion 
cracking: Part I. Via surface diffusion Metallurgical and Materials Transactions B 3, 1789-
1796. 

Ashby, M., and Verrall, R. (1973). Diffusion-accommodated flow and superplasticity. Acta 
Metallurgica, 21, 149-163. 

Athy, L. F. (1930). Density, porosity and compactation of sedimentary rocks. American Associaton of 
Petroleum Geology Bulletin 14, 1-24. 

Atkinson, B. K. (1984). Subcritical crack-propagation in geological materials. Journal of Geophysical 
Research--Solid Earth 89, 4077-4114. 

Baker, P. A., Kastner, M., and Byerlee, D. A. (1980). Pressure solution and hydrothermal 
recrystallization of carbonate sediments: an experimental study. Marine Geology 38, 185-203. 

Barnes, R. B. (1933). The plasticity of rocksalt and its dependence upon water. Physical Review 44, 
0898-0902. 

Baron, M., and Parnell, J. (2007). Relationships between stylolites and cementation in sandstone 
reservoirs: Examples from the North Sea, UK and East Greenland. Sedimentary Geology 194, 
17-35. 

Bathurst, R. G. C. (1971). "Carbonate sediments and their diagenesis." Elsevier, Amsterdam. 
Bauerle, G., Bornemann, O., Mauthe, F., and Michalzik, D. (2000). Origin of stylolites in Upper 

Permian Zechstein anhydrite (Gorleben salt dome, Germany). Journal of Sedimentary 
Research 70, 726-737. 

Berton, J. R., Durney, D. W., Wheeler, J., and Ford, J. M. (2006). Diffusion-creep modelling of 
fibrous pressure-shadows. Tectonophysics 425, 191-205. 

Beutner, E. C., and Diegel, F. A. (1985). Determination of fold kinematics from syntectonic fibers in 
pressure shadows, Martinsburg slate, New Jersey. American Journal of Science 285, 16-50. 



 99 

Bisschop, J., and Dysthe, D. (2006). Instabilities and coarsening of stressed crystal surfaces in aqueous 
solution Physical Review Letters 96, 146103  

Bjorkum, P. A., Oelkers, E. H., Nadeau, P. H., Walderhaug, O., and Murphy, W. M. (1998). Porosity 
prediction in quartzose sandstones as a function of time, temperature, depth, stylolite 
frequency, and hydrocarbon saturation. American Association of Petroleum Geologists 
Bulletin 82, 637-648. 

Bjorlykke, K., and Hoeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid 
flow in sedimentary basins. Marine and Petroleum Geology 14, 267-276. 

Bonamy, D., Prades, S., Rountree, C. L., Ponson, L., Dalmas, D., Bouchaud, E., Ravi-Chandar, K., 
and Guillot, C. (2006). Nanoscale damage during fracture in silica glass. International Journal 
of Fracture 140, 3-14. 

Bonnetier, E., Misbah, C., Renard, F., Toussaint, R., and Gratier, J. P. (2009). Does roughening of 
rock-fluid-rock interfaces emerge from a stress-induced instability? European Physical 
Journal B 67, 121-131. 

Bos, B., Peach, C. J., and Spiers, C. J. (2000a). Frictional-viscous flow of simulated fault gouge 
caused by the combined effects of phyllosilicates and pressure solution. Tectonophysics 327, 
173-194. 

Bos, B., Peach, C. J., and Spiers, C. J. (2000b). Slip behavior of simulated gouge-bearing faults under 
conditions favoring pressure solution. Journal of Geophysical Research-Solid Earth 105, 
16699-16717. 

Bos, B., and Spiers, C. J. (2000). Effect of phyllosilicates on fluid-assisted healing of gouge-bearing 
faults. Earth and Planetary Science Letters 184, 199-210. 

Bos, B., and Spiers, C. J. (2002). Fluid-assisted healing processes in gouge-bearing faults: Insights 
from experiments on a rock analogue system. Pure and Applied Geophysics 159, 2537-2566. 

Boullier, A. M., and Guéguen, Y. (1975). S.P.-Mylonites: origin of some mylonites by superplastic 
flow. Contributions to Mineralogy and Petrology 50, 93-104. 

Bradbury, K. K., Evans, J. P., Chester, J. S., Chester, F. M., and Kirschner, D. (2011). Lithology and 
internal structure of the San Andreas fault at depth based on characterization of Phase 3 
whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole. Earth 
and Planetary Science letters 310, 131-144. 

Bresme, F., and Cámara, L. G. (2006). Computer simulation studies of crystallization under 
confinement conditions. Chemical Geology 230, 1997-2006. 

Brouste, A. F., Renard, J. P., Gratier, J., and Schmittbuhl, J. (2007). Variety of stylolites morphologies 
and statistical characterization of the amount of heterogeneities in the rock. Journal of 
Structural Geology 29, 422-434. 

Burkhard, M. (1992). Calcite twins, their geometry, appearance and significance as stress-strain 
markers and indicators of tectonic regime: a review. Journal of Structural Geology 15, 351-
368. 

Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics 116, 615-626. 
Cahn, J. W., and Hilliard, J. E. (1958). Free energy of a nonuniform system (I): Interfacial energy. 

Journal of Chemical Physics, 28. 
Carpenter, B. M., Marone, C., and Saffer, D. M. (2011). Weakness of the San Andreas Fault revealed 

by samples from the active fault zone. Nature Geoscience 4, 251-254. 
Carrio-Schaffhauser, E., Raynaud, S., Latière, H. J., and Mazerolles, F. (1990). Propagation and 

localization of stylolites in limestones. Geological Society of London, Special Publication 54, 
193-199. 

Carter, N. L., Horseman, S. T., Russell, J. E., and Handin, J. (1993). Rheologie of rock-salt. Journal of 
Structural Geology 15, 1257-1271. 

Chen, W. P., and Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and 
their implications for the thermal and mechanical properties of the lithosphere. Journal of 
Geophysical Research-Solid Earth 88, 4183-4214. 



 100 

Chester, F. M., Chester, J. S., Kronenberg, A. K., and Hajash, A. (2007). Subcritical creep compaction 
of quartz sand at diagenetic conditions: Effects of water and grain size. Journal of 
Geophysical Research-Solid Earth 112, doi:10.1029/2006JB004317. 

Chester, F. M., and Higgs, N. G. (1992). Multimechanism friction constitutive model for ultrafine 
quartz gouge at hypocentral conditions. Journal of Geophysical Research-Solid Earth 97, 
1859-1870. 

Cobbold, P. R. (1979). Removal of finite deformation using strain trajectories Journal of Structural 
Geology 1, 67-72. 

Coble, R. L. (1963). A model for boundary diffusion controlled creep in polycristalline material. 
Journal of Applied Physics 34, 1679-1682. 

Cosgrove, J. W. (1976). The formation of crenulation cleavage. Journal of the Geological Society of 
London 132, 155-178. 

Cox, S. F., and Etheridge, M. A. (1989). Coupled grain-scale dilatancy and mass transfer during 
deformation at high fluid pressures: examples from Mount Lyell, Tasmania. Journal of 
Structural Geology 11, 147-162. 

Cox, S. F., and Paterson, M. S. (1991). Experimental dissolution-precipitation creep in quartz 
aggregates at high temperatures. Geophysical Research Letters 78, 1401-1404. 

Croize, D., Bjorlykke, K., Jahren, J., and Renard, F. (2010a). Experimental mechanical and chemical 
compaction of carbonate sand. Journal of Geophysical Research-Solid Earth 115. 

