Dating carbonaceous matter in archean cherts by electron paramagnetic resonance
Mathilde Bourbin, Didier Gourier, Laurent Binet, Yann Le Du, Sylvie Derenne, Francès Westall, Barbara Kremer, Pascale Gautret

To cite this version:
Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

M. Bourbin,1 D. Gourier,2 S. Derenne,1 L. Binet,2 Y. Le Du,2 F. Westall,3 B. Kremer,4 and P. Gautret5

Abstract

Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks—Contamination—Spectroscopy—Archean. Astrobiology 13, 151–162.

1. Introduction

The most ancient traces of life, as old as about 3.5 Gyr, are recorded in silicified sediments (cherts). Although the mineral matrix can be accurately dated by using the U-Pb isotopes, for instance (Faure, 1986), dating the organic matter within the rocks is more problematic as fractions of it may be more recent than the mineral matrix due to contamination processes such as weathering, hydrothermalism, colonization by endolithic microorganisms, or anthropogenic contamination (Hoering, 1967; Roedder, 1981; Campbell, 1982; Knoll et al., 1986; Westall and Folk, 2003). This can lead to incorrect conclusions about the presence of fossilized traces of life. The possibility of contamination results in a need for independent syngeneity markers, that is, proxies proving that the organic matter does not result from any contamination process and is of the same age as the mineral matrix.

Our study began by selecting samples and using clues for syngeneity, both at the macroscopic and the microscopic scales (Hoering, 1966). Because of contamination issues, correct interpretation of the microscopic remains of microorganisms requires undertaking small-scale stratigraphic mapping and multiple samplings at each studied locality (Buick, 1990). Rigorous procedures for collecting and preparing samples must be observed. Optical microscopy study of petrographic thin sections has to be used as the primary source of context information and, eventually, paleontological information if the microfossils are large enough to be observed by this method. At the microscopic scale, syngeneity clues are given

1Biogéochimie et Ecologie des Milieux Continentaux, UMR CNRS 7618, Université Pierre et Marie Curie, Paris, France.
2Laboratoire de Chimie de la Matière Condensée de Paris, Ecole Nationale Supérieure de Chimie de Paris, UMR CNRS 7574, Paris, France.
3Centre de Biophysique Moléculaire, UPR CNRS 4301, Orléans, France.
4Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland.
5CNRS/INSU, ISTO, UMR 7327, Orléans, France.
by morphological criteria, reflecting the close relationship between the organic matter and the mineral matrix. Those criteria include (i) the presence of minerals embedded in the organic matter or organic matter embedded in a mineral matrix; (ii) the presence of later veins cutting the whole structure; (iii) the diversity of microbial colonies and biofilms; (iv) the distribution of the structures in the sample; (v) the variability in the level of preservation and silification of the structures; (vi) the maturity of the organic matter (Westall et al., 2006; Westall, 2011; Westall and Cavallazzi, 2011). However, younger microorganisms inhabiting cracks in the host rock may be present and may also become fossilized (Westall and Folk, 2003). They present all aforementioned macroscopic and microscopic properties, except that they are not embedded within minerals—they occur along cracks and mineral grain boundaries—and are thus sometimes difficult to differentiate from older endogenous structures. Finally, great care must be given to the interpretation of the local context and habitability of the environment in which the host rock was formed to determine whether the environment was conducive to the kind of organisms found in it (Westall, 2008).

Once the sample is selected, based on the aforementioned macroscopic and microscopic observations, syngenticity must be assessed with complementary techniques. Nanoscale secondary ion mass spectrometry (NanoSIMS) silicon and oxygen mapping was proposed to be a good syngenicity marker. This technique illustrates the intimate relationship of silica with organic matter, which probably reflects the permineralization process of biological remains (Oehler et al., 2009). However, isotopic values obtained on Archean samples by NanoSIMS have large error bars (Robert et al., 2008). Moreover, if care is not taken during the analytical procedure (e.g., by using rigorous cleaning methods and/or stepped combustion), isotopic values in very ancient rocks may reflect younger contamination rather than older endogenous signal, as for cherts from the Isua Greenstone Belt in Greenland (Westall and Folk, 2003).