Croize, D., Renard, F., Bjorlykke, K., and Dysthe, D. K. (2010b). Experimental calcite dissolution 
under stress: Evolution of grain contact microstructure during pressure solution creep. Journal 
of Geophysical Research-Solid Earth 115, B09207, doi:10.1029/2010JB000869. 

de Boer, R. B. (1977). On the thermodynamics of pressure solution-interaction between chemical and 
mechanical forces. Geochimica et Cosmochimica Acta 41, 246-256. 

de Boer, R. B., Nagtegaal, P. J. C., and Duyvis, E. M. (1977). Pressure solution experiments on quartz 
sand. Geochimica et Cosmochimica Acta 41, 257-264. 

de Groot, S. R., and Mazur, P. (1984). "Non-Equilibrium thermodynamics." Dover publication, New 
York. 

de Meer, S., and Spiers, C. J. (1999). Influence of pore-fluid salinity on pressure solution creep in 
gypsum. Tectonophysics 308, 311-330. 

de Meer, S., Spiers, C. J., and Nakashima, S. (2005). Structure and diffusive properties of fluid-filled 
grain boundaries: An in-situ study using infrared (micro) spectroscopy. Earth and Planetary 
Science letters 232, 403-414. 

de Meer, S., Spiers, C. J., and Peach, C. (1997). Pressure solution creep in gypsum: Evidence for 
precipitation reaction control. Physics and Chemistry of the Earth 22, 33-37. 

de Meer, S., Spiers, C. J., Peach, C. J., and Watanabe, T. (2002). Diffusive properties of fluid-filled 
grain boundaries measured electrically during active pressure solution. Earth and Planetary 
Science letters 200, 147-157. 

deMeer, S., and Spiers, C. J. (1997). Uniaxial compaction creep of wet gypsum aggregates. Journal of 
Geophysical Research-Solid Earth 102, 875-891. 

den Brok, B., Morel, J., and Zahid, M. (2002). In situ experimental study of roughness development at 
a stressed solid/fluid interface. Geological Society of London, Special Publication 200, 73-83. 

den Brok, B., and Spiers, C. J. (1991). Experimental evidence for water weakening of quartzite by 
microcracking plus pressure solution-precipitation creep. Journal of the Geological Society 
148, 541-548. 

den Brok, B., Zahid, M., and Passchier, C. W. (1999). Pressure solution compaction of sodium 
chlorate and implications for pressure solution in NaCl. Tectonophysics 307, 297-312. 

den Brok, S. W. J. (1998). Effect of microcracking on pressure-solution strain rate: The Gratz grain-
boundary model. Geology 26, 915-918. 

den Brok, S. W. J., and Morel, J. (2001). The effect of elastic strain on the microstructure of free 
surfaces of stressed minerals in contact with an aqueous solution. Geophysical Research 
Letters 28, 603-606. 



 101 

Dewers, T., and Hajash, A. (1995). Rate laws for water-assisted compaction and stress-induced water-
rock interaction in sandstones. Journal of Geophysical Research-Solid Earth 100, 13093-
13112. 

Dewers, T., and Ortoleva, P. (1990). A coupled reaction / transport / mechanical model for 
intergranular pressure solution stylolites, and differential compaction and cementation in clean 
sandstones. Geochimica et Cosmochimica Acta 54, 1609-1625. 

Drummond, C. N., and Sexton, D. N. (1998). Fractal structure of stylolites. Journal of Sedimentary 
Research 68, 8-10. 

Dunnington, H. V. (1954). Stylolites development post-date rock induration. Journal of Sedimentary 
Petrology 24, 27-49. 

Durney, D. W., and Ramsay, J. G. (1973). Incremental strains measured by syntectonic crystal growth. 
In "Gravity and tectonics." (K. A. De Jong, and R. Scholten, Eds.), pp. 67-96. John Wiley, 
New york. 

Dysthe, D. K., Podladchikov, Y., Renard, F., Feder, J., and Jamtveit, B. (2002a). Universal scaling in 
transient creep. Physical Review Letters 89, doi:10.1103/PhysRevLett.89.246102. 

Dysthe, D. K., Renard, F., Feder, J., Jamtveit, B., Meakin, P., and Jøssang, T. (2003). High resolution 
measurements of pressure solution creep. Physical Review E 68, 
doi:10.1103/PhysRevE.68.011603. 

Dysthe, D. K., Renard, F., Porcheron, F., and Rousseau, B. (2002b). Fluid in mineral interfaces - 
molecular simulations of structure and diffusion. Geophysical Research Letters 29. 

Ebner, M., Koehn, D., Toussaint, R., Renard, F., and Schmittbuhl, J. (2009). Stress sensitivity of 
stylolite morphology. Earth and Planetary Science Letters 277, 394-398. 

Ebner, M., Piazolo, S., Renard, F., and Koehn, D. (2010a). Stylolite interfaces and surrounding matrix 
material: Nature and role of heterogeneities in roughness and microstructural development. 
Journal of Structural Geology 32, 1070-1084. 

Ebner, M., Toussaint, R., Schmittbuhl, J., Koehn, D., and Bons, P. (2010b). Anisotropic scaling of 
tectonic stylolites: A fossilized signature of the stress field? Journal of Geophysical Research-
Solid Earth 115, doi:10.1029/2009JB006649. 

Ehrenberg, S. N. (2006). Porosity destruction in carbonate platforms. Journal of Petroleum Geology 
29, 41-51. 

Elias, B. P., and Hajash, A. (1992). Changes in quartz solubility and porosity due to effective stress: 
An experimental investigation of pressure solution. Geology 20, 451-454. 

Elliott, D. (1973). Diffusion flow laws in metamorphic rocks. Geological Society of America Bulletin 
84, 2645-2664. 

Engelder, T. (1974). Microscopic wear grooves on slikensides: indicators of paleoseismicity. Journal 
of Geophysical Research-Solid Earth 79, 4387-4392. 

Engelder, T. (1982). A natural example of the simultaneous operation of free-face dissolution and 
pressure solution. Geochimica et Cosmochimica Acta 46, 69-74. 

Espinosa-Marzal, R. M., Drobek, T., Balmer, T., and Heuberger, M. P. (2012). Hydrated-ion ordering 
in electrical double layers. Physical Chemistry Chemical Physics 14, 6085-6093. 

Etchecopar, A., and Malavieille, J. (1987). Computer models of pressure shadows: a method for strain 
measurement and shear-sense determination. Journal of Structural Geology 9, 667-677. 

Farver, J., and Yund, R. (2000). Silicon diffusion in a natural quartz aggregate: constraints on 
solution-transfer diffusion creep. Tectonophysics 325, 193-205. 

Fischer, G. W., and Elliott, D. (1974). Criteria for quasi-steady diffusion and local equilibrium in 
metamorphism. In "Geochemical transports and kinetics." (A. W. Hofmann, B. J. Giletti, H. S. 
Yoder, and R. Yund, Eds.), pp. 77-89. Carnegie Inst. Washington Publ., Washington. 

Fitzenz, D. D., Jalobeanu, A., and Hickman, S. H. (2007). Integrating laboratory creep compaction 
data with numerical fault models: A Bayesian framework. Journal of Geophysical Research-
Solid Earth 112, doi:10.1029/2006JB004792. 

Fletcher, R. C., and Pollard, D. D. (1981). Anticrack model for pressure solution surfaces. Geology 9, 
419-424. 



 102 

French, R. H., Parsegian, V. A., Podgornik, R., Rajter, R. F., Jagota, A., Luo, J., Asthagiri, D., 
Chaudhury, M. K., Chiang, Y. M., Granick, S., Kalinin, S., Kardar, M., Kjellander, R., 
Langreth, D. C., Lewis, J., Lustig, S., Wesolowski, D., Wettlaufer, J. S., Ching, W. Y., Finnis, 
M., Houlihan, F., von Lilienfeld, O. A., van Oss, C. J., and Zemb, T. (2010). Long range 
interactions in nanoscale science. Reviews of Modern Physics 82, 1887-1944. 

Frenkel, D., and Smit, B. (2002). "Understanding molecular simulation: from algorithms to 
applications." Academic Press. 

Fry, N. (1979). Ramdom point distribution and strain measurements in rocks. Tectonophysics 60, 89-
105. 

Gal, D., and Nur, A. (1998). Elastic strain energy as a control in the evolution of asymmetric pressure-
solution contacts. Geology 26, 663-665. 

Gal, D., Nur, A., and Aharonov, E. (1998). Stability analysis of a pressure-solution surface. 
Geophysical Research Letters 25, 1237-1240. 

Ghoussoub, J., and Leroy, Y. M. (2001). Solid-fluid phase transformation within grain boundaries 
during compaction by pressure solution. Journal of the Mechanics and Physics of Solids 49, 
2385-2430. 

Gibbs, J. W. (1877). On the equilibrium of heterogeneous substances. Transactions of the Connecticut 
Academy 3, 108-248 and 343-524. 

Giles, M. R., Indrelid, S. L., and D. M. D. James (1998). Compaction – the great unknown in basin 
modelling. Geological Society of London, Special Publication 141, 15–43. 

Goguel, J. (1948). Introduction à l'étude mécanique des déformations de l'écorce terrestre. Memoire du 
service de la carte géologique de France, 540p. 

Grant, J. A. (2005). Isocon analysis: a brief review of the method and applications. Physics and 
Chemistry of the Earth 30, 997-1004. 

Gratier, J.-P., Richard, J., Renard, F. S., Mittempergher, S., Doan, M. L., Di Toro, G., Hadizadeh, J., 
and A-M. Boullier, A. M. (2011). Aseismic sliding of active faults by pressure solution creep: 
evidence from the San Andreas Fault Observatory at Depth. Geology 39, 1131-1134. 

Gratier, J. P. (1976). Déformation et changement de volume dans un marbre à stylolithes de la région 
de Rabat (Maroc). Bulletin de la Société géologique de France 7, XVIII, 1461-1469. 

Gratier, J. P. (1979). Successive Deformations and Progressive Deformation - Importance of the 
Earliest Structures on the Later - Example of the Upper Central Atlas of Morocco. Comptes 
Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D 288, 303-306. 

Gratier, J. P. (1983). Estimation of volume change by comparing chemical analyses in 
heterogeneously deformed rocks. Journal of Structural Geology 5, 329-339. 

Gratier, J. P. (1987). Pressure solution-deposition creep and associated tectonic differentiation in 
sedimentary rocks. Geological Society of London Special Publication 29, 25-38. 

Gratier, J. P. (1993). Experimental pressure solution of halite by an indenter technique. Geophysical 
Research Letters 20, 1647-1650. 

Gratier, J. P. (2011a). Fault permeability and strength evolution related to fracturing and healing 
episodic processes (years to millennia): the role of pressure solution. Oil & Gas Science and 
Technology 3, 491-506. 

Gratier, J. P. (2011b). The role of pressure solution in aseismic creep and the dynamic equilibrium 
between fracturing and sealing processes in active faults. In "EGU ", Vienna. 

Gratier, J. P., Favreau, P., and Renard, F. (2003). Modeling fluid transfer along California faults when 
integrating pressure solution crack sealing and compaction processes. Journal of Geophysical 
Research-Solid Earth 108, 28-52. 

Gratier, J. P., Frery, E., Deschamps, P., Røyne, A., Renard, F., Dysthe, D., Ellouz-Zimmerman, N., 
and Hamelin, B. (2012). How travertine veins grow from top to bottom and lift the rocks 
above them: the effect of crystallization force. Geology, 40, 1015-1018. 

Gratier, J. P., and Gamond, J. F. (1990). Transition between seismic and aseismic deformation in the 
upper crust. Geological Society of London, Special Publication 54, 461-473. 

Gratier, J. P., and Guiguet, R. (1986). Experimental pressure solution-deposition on quartz grains: the 
crucial effect of the nature of the fluid. Journal of Structural Geology 8, 845-856. 



 103 

Gratier, J. P., Guiguet, R., Renard, F., Jenatton, L., and Bernard, D. (2009). A pressure solution creep 
law for quartz from indentation experiments. Journal of Geophysical Research-Solid Earth 
114, doi:10.1029/2008JB005652. 

Gratier, J. P., Muquet, L., Hassani, R., and Renard, F. (2005). Experimental microstylolites in quartz 
and modeled application to natural stylolitic structures. Journal of Structural Geology 27, 89-
100. 

Gratier, J. P., Renard, F., and Labaume, P. (1999). How pressure solution creep and fracturing 
processes interact in the upper crust to make it behave in both a brittle and viscous manner. 
Journal of Structural Geology 21, 1189-1197. 

Gratier, J. P., and Vialon, P. (1980). Deformation pattern in a heterogeneous material: folded and 
cleaved sedimentary cover immediately overlying a crystalline basement (Oisans, French 
Alps). Tectonophysics 65, 151-180. 

Gratz, A. J. (1991). Solution-transfer compaction of quartzites: Progress toward a rate law. Geology 
19, 901-904. 

Green, H. W. (1984). "Pressure solution" creep: some causes and mechanisms. Journal of Geophysical 
Research-Solid Earth 89, 4313-4318. 

Greene, G. W., Kristiansen, K., Meyer, E. E., Boles, J. R., and Israelachvili, J. N. (2009). Role of 
electrochemical reactions in pressure solution. Geochimica et Cosmochimica Acta 73, 2862-
2874. 

Gresens, R. L. (1967). Composition volume relations of metasomatism. Chemical Geology 2, 47-65. 
Griggs, D. (1967). Hydrolytic Weakening of Quartz and Other Silicates. Geophysical Journal of the 

Royal Astronomical Society 14, 19-&. 
Grinfeld, M. A. (1986). Instability of interface between nonhydrostatically stressed elastic body and 

melts Doklady Akademii NAUK SSSR 290, 1358-1363. 
Gundersen, E., Dysthe, D. K., Renard, F., Bjorlykke, K., and Jamtveit, B. (2002a). Numerical 

modelling of pressure solution in sandstone, rate-limiting processes and the effect of clays. 
Geological Society of London Special Publication 200, 41-60. 

Gundersen, E., Renard, F., Dysthe, D. K., Bjorlykke, K., and Jamtveit, B. (2002b). Coupling between 
pressure solution creep and diffusive mass transport in porous rocks. Journal of Geophysical 
Research-Solid Earth 107, doi:10.1029/2001JB000287. 

Guzzetta, G. (1984). Kinematics of stylolite formation and physics of the pressure-solution process. 
Tectonophysics 101, 383-394. 

Hadizadeh, J. and Rutter, E. H. (1983). The low temperature Brittle-Ductile transition in a quartzite 
and the occurence of cataclastic flow in Nature. Geologische Rundschau 72, 493-509. 

Hangx, S. J. T., Spiers, C. J., and Peach, C. J. (2010). Creep of simulated reservoir sands and coupled 
chemical-mechanical effects of CO2 injection. Journal of Geophysical Research-Solid Earth 
115, doi:10.1029/2009JB006939. 

Hassan, H. M., Korvin, G., and Abdulraheem, A. (2002). Fractal and genetic aspects of Khuff 
reservoir stylolites, Eastern Saudi Arabia. Arabian Journal for Science and Engineering 27, 
29-56. 

Hauck, M. L., Nelson, K. D., Brown, L. D., Zhao, W., and Ross, A. R. (1998). Crustal structure of the 
Himalaya orogen at 90° east logitude from project INDEPTH deep reflexion profile. Tectonics 
17, 481-500. 

He, W. W., Hajash, A., and Sparks, D. (2003). Creep compaction of quartz aggregates: Effects of 
pore-fluid flow - A combined experimental and theoretical study. American Journal of 
Science 303, 73-93. 

He, W. W., Hajash, A., and Sparks, D. (2007). Evolution of fluid chemistry in quartz compaction 
systems: Experimental investigations and numerical modeling. Geochimica et Cosmochimica 
Acta 71, 4846-4855. 

Heald, M. T. (1955). Stylolites in sandstones. The Journal of Geology 63, 101-114. 
Heidug, W. K. (1995). Intergranular solid-fluid phase transformations under stress: The effect of 

surface forces. Journal of Geophysical Research-Solid Earth 100, 5931-5940. 