Electron paramagnetic resonance (EPR) is a nondestructive and non-invasive technique that has long been used for dating the mineral matrices in cherts and flints younger than ~1 Myr by monitoring the line intensity of irradiation-induced defects (Robins et al., 1978; Porat and Schwarz, 1991; Skinner, 2000). Paramagnetic defects, in the form of organic radicals, are also always present in carbonaceous material. They have been detected with high sensitivity in coals by pioneering EPR studies (Uebersfeld and Erb, 1956). These types of radicals were therefore used for the characterization of a wide range of carbonaceous materials, ranging from coals (Retcofsky et al., 1968; Mrozowski, 1988a, 1988b) to cherts (Skrzypczak-Bonduelle et al., 2008) or meteorites (Binet et al., 2002, 2004; Gourier et al., 2008; Delpoux et al., 2011). The EPR signal of kerogen has the form of a single line, which reflects the presence of aromatic radical moieties with an unpaired electron spin delocalized in π-type molecular orbitals (Uebersfeld et al., 1954; Retcofsky et al., 1968; Mrozowski, 1988b; Dickneite et al., 1997). Several parameters can be deduced from the EPR spectra based on the amplitude, the linewidth, and the resonance field of the signal. Contrary to irradiation-induced defects in mineral hosts, radical defects in carbonaceous matter may not be due to natural irradiation and for this reason cannot be used for dating by monitoring the EPR intensity. Conversely, they are due to thermally activated reactions that occur during maturation of the organic matter. However, Skrzypczak-Bonduelle et al. (2008) proposed that the evolution of the EPR lineshape in insoluble organic matter could be used to estimate the age of primitive carbonaceous matter older than ~1 Gyr. More precisely, it was observed that the EPR lineshape evolves from Gaussian-Lorentzian for Phanerozoic cherts to purely Lorentzian for cherts older than ~1 Gyr and finally to stretched Lorentzian for cherts as old as 3.5 Gyr. This evolution was interpreted as a result of the variation of the spatial distribution of the electron spins in the carbonaceous matter. A lineshape factor (R_{50} factor) was defined to quantify the deviation of the signal from a Lorentzian shape. This parameter is equal to zero for a pure Lorentzian line, positive for an increasing Gaussian character, and negative for a stretched Lorentzian line (Skrzypczak-Bonduelle et al., 2008). However, this proxy was initially based on a limited set of samples, and the potential contribution of metamorphism, as well as the precision of the method, had yet to be investigated.

In the present study, the R_{50} factor was calculated for numerous chert samples of various ages and metamorphic grades, all of which came from different locations. Carbonaceous matter resulting from thermally treated modern cyanobacterial samples was also studied in order to statistically test the robustness of the proxy. Since high temperature induces artificial aging, we also studied the EPR signals of three Silurian cherts that were the same age and had the same precursors but exhibited various metamorphic grades to clearly discriminate the effect of metamorphism from that of natural aging. Moreover, to test whether contamination by younger organic matter could be detected, a “contamination-like” mixture of fresh cyanobacteria and artificially aged cyanobacteria was designed and studied by EPR spectroscopy.

2. Material and Methods

2.1. Samples

Chert samples were selected that ranged widely in age, from the Silurian (~420 Myr) to the Archean (3.5 Gyr). These cherts are silicified sediments containing the carbonaceous remains of microorganisms (and macroorganisms in the most recent samples). The silica phase in the cherts is microcrystalline quartz. The samples originated from various localities: South Africa, Australia, North America, and Europe. The cherts had been exposed to different metamorphic events but always remained lower than or equal to the greenschist facies. This is a prerequisite for EPR studies given that, for higher metamorphic grades, organic matter inside the sample is further graphitized and thus no longer suitable. A description of the cherts studied is given in Table 1. We also reexamined the EPR spectra of cherts analyzed by Skrzypczak-Bonduelle et al. (2008), which are represented by letters in Table 1.

Microcoleus chthonoplastes cyanobacterial samples were collected in the lake “La Salada de Chirpana” (Ebro River basin, Northern Spain, 41°14′30″N, 0°10′50″W), the only permanent hypersaline ecosystem in Western Europe (Vidondo et al., 1993). With a shallow-water environment, this lake represents a good analogue to an Archean environment and hosts extensive photosynthetic microbial mats. These mats have a multilayer structure and contain *M. chthonoplastes*, a
filamentous mat-building cyanobacterium that is common in marine and hypersaline environments, and therefore represent a good modern analogue of a Late Archean organism.

In October 2010, 20·10×10 cm blocks of microbial mats were sampled in La Salada de Chiprana and maintained in aquaria in the laboratory in aerated natural lake water, at ambient temperature and under Philips-HPI T Plus 400 W lamps. The microbial mats were dissected under magnifying glasses in order to separate *M. chthonoplastes* cyanobacteria from the rest of the mat. The separated cyanobacteria were rinsed two times with distilled water, frozen, and lyophilized.