 104 

Heidug, W. K., and Leroy, Y. M. (1994). Geometrical evolution of stressed and curved solid-fluid 
phase boundary. 1. Transformation kinetics. Journal of Geophysical Research-Solid Earth 99, 
505-515. 

Hellmann, R., Gaviglio, P., Renders, P., Gratier, J. P., Békri, S., and Adler, P. (2002a). Experimental 
pressure solution compaction of chalk in aqueous solutions: Part 2: deformation examined by 
SEM, porosimetry, synthetic permeability and X-ray computerized tomography. In "Water-
Rock Interactions, Ore Deposits, and Environmental Geochemistry: A tribute to David A. 
Crerar." (R. Hellmann, and S. A. Wood, Eds.), pp. 153-178. Geochimical society. 

Hellmann, R., Renders, P., Gratier, J. P., and Guiguet, R. (2002b). Experimental pressure solution 
compaction of chalk in aqueous solutions: Part 1 deformation behavior and chemistry. In 
"Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A tribute to David 
A. Crerar." (R. Hellman, and S. A. Wood, Eds.), pp. 129-152. Geochemical society. 

Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics 21, 
437-445. 

Hickman, S. H. (1989). "Experimental studies of pressure solution and crack healing in halite and 
calcite." Unpublished PhD thesis, Massassuchets Institute of Technology. 

Hickman, S. H., and Evans, B. (1991). Experimental pressure solution in halite: the effect of grain/ 
interphase boundary structure. Journal of the Geological Society of London 148, 549-560. 

Hickman, S. H., and Evans, B. (1995). Kinetics of pressure solution at halite-silica interfaces and 
intergranular clay films. Journal of Geophysical Research-Solid Earth 100, 13113-13132. 

Hickman, S. H., and Zoback, M. (2004). Stress orientations and magnitudes in the SAFOD pilot hole. 
Geophysical Research Letters 31, doi: 10.1029/2004GL020043  

Hobbs, B. E., Means, W. D., and Williams, P. F. (1976). "An outline of structural geology." Wiley and 
Sons. 

Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., de Bresser, J. H. P., Walker, R. J., and 
Bowen, L. (2011). Fault rocks from the SAFOD core samples: Implications for weakening at 
shallow depths along the San Andreas Fault, California. Journal of Structural Geology 33, 
132-144. 

Horn, R. G., Clarke, D. R., and Clarkson, M. T. (1988). Direct measurements of surface forces 
between sapphire crystals in aqueous solutions. Journal of Materials Research 3, 413-416. 

Horn, R. G., and Israelachvili, J. (1981). Direct measurements of structural forces between 2 surfaces 
in a non-polar liquid. Journal of Chemical Physics 75, 1400-1411. 

Horn, R. G., Smith, D. T., and Haller, W. (1989). Surface forces and viscosity of water measured 
between silica sheets. Chemical Physics Letters 162, 404-408. 

Israelachvili, J. N. (1986). Measurement of the viscosity of liquids in very thin films. Journal of 
Colloid and Interface Science 110, 263-271. 

Israelachvili, J. N. (2012). "Intermolecular and surface forces", Third edition, Academic Press. 
Jettestuen, E., Bisschop, J., and Dysthe, D. K. (2009). Dissolution-precipitation recrystallization of 

miscut crystal surfaces under stress. Journal of Crystal Growth 311, 1576-1583. 
Joffe, A., Kirpitschewa, M. W., and Lewitsky, M. A. (1924 ). Deformation and strength of crystals. Z. 

Phys. 22, 286-302. 
Jordan, G., Lohkamper, T., Schellewald, M., and Schmahl, W. W. (2005). Investigation of loaded 

halite-SiO2 interfaces undergoing dissolution-precipitation processes. European Journal of 
Mineralogy 17, 399-409. 

Kamb, W. B. (1959). Theory of preferred crystal orientations developed by crystallization under 
stress. Journal of Geology 67, 153-170. 

Kamb, W. B. (1961). The Thermodynamic Theory of Nonhydrostatically Stressed Solids. Journal of 
Geophysical Research 66, 259-271. 

Kanagawa, K. (2002). Frictional behavior of synthetic gouge-bearing faults under the operation of 
pressure solution. Earth Planets and Space 54, 1147-1152. 

Karcz, Z., Aharonov, E., Ertas, D., Polizzotti, R., and Scholz, C. H. (2006). Stability of a sodium 
chloride indenter contact undergoing pressure solution. Geology 34, 61-63. 



 105 

Karcz, Z., Aharonov, E., Ertas, D., Polizzotti, R., and Scholz, C. H. (2008). Deformation by 
dissolution and plastic flow of a single crystal sodium chloride indenter: An experimental 
study under the confocal microscope. Journal of Geophysical Research-Solid Earth 113, 
B04205, doi:10.1029/2006JB004630  

Karcz, Z., and Scholz, C. H. (2003). The fractal geometry of some stylolites from the Calcare 
Massiccio Formation, Italy. Journal of Structural Geology 25, 1301-1316. 

Karner, S. L., Marone, C., and Evans, B. (1997). Laboratory study of fault healing and lithification in 
simulated fault gouge under hydrothermal conditions. Tectonophysics 277, 41-55. 

Kassner, K., , Misbah, C., , Muller, J., Kappey, J., , and Kohlert, P. (2001). Phase-field modeling of 
stress-induced instabilities Physical Review E 63. 

Katsman, R. (2010). Extensionnal veins induced by self-similar dissolution at stylolites: analytical 
modeling Earth and Planetary Science letters 299, B04205, doi:10.1029/2006JB004630  

Kay, M. A., Main, I. G., Elphick, S. C., and Ngwenya, B. T. (2006). Fault gouge diagenesis at shallow 
burial depth: Solution-precipitation reactions in well-sorted and poorly sorted powders of 
crushed sandstone. Earth and Planetary Science Letters 243, 607-614. 

Kellogg, A. T., and Pohl, R. O. (1964). Penetration of Water into Plastically Deformed Nacl. Journal 
of Applied Physics 35, 1359-1360. 

Kennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., DePaolo, D. J., Thordsen, J., Ambats, 
G., and Mariner, R. H. (1997). Mantle fluids in the San Andreas fault system, California. 
Science 278, 1278-1280. 

Kerrich, R. (1977). An historical review and synthesis of research on pressure solution Zentbl. 
Mineralogie, Geologie, Paläontologie, H5-6, 512-550. 

Kerrich, R. (1986). Fluid infiltration into fault zones: chemical, isotopic and mechanical effects. Pure 
and Applied Geophysics 124, 225-268. 

Kingery, W. D., Bowen, H. K., and Ulhmann, D. R. (1976). "Introduction to ceramics, 2nd edition." 
Wiley, New York. 

Kjellander, R., and Marcelja, S. (1984). Correlation and Image Charge Effects in Electric Double-
Layers. Chemical Physics Letters 112, 49-53. 

Kjelstrup, S., Bedeaux, D., Johannssen, E., and Gross, J. (2010). "Non-Equilibrium thermodynamics 
for engineers." 

Koehn, D., , Arnold, J., , Jamtveit, B., , and Malthe-Sørenssen, A. (2003). Instabilities in stress 
corrosion and the transition to brittle failure. American Journal of Science 303, 956-971  

Koehn, D., Dysthe, D. K., and Jamtveit, B. (2004). Transient dissolution patterns on stressed crystal 
surfaces. Geochimica Et Cosmochimica Acta 68, 3317-3325. 

Koehn, D., Renard, F., Toussaint, R., and Passchier, C. W. (2007). Growth of stylolite teeth patterns 
depending on normal stress and finite compaction. Earth and Planetary Science Letters 257, 
582-595. 

Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995). Strength of the lithosphere: constraints 
imposed by laboratory experiments. Journal of Geophysical Research-Solid Earth 100, 
17587-17602. 

Konstantinidis, D. A., and Herrmann, H. J. (1998). Morphological phenomena during superplastic 
deformation. Physica A 256, 499-513. 

Kristiansen, K., Valtiner, M., Greene, G. W., Boles, J. R., and Israelachvili, J. N. ( 2011). Pressure 
solution – The importance of the electrochemical surface potentials. Geochimica et 
Cosmochimica Acta 75, 6882-6892. 

Labaume, P., Carrio-Schaffhauser, E., Gamond, J. F., and Renard, F. (2004). Deformation 
mechanisms and fluid-driven mass transfers in the recent fault zones of the Corinth Rift 
(Greece). Comptes Rendus Geoscience 336, 375-383. 

Laubsher, H. B. (1975). Viscous component in Jura. Tectonophysics 27, 239-254. 
Lawn, B. R. (1993). "Fracture of brittle solids." Cambridge University Press, Cambridge ; New York. 
Le Guen, Y., Renard, F., Hellmann, R., Brosse, E., Collombet, M., Tisserand, D., and Gratier, J. P. 

(2007). Enhanced deformation of limestone and sandstone in the presence of high PC02 
fluids. Journal of Geophysical Research-Solid Earth 112, doi: 10.1029/2006JB004637. 



 106 

Lehner, F. K. (1990). Thermodynamics of rock deformation by pressure solution. In "Deformation 
processes in minerals, ceramics and rocks." (D. J. Barber, and P. G. Meredith, Eds.), pp. 296-
333. Unwim Hyman, London. 

Lehner, F. K. (1995). A model for intergranular pressure solution in open systems. Tectonophysics 
245, 153-170. 

Lehner, F. K., and Bataille, J. (1985). Nonequilibrium thermodynamics of pressure solution. 
PAGEOPH 122, 53-85. 

Lehner, F. K., and Leroy, P. (2003). Sandstone compaction by intergranular pressure solution. In 
"Mechanics of fluid saturated rocks." (Y. Gueguen, and M. Bouteca, Eds.). Elsevier Academic 
Press. 

Lemée, C., and Gueguen, Y. (1996). Modelling of porosity loss during compaction and cementation of 
sandstones. Geology 24, 875-878. 

Liteanu, E., and Spiers, C. J. (2009). Influence of pore fluid salt content on compaction creep of 
calcite aggregates in the presence of supercritical CO2. Chemical Geology 265, 134-147. 

Lockner, D. A., Morrow, C., Moore, D., and Hickman, S. (2011). Low strength of deep San Andreas 
fault gouge from SAFOD core. Nature 472, 82-U107. 

Lockner, D. A., Summers, R., and Byerlee, J. D. (1986). Effect of temperature and sliding rate on 
frictional strength of granite. Pure and Applied Geophysics 124, 446-469. 

Lohkamper, T. H. K., Jordan, G., Costamagna, R., Stockhert, B., and Schmahl, W. W. (2003). Phase 
shift interference microscope study of dissolution-precipitation processes of 
nonhydrostatically stressed halite crystals in solution. Contributions to Mineralogy and 
Petrology 146, 263-274. 

Magdar, J. J., Tirrell, M., and Davis, H. T. (1985). Molecular-dynamic of narrow liquid-filled pores. 
Journal of Chemical Physics 83, 1888-1901. 

Malani, A., Ayappa, K. G., and Murad, S. (2006). Effect of confinement on the hydration and 
solubility of NaCl in water. Chemical Physics Letters 431, 88-93. 

Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual 
Review of Earth and Planetary Sciences 26, 643-696. 

Marquer, D., and Burkhard, M. (1992). Fluid circulation, progressive deformation and mass-transfert 
processes in the upper crust: the example of basement-cover relationships in the external 
crystalline massifs, Switzerland. Journal of Structural Geology 14, 1047-1057. 

Marshall, D. J., and Mariano, A. N. (1988). "Cathodoluminescence of geological materials." Unwin 
Hyman (Boston). 

Martin, B., Roller, K., and Stockhert, B. (1999). Low-stress pressure solution experiments on halite 
single-crystals. Tectonophysics 308, 299-310. 

Mc Ewen, T. J. (1981). Brittle deformation in pitted pebble conglomerate. Journal of Structural 
Geology 3, 25-38. 

McCaig, A. M. (1988). Deep fluid circulation in fault zones. Geology 16, 867-870. 
Means, W. (1987). A newly recognized type of slickenside striation. Journal of Structural Geology 9, 

585-590. 
Meer, S. d., and Spiers, C. J. (1997). Uniaxial compaction creep of wet gypsum aggregates. Journal of 

Geophysical Research-Solid Earth 102, 875-891. 
Merino, E., Ortoleva, P., and Strickholm, P. (1983). Generation of evenly spaced pressure solution 

seems during late diagenesis: a kinetics theory. Contributions to Mineralogy and Petrology 
82, 360-370. 

Meyer, E. E., Greene, G. W., Alcantar, N. A., Israelachvili, J. N., and Boles, J. R. (2006). 
Experimental investigation of the dissolution of quartz by a muscovite mica surface: 
Implications for pressure solution. Journal of Geophysical Research-Solid Earth 111, 
doi:10.1029/2005JB004010. 

Milliken, K. L. (1994). The widespread occurrence of healed microfractures in siliclastic rocks: 
Evidence from scanned cathodoluminescence imaging. In "Rock Mechanics." (B. K. Nelson, 
and S. E. Laubach, Eds.). Balkerna, Rotterdam. 



 107 

Mittempergher, S., Di Toro, G., Gratier, J.-P., Hadizadeh, J., Smith, S. A. F., and Spiess, R. (2011). 
Evidence of transient increases of fluid pressure in SAFOD phase III cores. Geophysical 
Research Letters 38, LO3301. 

Moore, D. E., and Rymer, M. J. (2007). Talc-bearing serpentinite and the creeping section of the San 
Andreas fault. Nature 448, 795-797. 

Morel, J., and den Brok, S. W. J. (2001). Increase in dissolution rate of sodium chlorate induced by 
elastic strain. Journal of Crystal Growth 222, 637-644. 

Mosher, S. (1976). Pressure solution as a deformation mechanism in Pennsylvanian conglomerates 
from Rhode Island. The Journal of Geology 84, 355-363. 

Muller, W., Aerden, D., and Halliday, A. N. (2000). Isotopic dating of strain fringe increments: 
Duration and rates of deformation in shear zones. Science 288, 2195-2198. 

Mullis, J. (1975). Growth condition of quartz crystals from Val d'Illiez (Valais, Switzerland) 
Schweizer Mineralogische und Petrographische Mitteilungen 55, 419-429. 

Nabarro, F. R. N. (1948). Deformation of crystals by the motion of single ions. In "Conference on the 
strength of solids, Proceeding of the Physical Society of London." pp. 75. 

Nakatani, M., and Scholz, C. H. (2004). Frictional healing of quartz gouge under hydrothermal 
conditions: 1. Experimental evidence for solution transfer healing mechanism. Journal of 
Geophysical Research-Solid Earth 109, doi:10.1029/2001jb001522. 

Nicolas, A., and Poirier, J. P. (1976). "Crystalline plasticity and solid-state flow in metamorphic 
rocks." J. Wiley Interscience Publications, London. 

Niemeijer, A. R., Marone, C., and Elsworth, D. (2008a). Healing of simulated fault gouges aided by 
pressure solution: Results from rock analogue experiments. Journal of Geophysical Research-
Solid Earth 113, doi:10/1029:2007JB005376. 

Niemeijer, A. R., Marone, C., and Elsworth, D. (2010). Frictional strength and strain weakening in 
simulated fault gouge: Competition between geometrical weakening and chemical 
strengthening. Journal of Geophysical Research-Solid Earth 115. 

Niemeijer, A. R., and Spiers, C. J. (2002). Compaction creep of quartz-muscovite mixtures at 500 
degrees C: Preliminary results on the influence of muscovite on pressure solution. Geological 
Society of London Special Publication 200, 61-71. 