2.2. Methods

Lyophilized bacteria (6 mg) was introduced in EPR tubes in quadruplicates for step heating treatment up to 620°C. Two tubes were then opened to recover the thermally treated bacteria, which were then mixed with 6 mg of intact lyophilized bacteria. The mixture was introduced in EPR tubes in duplicates. Intact chert rock (100 mg) was sampled and introduced in EPR tubes for analysis.

All EPR tubes were sealed under vacuum to avoid the presence of O₂, which can broaden the EPR line (Bates *et al.*, 1995). The accelerated aging was performed with a gradual step thermal treatment, from 70°C to 720°C. Each step consisted of a 50°C rise of temperature for 15 min, followed by the EPR measurement at room temperature (Skrzypczak-Bonduelle *et al.*, 2008).

Electron paramagnetic resonance analyses were performed on a Bruker ELEXSYS E500 spectrometer equipped with a high-sensitivity Bruker 4122SHQE/0111 microwave cavity. A microwave power ranging from 2 to 20 mW was used. All the experiments were conducted at ambient temperature and at X-band (9.5 GHz). Before each experiment,
The spectrometer was calibrated by using the diphenyl-
picrylhydrazyl (DPPH) standard with a known g factor
($g = 2.0037$).

The mathematical analysis of the EPR lineshape, which is
the central part of this paper, is described in detail in the
Appendix. All statistical tests, EPR parameters, and R_{10} fac-
tor calculations, together with their standard deviations,
were performed in the literate programming style with
Python to computation, with use of the open source Sage
interface and the Numpy and Scipy libraries.

3. Results

3.1. EPR lineshape evolution in chert samples

The EPR line of organic radicals in Precambrian carbona-
ceous matter has the form of the first derivative of the ab-
sorption and can exhibit different lineshapes ranging from
Gaussian to Lorentzian and stretched Lorentzian (Skrzypcz-
czak-Bonduelle et al., 2008). These different lineshapes reflect
the hydrogen content, the concentrated or diluted character
of radicals in the carbonaceous matter, and the dimen-
sionality of their spatial distribution. The different types of
lineshapes are shown in Fig. 1a. When the electron spins are
concentrated and/or when they interact with nuclear spins
of hydrogen atoms present in the carbonaceous matter, the
lineshape is intermediate between Lorentzian and Gaussian.
When electron spins are less concentrated and randomly
distributed in the volume of the carbonaceous matter (3-D
distribution), the lineshape evolves to a pure Lorentzian.
When the spins are distributed in a plane on aromatic layers
(2-D distribution) or along a single direction on the edge of
long aromatic layers (1-D distribution), the Lorentzian line is
stretched, with wings falling off more slowly than a pure
Lorentzian line (Fel’dman and Lacelle, 1996). The stretched
character increases with the decreasing dimensionality of the
spatial distribution.

Two examples of normalized EPR lines of carbonaceous
radicals in Precambrian cherts are shown in Fig. 1b. The EPR
spectrum of the Gunflint chert (blue spectrum) has the shape
of a first derivative of a Lorentzian shape function, whereas
the signature of the Josefsdal chert (black spectrum) exhibits
a significant stretching in the wings. The narrow feature in
the high field side of the carbon signal is due to oxygen
vacancy centers (E’ centers) in silica. As there are no ana-
lytical functions for such stretched Lorentzian signatures, we
analyzed the EPR lines in a representation where a pure
Lorentzian line is linear (Fig. 2). The new coordinates x and
$f(x)$ are defined in the Appendix (Eq. A5). Any deviation
from this line indicates a Gaussian contribution (positive
deviation) or a stretching of the Lorentzian (negative devia-
tion). By comparing the algebraic surface between the ex-
perimental data and the Lorentzian function plotted in the {$x,
\ f(x)$} representation, we defined a lineshape parameter (R_{10}
factor), which measures the amount of Gaussian character
($R_{10} > 0$) and the amount of stretching of the Lorentzian line
($R_{10} < 0$), a pure Lorentzian line being characterized by $R_{10} = 0$
(Table 2). That is, the R_{10} factor will be greater than 0 for
immature carbonaceous materials (young, no metamor-
phism), which have a high hydrogen/carbon (H/C) ratio in

![FIG. 1](image1.png)