Niemeijer, A. R., and Spiers, C. J. (2005). Influence of phyllosilicates on fault strength in the brittle-
ductile transition: insights from rock analogue experiments. High-Strain Zones: Structure and 
Physical Properties 245, 303-327. 

Niemeijer, A. R., and Spiers, C. J. (2006). Velocity dependence of strength and healing behaviour in 
simulated phyllosilicate-bearing fault gouge. Tectonophysics 427, 231-253. 

Niemeijer, A. R., Spiers, C. J., and Bos, B. (2002). Compaction creep of quartz sand at 400-600 
degrees C: experimental evidence for dissolution-controlled pressure solution. Earth and 
Planetary Science letters 195, 261-275. 

Niemeijer, A. R., Spiers, C. J., and Peach, C. J. (2008b). Frictional behaviour of simulated quartz fault 
gouges under hydrothermal conditions: Results from ultra-high strain rotary shear 
experiments. Tectonophysics 460, 288-303. 

Nino, F., Chéry, J., and Gratier, J. P. (1998). Mechanical modeling of compressional basins: origin and 
interaction of faults, erosion and subsidence in the Ventura Basin, California. Tectonics 17, 
955-972. 

Noiriel, C., Renard, F., Doan, M. L., and Gratier, J. P. (2010). Intense fracturing and fracture sealing 
induced by mineral growth in porous rocks. Chemical Geology 269, 197-209. 

Pachon-Rodriguez, E. A., Piednoir, A., and Colombani, J. (2011). Pressure solution at the molecular 
scale. Physical Review Letters 107, 146102. 

Park, W. C., and Schot, E. H. (1968). Stylolites, their nature and origin. Journal of Sedimentary 
Petrology 38, 175-1. 

Parks, G. A. (1984). Surface and interfacial free energies of quartz. Journal of Geophysical Research 
89, 3997-4008. 



 108 

Pashley, R. M., and Israelachvili, J. N. (1984). Molecular layering of water in thin films between mica 
surfaces and its relation to hydration forces. Journal of Colloid and Interface Science 101, 
510-522. 

Paterson, M. S. (1973). Nonhydrostatic thermodynamics and its geologic applications. Reviews of 
Geophysics and Space Physics 11, 355-389. 

Paterson, M. S. (1978). "Experimental rock deformation: the brittle field." Springer-Verlag, Berlin. 
Pennock, G. M., Drury, M. R., Peach, C. J., and Spiers, C. J. (2006). The influence of water on 

deformation microstructures and textures in synthetic NaCl measured using EBSD. Journal of 
Structural Geology 28, 588-601. 

Pharr, G. M., and Ashby, M. F. (1983). On creep enhanced by liquid phase. Acta Metallurgica 31, 
129-138. 

Pinho, S. P., and Macedo, E. A. (2005). Solubility of NaCl, NaBr, and KCI in water, methanol, 
ethanol, and their mixed solvents. Journal of Chemical and Engineering Data 50, 29-32. 

Piper, J. D. A., Mesci, L. B., Gursoy, H., Tatar, O., and Dabies, C. J. (2007). Palaeomagnetic and rock 
magnetic properties of travertines: its potential as a recorder of geomagnetic palaeosecular 
variaton, environmental change and earthquake activity in the Sicak Cermik geothermal field, 
Turkey. Physics of the Earth and Planetary Interiors 161, 50-73. 

Poirier, J. P. (1985). "Creep of crystals." Cambridge University Press. 
Railsback, L. B. (1993). Lithologic controls on morphology of pressure-dissolution surfaces (stylolites 

and dissolution seams) in paleozoic carbonate rocks from the mideastern united-states. 
Journal of Sedimentary Petrology 63, 513-522. 

Raj, R. (1982). Creep in polycrystalline aggregates by matter transport through a liquid phase. Journal 
of Geophysical Research-Solid Earth 87, 4731-4739. 

Raj, R., and Chyung, C. K. (1981). Solution-precipitation creep in glass ceramics. Acta Metallurgica 
29, 159-166. 

Ramm, M. (1992). Porosity-depth trends in reservoir sandstones: theoretical models related to Jurassic 
sandstones offshore Norway. Marine and Petroleum Geology 9, 553-567. 

Ramsay, J. G. (1967). "Folding and fracturing of rocks." MacGraw-Hill Book Company. 
Ramsay, J. G. (1980a). The crack-seal mechanism of rock deformation. Nature 284, 135-139. 
Ramsay, J. G. (1980b). Shear zone geometry a review. Journal of Structural Geology 2, 83-100. 
Ramsay, J. G., and Huber, M. I. (1987). "The Techniques of Modern Structural Geology. Volume 2: 

Folds and Fractures." Academic Press, London. 
Ramsay, J. G., and Wood, D. S. (1974). The geometric effects of volume change during during 

deformation processes. Tectonophysics 16, 263-277. 
Rehbinder, P. A., and Shchukin, E. D. (1972). Surface phenomena in solids during deformation and 

fracture, . Progress in Surface Science 3, 97-188. 
Renard, F., Beaupretre, S., Voisin, C., Zigone, D., Candela, D., Dysthe, D. K., and Gratier, J. P. 

(2012). Strength evolution of a reactive frictionnal interface: an analogue experiment. Earth 
and Planetary Science letters , 341-344, 20-34. 

Renard, F., Bernard, D., Thibault, X., and Boller, E. (2004a). Synchrotron 3D microtomography of 
halite aggregates during experimental pressure solution creep and evolution of the 
permeability. Geophysical Research letters 31, doi:10.1029/2004GL019605. 

Renard, F., Brosse, E., and Gratier, J. P. (2000a). The different processes involved in the mechanism 
of pressure solution in quartz-rich rocks and their interactions. International Association 
Sedimentologists Special Publication 29, 67-78. 

Renard, F., Dysthe, D., Feder, J., Bjorlykke, K., and Jamtveit, B. (2001). Enhanced pressure solution 
creep rates induced by clay particles: Experimental evidence in salt aggregates. Geophysical 
Research Letters. 28, 1295-1298. 

Renard, F., Dysthe, D. K., Feder, J. G., Meakin, P., Morris, S. J. S., and Jamtveit, B. (2009). Pattern 
formation during healing of fluid-filled cracks: an analog experiment. Geofluids 9, 365-372. 

Renard, F., Gratier, J. P., and Jamtveit, B. (2000b). Kinetics of crack-sealing, intergranular pressure 
solution, and compaction around active faults. Journal of Structural Geology 22, 1395-1407. 



 109 

Renard, F., and Ortoleva, P. (1997). Water films at grain-grain contacts: Debye-Huckel, osmotic 
model of stress, salinity, and mineralogy dependence. Geochimica et Cosmochimica Acta 61, 
1963-1970. 

Renard, F., Ortoleva, P., and Gratier, J. P. (1997). Pressure solution in sandstones: influence of clays 
and dependence on temperature and stress. Tectonophysics 280, 257-266. 

Renard, F., Park, A., Ortoleva, P., and Gratier, J. P. (1999). An integrated model for transitional 
pressure solution in sandstones. Tectonophysics 312, 97-115. 

Renard, F., Schmittbuhl, J., Gratier, J. P., Meakin, P., and Merino, E. (2004b). Three-dimensional 
roughness of stylolites in limestones. Journal of Geophysical Research-Solid Earth 109, 
doi:10.1029/2003JB002555  

Renton, J. J., Heald, M. T., and Cecil, C. B. (1969). Experimental investigation of pressure solution of 
quartz. Journal of sedimentary Petrology 39, 1107-1117. 

Revil, A. (1999). Pervasive pressure-solution transfer: a poro-visco-plastic model. Geophysical 
Research Letters 26, 255-258. 

Revil, A. (2001). Pervasive pressure solution transfer in a quartz sand. Journal of Geophysical 
Research-Solid Earth 106, 8665-8686. 

Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas 
fault In "Fault Mechanics and Transport Properties of Rocks." pp. 475-503. Academic Press. 