FIG. 1. (a) Theoretical EPR spectra corresponding to upper-limit cases of dipolar broadening. Dotted line: high spin concentration regime (Gaussian lineshape); Continuous line: diluted spin regime and 3-D distribution (Lorentzian lineshape); Dashed line: diluted regime, 2-D distribution (stretched Lorentzian); Mixed line: diluted regime, 1-D distribution (stretched Lorentzian). (b) EPR spectra at room temperature of organic radicals in the Gunflint chert and the Josefsdal chert. All EPR lines are normalized with respect to the linewidth. Color images available online at www.liebertonline.com/ast

![FIG. 2](image2.png)

FIG. 2. Representation of the EPR spectra corresponding to the Gaussian, Lorentzian ($d = 3$) and lower-dimensional ($d = 1$ and 2) cases in the new ($x, f(x)$) coordinates system.
their radicals; equal to 0 for samples of intermediate maturity (older, metamorphosed), when the amount of organic radicals decreases and gets dilute and where H/C decreases; and less than 0 for samples of higher maturity (Archean) with very low H/C and for which aromatic layers start to orientate and thus induce a low-dimensional (2-D to 1-D) spatial distribution of the radicals.

Figure 3a shows the variation of the \(R_{10} \) factor with the age of the cherts. Numbers and letters represent chert samples analyzed in this study and by Skrzypczak-Bonduelle et al. (2008), respectively. Note that the \(R_{10} \) factor could only be calculated for samples having a symmetric EPR line at ambient temperature. It appears that the \(R_{10} \) factor decreases from \(R_{10} \sim 0 \) for Proterozoic samples of age \(\sim 1-1.5 \) Gyr to \(R_{10} \sim -3 \) for the oldest Archean samples (3.5 Gyr).

3.2. Step annealing treatments on immature chert and bacterial samples

The evolution of the \(R_{10} \) factor versus temperature during step annealing treatment of a young non-metamorphosed chert (Clarno chert, 45 Myr) and fresh cyanobacteria samples was investigated and reported in Fig. 3b (black symbols). The same evolution from a Lorentz-Gaussian shape to a stretched Lorentzian shape is observed by increasing step temperatures from 520°C to 720°C. \(R_{10} \) factor versus age (upper abscissa) of natural chert samples is also reported in Fig. 3b (red symbols) for comparison. The correlation between step annealing temperature (lower abscissa) and the age \(A \) in Gyr (upper abscissa) has been adjusted according to Skrzypczak-Bonduelle et al. (2008) by using Eq. 1:

\[
T(°C) = 353 \log A - 2650
\]

\(R_{10} \) factors were only calculated for each thermal treatment step of the bacteria at temperatures \(\geq 500°C \), because the intensity of the EPR signal was almost equal to zero for thermal treatment lower than 370°C. The \(R_{10} \) factor has no physical meaning for thermal treatment temperatures lower than 500°C; and it can be measured, but not used, for dating samples younger than 1 Gyr (Skrzypczak-Bonduelle et al., 2008).

3.3. Step annealing treatment on Silurian chert samples

Three 0.42 Gyr old Silurian cherts (Zalesie Nowe, Zdanow, and Dobra, cherts n\(^2 \), 3, and 4) that originated from the same precursor but exhibit different metamorphic grades were studied in EPR (Fig. 4). Samples from Zalesie Nowe and Zdanow contain remarkably well-preserved microfossils, as well as fine crystalline chalcedony that has replaced

Table 2. EPR Lineshapes and the Lineshape \(R_{10} \) Factor for Different Limit Regimes of Dipolar Broadening

<table>
<thead>
<tr>
<th>Regime</th>
<th>Lineshape</th>
<th>(R_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated spins</td>
<td>Gaussian-Lorentzian</td>
<td>> 0</td>
</tr>
<tr>
<td>Diluted spins</td>
<td>3-D distribution</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2-D distribution</td>
<td>-1.78</td>
</tr>
<tr>
<td></td>
<td>1-D distribution</td>
<td>-2.95</td>
</tr>
</tbody>
</table>

FIG. 3.
(a) Evolution of the \(R_{10} \) factor with age of the chert samples. Numbers represent new samples examined in the present study, and letters represent samples studied by Skrzypczak-Bonduelle et al. (2008) and reexamined here. (b) Lower abscissa: evolution with temperature of the \(R_{10} \) factor for thermally treated cyanobacteria (full diamonds) and for the Clarno chert (open diamonds). Upper abscissa: evolution of the \(R_{10} \) factor with the age of the chert samples. Color images available online at www.liebertonline.com/ast
some primary opaline skeletons of radiolarians (Kremer and Kazmierczak, 2005). According to silica geothermometers, chalcedony is formed at relatively low temperature and is stable below 180°C (White and Corwin, 1961; Fournier and Potter, 1982). Therefore, the Zalesie Nowe and Zdanow samples may be classified in the prehnite-pumpellyite to pumpellyite-actinolite metamorphic facies, although geochemical thermal maturity parameters indicate that the Zdanow chert is thermally more altered than the Zalesie Nowe chert (Bauersachs et al., 2009). The Dobra sample contains metamorphic minerals such as feldspars, quartz, and phyllosilicates (Kremer et al., 2012), reflecting a higher metamorphic grade that ranges from lower greenschist to greenschist facies.

As a first observation, one can notice that the EPR signals are very complex. This was previously observed for cherts with ages ranging from Neogene to Paleozoic (Skrzypczak-Bonduelle et al., 2008). The spectra of the less metamorphosed cherts (Zalesie Nowe and Zdanow) are nearly similar contrary to the most metamorphosed one (Dobra) (Figs. 4a, 4b). These signals are due to a variety of organic radicals and to defects in the mineral matrix. One of these signals can be recorded by 90° out-of-phase detection (Fig. 4c), indicating long relaxation times. This signature is typical of the well-known E’ center in SiO2 (Jani et al., 1983; Ikeya, 1993).

Cumulative thermal treatments were performed on the three aforementioned Silurian cherts (Fig. 5). For thermal treatment temperatures lower than 570°C, the EPR signal remained asymmetric, and no R10 factor could be calculated. For thermal treatment temperatures between 570°C and 620°C, a symmetric Lorentzian signal was obtained. However, disparities appear in R10 factor values (Fig. 5d), the less metamorphosed sample having a positive R10 factor, whereas the most metamorphosed one reveals a negative R10 factor. For thermal treatment temperatures higher than 670°C, the EPR signals evolved to a single stretched Lorentzian signal, which is independent of the initial metamorphic facies of the sample and similar to that of an Archean chert.

3.4. Step annealing treatments on a “contamination-like” mixture

A “contamination-like” mixture was obtained by mixing an equal amount of fresh M. chthonoplastes cyanobacteria with cyanobacteria that were thermally treated at 620°C, thus mimicking the presence of a recent contamination in a 2 Gyr old organic matter (see Fig. 3 and Eq. 1). The mixture was then treated again by the same step heating treatment as described above. The evolution of the R10 factor during thermal treatment of the EPR signal for noncontaminated M. chthonoplastes bacteria as well as for a “contamination-like” mixture is given in Fig. 6.

The R10 factor for pure M. chthonoplastes cyanobacteria (red circles) has a classic evolution with thermal treatment, from a positive R10 factor value to a negative one, in agreement with Eq. 2. On the contrary, when recording the EPR signal of the “contamination-like” mixture at ambient temperature, the R10 factor already had a negative value ~2, similar to the value of a very primitive organic matter (Fig. 3). When performing thermal treatment on the “contamination-like” sample, the R10 factor increases for thermal treatment temperatures up to 520°C and then decreases (black squares on Fig. 6).

3.5. Step annealing treatments on Archean cherts

The evolution of the R10 factor during thermal treatment of three Archean (3.3–3.5 Gyr) chert samples—the Josefsdal, the Middle Marker, and the Dresser cherts—is reported in Fig. 7a. It was compared to the evolution of the R10 factor during thermal treatment of the Silurian cherts (420 Myr) and the Clarno chert (45 Myr), as well as the chert samples from Rhynie (396 Myr) and Gunflint (1.9 Gyr) (Skrzypczak-Bonduelle et al., 2008). The R10 factor of Archean cherts remained ~2 until the equivalent age of the sample was attained.

3.4. Step annealing treatments on a “contamination-like” mixture

A “contamination-like” mixture was obtained by mixing an equal amount of fresh M. chthonoplastes cyanobacteria with cyanobacteria that were thermally treated at 620°C, thus mimicking the presence of a recent contamination in a 2 Gyr old organic matter (see Fig. 3 and Eq. 1). The mixture was then treated again by the same step heating treatment as described above. The evolution of the R10 factor during thermal treatment of the EPR signal for noncontaminated M. chthonoplastes bacteria as well as for a “contamination-like” mixture is given in Fig. 6.