Richard, J. (2009). "Processus de développement de la schistosité ", University Joseph Fourier, 
Master, 27p  

Rimstidt, J. D., and Barnes, H. L. (1980). The kinetics of silica-water reactions. Geochimica et 
Cosmochimica Acta 44, 1683-1699. 

Robin, P.-Y. (1978). Pressure solution at grain-to-grain contacts. Geochimica et Cosmochimica Acta 
42, 1383-1389. 

Røyne, A., and Dysthe, D. K. (2012). Rim formation on crystal faces growing in confinement. Journal 
of Crystal Growth 346, 89-100. 

Rutter, E. H. (1972). The influence of interstitial water on the rheological behavior of calcite rocks. 
Tectonophysics 14, 13-33. 

Rutter, E. H. (1976). The kinetics of rock deformation by pressure solution. Philosophical 
Transactions of the Royal Society of London 283, 203-219. 

Rutter, E. H. (1983). Pressure solution in nature, theory and experiment. Journal of the geological 
Society of London 140, 725-740. 

Rutter, E. H., Maddock, R. H., Hall, S. H., and White, S. H. (1986). Comparative microstructures of 
natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics 
124, 3-30. 

Rutter, E. H., and Mainprice, D. H. (1978). The effect of water on stress relaxation of faulted and 
unfaulted sandstones. Pure and Applied Geophysics 116, 634-654. 

Safaricz, M., and Davison, I. (2005). Pressure solution in chalk. American Association of Petroleum 
Geologists Bulletin 89, 383-401. 

Schenk, O., Urai, J. L., and Piazolo, S. (2006). Structure of grain boundaries in wet, synthetic 
polycrystalline, statically recrystallizing halite - evidence from cryo-SEM observations. 
Geofluids 6, 93-104. 

Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., and Warr, L. N. (2009). Constraints on 
mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from 
the SAFOD drill hole. Journal of Geophysical Research-Solid Earth 114, doi: 
10.1029/2008JB006092. 

Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schonborn, G., and Kissling, E. (1996). Geophysical-
geological transect and tectonic evoloution of the Swiss-Italian Alps. Tectonics 15, 1036-
1034. 

Schmidt, S. M., Pfiffner, O. A., Froitzheim, N., Schonborn, G., and Kissling, E. (1996). Geophysical-
geological transect and tectonic evoloution of the Swiss-Italian Alps. Tectonics 15, 1036-
1034. 



 110 

Schmittbuhl, T., Renard, F., Gratier, J. P., and Toussaint, R. (2004). The roughness of stylolites 
implications of 3D high resolution topography measurements. Physic Research Letters 93, 
doi:10.1103/PhysRevLett.93.238501  

Scholz, C. (1998). Earthquakes and friction laws. Nature 391, 37-42. 
Schutjens, P. (1991). Experimental compaction of quartz sand at low effective stress and temperature 

condition. Journal of the Geological Society of London 148, 527-539. 
Schutjens, P., and Spiers, C. J. (1999). Intergranular pressure solution in NaCl: Grain-to-grain contact 

experiments under the optical microscope. Oil & Gas Science and Technology-Revue De L 
Institut Francais Du Petrole 54, 729-750. 

Sclater, J. G., and Christie, P. A. F. (1980). Continental stretching - an explanation of the post-mid-
cretaceous subsidence of the central north-sea basin Journal of Geophysical Research-Solid 
Earth 85, 3711-3739. 

Shimamoto, T., Kanaori, Y., and Asai, K.-I. (1991). Cathodoluminescence observations on low-
temperature mylonites: potential for detection of solution-precipitation microstructures. 
Journal of Structural Geology 13, 967-973. 

Shimizu, I. (1992). Nonhydrostatic and nonequilibrium thermodynamics of deformable materials. 
Journal of Geophysical Research-Solid Earth 97, 4587-4597. 

Sibson, R. H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the 
continental crust of the United States. Bulletin of the Seismological Society of America 72, 
151-163. 

Sibson, R. H. (1990). Faulting and fluid flow. In "Fluids in tectonically active regimes of the 
continental crust." (B. E. Nesbitt, Ed.), pp. 93-132. Short Course Handbook. Mineralogical 
Association of Canada. 

Sibson, R. H., Robert, F., and Poulsen, K. H. (1988). High angle reverse fault, fluid-pressure cycling 
and mesothermal gold quartz deposits. Geology 16, 551-555. 

Siddans, A. W. B. (1972). Slaty cleavage — a review of research since 1815. Earth-Science Reviews 
8, 205-232. 

Simon, J. L. (2007). Analysis of solution lineations in pebbles: Kinematical vs. dynamical approaches. 
Tectonophysics 445, 337-352. 

Sinha-Roy, S. (2004). Antitaxial fibrous bands in differentiated stylolites. Journal of the Geological 
Society of India 63, 387-405. 

Skvortsova, Z. N. (2004). Deformation by the mechanism of dissolution-reprecipitation as a form of 
adsorption plasticization of natural salts. Colloid Journal 66, 1-10. 

Skvortsova, Z. N., Kas’yanova, I. V., and Traskine, V. Y. (2003). Indentation study of adsorption 
plastification of sodium chloride single crystals. Colloid Journal 65, 366-369. 

Solum, J. G., Hickman, S. H., Lockner, D. A., Moore, D. E., van der Pluijm, B. A., Schleicher, A. M., 
and Evans, J. P. (2006). Mineralogical characterization of protolith and fault rocks from the 
SAFOD Main Hole. Geophysical Research Letters 33, doi: 10.1029/2006GL027285. 

Sorby, H. C. (1863). On the direct correlation of mechanical and chemical forces. Proceeding of the 
Royal Society of London 12, 538-550. 

Sorby, H. C. (1865). On impressed limestone pebble. Proceedings of the Geological and Polytechnic 
Society of the West Riding of Yorkshire, 4, 458-461. 

Spiers, C. J., and Brzesowsky, R. H. (1993). Densification behaviour of wet granular salt: Theory 
versus experiment. In "Seventh Symposium on salt." pp. 83-91. 

Spiers, C. J., and Schutjens, P. M. (1990). Densification of crystalline aggregates by fluid phase 
diffusional creep. In "Deformation process in minerals, ceramics and rocks." (D. J. Barber, 
and P. G. Meredith, Eds.), pp. 334-353. Unwin Hyman. 

Spiers, C. J., Schutjens, P. M. T. M., Brzesowsky, R. H., Peach, C. J., Liezenberg, J. L., and Zwart, H. 
J. (1990). Experimental-Determination of Constitutive Parameters Governing Creep of Rock-
Salt by Pressure Solution. Geological Society of London Special Publication 54, 215-227. 

Sprunt, E. S., and Nur, A. (1976). Reduction of porosity by pressure solution: Experimental 
verification. Geology 4, 463-466. 



 111 

Sprunt, E. S., and Nur, A. (1977). Experimental study of the effects of stress on solution rate. Journal 
of Geophysical Research-Solid State 32, 3013-3022. 

Stockdale, P. B. (1922). "Stylolites: Their nature and origin,." Indiana University Studies. 
Stromgard, K. E. (1973). Stres distribution during formation of boudinage and pressure shadow. 

Tectonophysics 16, 215-243. 
Tada, R., and Siever, R. (1986). Experimental knife-edge pressure solution of halite. Geochimica et 

Cosmochimica Acta 50, 29-36. 
Tada, R., and Siever, R. (1989). Pressure solution during diagenesis. Annual Review of Earth and 

Planetary Sciences 17, 89-118. 
Taron, J., and Elsworth, D. (2010). Constraints on compaction rate and equilibrium in the pressure 

solution creep of quartz aggregates and fractures: Controls of aqueous concentration. Journal 
of Geophysical Research-Solid Earth 115, doi:10.1029/2009JB007118. 

Tenthorey, E., and Cox, S. F. (2006). Cohesive strengthening of fault zones during the interseismic 
period: An experimental study Journal of Geophysical Research-Solid Earth 111, 59-72. 