The R10 factor for pure M. chthonoplastes cyanobacteria (red circles) has a classic evolution with thermal treatment, from a positive R10 factor value to a negative one, in agreement with Eq. 2. On the contrary, when recording the EPR signal of the “contamination-like” mixture at ambient temperature, the R10 factor already had a negative value ~2, similar to the value of a very primitive organic matter (Fig. 3). When performing thermal treatment on the “contamination-like” sample, the R10 factor increases for thermal treatment temperatures up to 520°C and then decreases (black squares on Fig. 6).

3.5. Step annealing treatments on Archean cherts

The evolution of the R10 factor during thermal treatment of three Archean (3.3–3.5 Gyr) chert samples—the Josefsdal, the Middle Marker, and the Dresser cherts—is reported in Fig. 7a. It was compared to the evolution of the R10 factor during thermal treatment of the Silurian cherts (420 Myr) and the Clarno chert (45 Myr), as well as the chert samples from Rhynie (396 Myr) and Gunflint (1.9 Gyr) (Skrzypczak-Bonduelle et al., 2008). The R10 factor of Archean cherts remained ~2 until the equivalent age of the sample was attained.
Three types of samples were distinguished, as summarized in Fig. 7b:

(i) Immature samples, that is, young and low-metamorphic grade samples, such as carbonaceous matter from recent microorganisms or the Clarno (Eocene) and the Rhynie (Devonian) cherts.

(ii) Samples of intermediate maturity, that is, Proterozoic and Phanerozoic cherts with a metamorphism lower than or equal to the greenschist facies, such as the Silurian cherts and the Gunflint chert.

(iii) Archean samples, that is, older than 2.5 Gyr, such as the Josefsdal, the Middle Marker, and the Dresser cherts.

The evolution of immature samples during thermal treatment followed the R_{10} factor/age correlation during cumulative thermal treatments (red area on Fig. 7b), whereas Archean samples remained stable, with R_{10} values ranging from -1.5 to -1.3 (gray area in Fig. 7b). The evolution of intermediate samples falls between those two extreme zones (blue zone in Fig. 7b).

4. Discussion

4.1. Generalizing the age/R_{10} factor correlation

Previous experiments (Sections 3.1-3.3) showed a correlation between the age of the sample and the lineshape R_{10} factor for samples reaching an age or an equivalent age older than 1 Gyr. The R_{10} factor decreases from $R_{10} \sim 0$ for Proterozoic samples of age ~ 1–1.5 Gyr to $R_{10} \sim -3$ for the oldest Archean samples (3.5 Gyr). This reflects the evolution of the lineshape from a 3-D spatial distribution of spins for 1.5 Gyr old cherts to a 2-D to 1-D spatial distribution of spins for 3.5 Gyr old cherts.

The parameters of the equation of the aforementioned correlation were computed with the help of a Monte Carlo simulation based on the standard deviation of each point. It must be noted that the correlation was established empirically. The robustness of the equation was checked by testing for the effect of outliers on the parameters (see Appendix). The following equation was obtained:

$$R_{10} = \alpha \cdot \log A + \beta$$

with A in Gyr, $\alpha = -9.0 \pm 0.3$, and $\beta = 83.0 \pm 2.9$. The equation coefficients are different from those obtained by Skrzypczak-Bonduelle et al. (2008), where

$$\alpha = -5.3 \pm 0.4$$ and $$\beta = 48.9 \pm 0.9$$

This is not due to implementation of the R_{10} factor calculation, given that, when fitted with the present method for checking, spectra obtained by Skrzypczak-Bonduelle et al. (2008) led to similar R_{10} factor values. There are two main reasons for this discrepancy: (i) new data were incorporated to the distribution
and (ii) the equation obtained by Skrzypczak-Bonduelle et al. (2008) took into account cherts of ages lower than 1 Gyr, whereas the newly proposed equation is established for chert samples older than 1 Gyr only, where the use of R_{10} factor is relevant. It must also be noted that the accuracy of the age determination is not better than that of Skrzypczak-Bonduelle, but the correlation is now considered more robust.

This study confirms the occurrence of a correlation between the age of the chert sample and the lineshape R_{10} factor of the carbonaceous matter for cherts older than 1 Gyr. Equation 2 may be inverted, which would allow dating of the carbonaceous matter in a chert from the calculation of its R_{10} factor. However, it may be argued that this evolution could only reflect the influence of thermally activated processes that occurred during the thermal history of the samples. Therefore, the effect of thermal metamorphism had to be investigated.

4.2. Impact of thermal metamorphism

By examining data of Fig. 3b, where a short thermal treatment of fresh samples (bacteria) or young cherts has the same effect as evolution over long geological times, it can be anticipated that metamorphism may affect the EPR signal of the carbonaceous matter embedded in a chert. Namely, even under the *greenschist* facies, metamorphism is likely to modify the composition, texture, and structure of the organic matter, affecting its EPR signal.

However, the complexity of the spectra of the Silurian cherts described in Section 3.3, even for the most metamorphosed sample, shows that they are very different from spectra of Precambrian cherts. This is consistent with their young age, as previously shown for cherts of the Clarno Formation (45 Myr) and the Rhynie Formation (396 Myr) (Skrzypczak-Bonduelle et al., 2008). However, the latter cherts were not metamorphosed. These results demonstrate that, although metamorphism (lower than or equal to *greenschist*) has an impact on the EPR spectrum, even the most metamorphosed Phanerozoic chert did not show an EPR spectrum comparable to that of Archean cherts. In other words, a single line with a stretched Lorentzian shape, and therefore a negative R_{10} factor value, cannot be reached only with a high metamorphic facies of a young sample.

Disparities appear in R_{10} factor values (Fig. 5d), the less metamorphosed sample having a positive R_{10} factor, whereas the most metamorphosed one reveals a negative R_{10} factor. This can be explained by the fact that the most metamorphosed sample had already lost heteroelements and hydrogen during its metamorphic history. This is not the case for the less metamorphosed sample, which undergoes heteroelement and hydrogen loss (and therefore 3-D creation of radicals) only during thermal treatment, driving the R_{10} factor to a positive value until radical recombination occurs. For thermal treatment temperatures higher than 670°C, the EPR signals evolved to a single stretched Lorentzian signal independently of the initial metamorphic facies of the sample. Namely, when considering the evolution of R_{10} factor values during thermal treatment higher or equal to 670°C (Fig. 5d), the effect of previous thermal events becomes negligible, and all the data correlate well with the previously established equation (Eq. 2). This shows that, for thermal treatment temperatures lower than 670°C, the EPR spectrum reflects both the age and the metamorphic grade of the sample.
whereas for thermal treatment temperatures higher than or equal to 670°C, only the age of the sample is important.

This phenomenon may be understood when considering carbonization kinetics that controls the maturation of the kerogen, which is estimated to be a first-order reaction (Singer and Lewis, 1978). That is, the amount of radicals \(N_{\text{rad}} \) created at time \(t \) is proportional to

\[
N_{\text{rad}} \propto \exp (-kt)
\]

where \(k \) is the kinetic constant given by the Arrhenius law:

\[
k = A \exp \left(- \frac{E_a}{RT} \right)
\]

where \(A \) is the collision constant \((s^{-1}) \), \(E_a \) the activation energy \((J \cdot mol^{-1}) \), \(R \) the gas constant \((J \cdot mol^{-1} \cdot K^{-1}) \), and \(T \) the temperature \((K) \). The intensity of an EPR spectrum, which is related to the number of spins \(N_{\text{rad}}(t,T) \) produced during carbonization of the organic matter, thus depends on both time \(t \) and temperature \(T \). The kinetic equation indicates that the same amount of radicals can be created during carbonization by using two different time-temperature couples \((t_1, T_1) \) and \((t_2, T_2) \) (Mrozowski, 1988a, 1988b):

\[
t_1 \cdot \exp \left(\frac{E_a}{RT_1} \right) = t_2 \cdot \exp \left(\frac{E_a}{RT_2} \right)
\]

This implies that 1 Gyr at 300°C creates as many spins as 5 min at 670°C (Mrozowski, 1988a,b). Within the scope of this study, only cherts with a metamorphism lower or equal to greenschist have been studied. Therefore, the number of radicals in such Archean cherts (older than 2.5 Gyr) is driven by time rather than metamorphism.

It may be concluded that low-metamorphic grade Archean organic matter can be dated by using the shape of its EPR spectrum. However, it must be determined whether contamination during or after the Proterozoic, when more modern forms of life existed, may be detected.

4.3. Methodology for contamination detection

As shown in Fig. 6 and described in Section 3.4, without cumulative thermal treatment, contamination could not be detected because of its low (or lack of) contribution to the EPR signal, as compared to the most mature fraction. This means that genuine Archean organic matter cannot be distinguished from organic matter contaminated by a younger one on the sole basis of the \(R_{10} \) factor value.