Thomas, A. R., Dahl, W. M., Hall, C. M., and York, D. (1993). 40Ar/39Ar analyzes of authigenic 
muscovite, timing of stylolitization, and implications for pressure solution mechanisms: 
Jurassic Norphlet formation, offshore Alabama. Clays and Clay Minerals 41, 269-279. 

Thomson, J. (1861). Collected papers in physics and engineering, 1912. Cambridge university press. 
Titus, S. J., DeMets, C., and Tikoff, B. (2006). Thirty-five-year creep rates for the creeping segment of 

the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from 
alignment arrays, continuous global positioning system, and creepmeters. Bulletin of the 
Seismological Society of America 96, S250-S268. 

Traskin, V. Y. (2009). Rehbinder effect in tectonophysics. Izvestiya-Physics of the Solid Earth 45, 
952-963. 

Traskin, V. Y., Abdrakhimov, M. Z., and Skvortsova, Z. N. (1998). Observation of the Rehbinder 
effect under conditions of superdeep drilling. Colloid Journal 60, 606-608. 

Traskine, V. Y., Skvortsova, Z., Muralev, A., and Zubov, D. (2009). Pressure solution creep under 
cyclic loading. Mineralogy and Petrology 97, 265-274. 

Trurnit, P. (1968). Pressure solution phenomena in detrital rocks. Sedimentary Geology 2, 89-114. 
Urai, J. L., Spiers, C. J., Zwart, H. J., and Lister, G. S. (1986). Weakening of rock-salt by water during 

long-term creep. Nature 324, 554-557. 
Valtiner, M., Kristiansen, K., Greene, G. W., and Israelachvili, J. N. (2011). Effect of Surface 

Roughness and Electrostatic Surface Potentials on Forces Between Dissimilar Surfaces in 
Aqueous Solution. Advanced Materials 23, 2294-2299. 

van Noort, R., Spiers, C., and Peach, C. (2007). Effects of orientation on the diffusive properties of 
fluid-filled grain boundaries during pressure solution. Physics and Chemistry of minerals 34, 
95-112. 

van Noort, R., Spiers, C. J., and Peach, C. J. (2011). Structure and properties of loaded silica contacts 
during pressure solution: impedance spectroscopy measurements under hydrothermal 
conditions. Physics and Chemistry of minerals 38, 501-516. 

van Noort, R., Spiers, C. J., and Pennock, G. M. (2008a). Compaction of granular quartz under 
hydrothermal conditions: Controlling mechanisms and grain boundary processes. Journal of 
Geophysical Research-Solid Earth 113, doi:10.1029/2008JB005815  

van Noort, R., Visser, H. J. M., and Spiers, C. J. (2008b). Influence of grain boundary structure on 
dissolution controlled pressure solution and retarding effects of grain boundary healing. 
Journal of Geophysical Research-Solid Earth 113, doi:10.1029/2007JB005223  

Vigil, G., Xu, Z.-H., Steinberg, S., and Israelachvili, J. (1994). Interaction of silica surfaces. Journal of 
Colloid and interface science 165, 367-385. 

Voisin, C., Renard, F., and Grasso, J. R. (2007). Long term friction: From stick-slip to stable sliding. 
Geophysical Research Letters 34, doi:10.1029/2007GL029715. 

Wangen, M. (1998). Modeling porosity evolution and cementation of sandstones. Marine and 
Petroleum Geology 15, 453-465. 



 112 

Watanabe, Y., Nakai, S., and Lin, A. M. (2008). Attempt to determine U-Th ages of calcite veins in 
the Nojima fault zone, Japan. Geochemical Journal 42, 507-513. 

Weibel, R., and Keulen, N. (2008). Diagenesis influencing the porosity of Upper Jurassic reservoir 
sandstones, Danish North Sea. Geological Survey of Denmark and Greenland Bulletin 15, 9-
12. 

Weyl, P. K. (1959). Pressure solution and the force of crystallization: a phenomenological theory. 
Journal of Geophysical Research-Solid Earth 64, 2001-2025. 

Wheeler, J. (1992). Importance of pressure solution and Coble creep in the deformation of 
polymineralics rocks. Journal of Geophysical Research-Solid Earth 97, 4579-4586. 

Wheeler, J. (2010). Anisotropic rheology during grain boundary diffusion creep and its relation to 
grain rotation, grain boundary sliding and superplasticity. Philosophical Magazine 90, 2841-
2864. 

Wintsch, R. P., and Dunning, J. (1985). The effect of dislocation density on the aqueous solubility of 
quartz and some geologic implications: A theoretical approach. Journal of Geophysical 
Research-Solid Earth 90, 3649-3657. 

Wintsch, R. P., Kvale, C. M., and Kisch, H. J. (1991). Open-system, constant-volume development of 
slaty cleavage, and strain-induced replacement reactions in the Martinsburg formation, Lehig 
Gap, Pennsylvania. Geological Society of America Bulletin 103, 916-927. 

Wood, D. S. (1974). Current Views of the Development of Slaty Cleavage. Annual Review of Earth 
and Planetary Sciences 2, 369-400. 

Yasuhara, H., Elsworth, D., and Polak, A. (2003). A mechanistic model for compaction of granular 
aggregates moderated by pressure solution. Journal of Geophysical Research-Solid Earth 108, 
doi:10.1029/2003JB002536  

Yasuhara, H., Marone, C., and Elsworth, D. (2005). Fault zone restrengthening and frictional healing: 
The role of pressure solution. Journal of Geophysical Research-Solid Earth 110, 
doi:101029/2004JB003327. 

Yeats, R. S., and Huftile, J. G. (1994). Late Cenozoic Tectonics of the East Ventura Basin, Transverse 
Ranges, California. American Association Petroleum Geologists Bulletin 78, 1040-1070. 

Zhang, X. M., Salemans, J., Peach, C. J., and Spiers, C. J. (2002). Compaction experiments on wet 
calcite powder at room temperature: evidence for operation of intergranular pressure solution. 
Geological Society of London, Special Publication 200, 29-40. 

Zhang, X. M., and Spiers, C. J. (2005a). Compaction of granular calcite by pressure solution at room 
temperature and effects of pore fluid chemistry. International Journal of Rock Mechanics and 
Mining Sciences 42, 950-960. 

Zhang, X. M., Spiers, C. J., and Peach, C. J. (2010). Compaction creep of wet granular calcite by 
pressure solution at 28 degrees C to 150 degrees C. Journal of Geophysical Research-Solid 
Earth 115, doi:10.1029/2008JB005853  

Zhang, X. M., Spiers, C. J., and Peach, C. J. (2011). Effects of pore fluid flow and chemistry on 
compaction creep of calcite by pressure solution at 150 degrees C. Geofluids 11, 108-122. 

Zhang, X. M., and Spiers, C. J. T. (2005b). Effects of phosphate ions on intergranular pressure 
solution in calcite: An experimental study. Geochimica et Cosmochimica Acta 69, 5681-5691. 

Zoback, M., Hickman, S., and Ellsworth, W. (2010). Scientific drilling into the San Andreas Fault 
Zone. EOS, Transactions, American Geophysical Union, 91, 197-199. 

Zubtsov, S., Renard, F., Gratier, J. P., Dysthe, D. K., and Traskine, V. (2005). Single-contact pressure 
solution creep on calcite monocrystals. Geological Society of London Special Publication 243, 
81-95. 

Zubtsov, S., Renard, F., Gratier, J. P., Guiguet, R., Dysthe, D. K., and Traskine, V. (2004). 
Experimental pressure solution compaction of synthetic halite/calcite aggregates. 
Tectonophysics 385, 45-57. 

 
 
 


	Pressure-solution-creep-Gratier-etal-final
	Pressure-solution-creep-Gratier-etal-final.2
	Pressure-solution-creep-Gratier-etal-final.3
	Pressure-solution-creep-Gratier-etal-final.4
	Pressure-solution-creep-Gratier-etal-final.5