However, when performing thermal treatment on the “contamination-like” sample, the \(R_{10} \) factor increases for thermal treatment temperatures up to 520°C and then decreases (black squares on Fig. 6). As discussed earlier, such an evolution is consistent with the 3-D creation of radicals and chemical transformation (loss of heteroelements and then hydrogen) within the organic matter of the contaminating cyanobacteria, which were not preheated (i.e., corresponding to the most recent fraction of the mixture), and subsequent evolution toward a lower dimension (2-D and 1-D) of their distribution (decrease in \(R_{10} \)). The EPR signal of the preheated cyanobacterial component of the mixture is not sensitive to thermal treatment temperatures lower than 620°C, given that chemical transformations have already taken place and radicals were already in existence. Thus, the evolution of the \(R_{10} \) factor for thermal treatment lower than the temperature equivalent to the age of the sample (as calculated by using the time versus thermal treatment temperature equivalency given in Eq. 1) documents the presence of a less mature fraction, that is, a contamination. If no contamination occurred, the \(R_{10} \) value should be steady through the thermal treatment process.

This study highlights that a single EPR measurement on mature organic material is not sufficient to detect contamination. This leads us to propose the following methodology of contamination detection:

(i) Cumulative thermal treatment of material in EPR tubes sealed under vacuum (as described in the Material and Methods section)

(ii) Subsequent EPR analysis and calculation of the \(R_{10} \) factor.

(iii) If no contamination is detected, the age of the organic matter can be determined. If a contamination is detected, only the age of the oldest fraction of the organic matter can be determined.

When applying this contamination detection methodology to three Archean cherts (Josefsdal, Middle Marker, Dresser) (Fig. 7), the \(R_{10} \) factor of the cherts remained \(\leq 2 \) until the equivalent age of the sample was attained. However, a slight increase in \(R_{10} \) in the Josefsdal and Dresser samples was detected. This could be the signature of a weak contamination. To elucidate this phenomenon, the study of more “contamination-like” mixtures with decreasing contamination rates is necessary.

5. Conclusions

This study demonstrates the strength of EPR as an emerging tool for dating and kerogen syngeneity assessment in cherts of Archean age. More specifically, the evolution of the lineshape, which progressively deviates from Lorentzian (\(\sim 2 \) Gyr) toward stretched Lorentzian (\(\sim 3.5 \) Gyr), is a good marker of the age of Archean organic matter. The lineshape factor \((R_{10} \text{ factor}) \) proposed by Skrzypczak-Bonduelle et al. (2008) to measure this evolution was generalized, and the robustness of its correlation with age of the sample was statistically tested. However, the accuracy of age determination was not better than that of this previous work. It was also shown that the \(R_{10} \) factor of Archean cherts is not driven by metamorphism for metamorphic grades lower than or equal to the greenschist facies. Moreover, it is possible to detect an organic contamination in Archean cherts by monitoring the \(R_{10} \) factor upon cumulative thermal treatments. Such experiments were run on samples of various age and metamorphism, demonstrating that metamorphism controls the EPR lineshape for samples younger than 2 Gyr and that only the age controls the lineshape for samples older than 2 Gyr. Such a dating method on low-metamorphic grade Archean samples could be used in further exobiology studies, for instance, on returned rocks from Mars.

Appendix A

Definition of an EPR lineshape parameter

The shape of the magnetic resonance absorption line of a system of interacting and randomly distributed spins
depends on the nature of the interactions (dipole-dipole or exchange), the spin concentration, and the dimensionality (1-D to 3-D) of the spatial distribution of the spins (Van Vleck, 1948; Kittel and Abrahams, 1953; Drabold and Felders, 1988; Bencini and Gatteschi, 1990; Fel’dmam and Lalcele, 1996). The present study is restricted to the case of a dipole-dipole–type interaction between electron spins, excluding exchange interaction occurring in very concentrated electron spin systems. Several limiting cases can be distinguished, depending on the spin concentration and on the dimensionality of the distribution.

In the high-concentration regime (generally considered when the fractional site occupation f by a paramagnetic center exceeds 0.1), the lineshape is approximately Gaussian (Kittel and Abrahams, 1953). This regime also occurs when the EPR line is broadened by unresolved hyperfine interaction with hydrogen nuclei. Given that experimental EPR spectra correspond to absorption derivatives, the Gaussian line is described by

$$F_G(B_0 - B_{res}) = - A_{pp} \cdot \frac{B_0 - B_{res}}{AB_{pp}} \cdot \exp \left[-2 \left(\frac{B_0 - B_{res}}{AB_{pp}} \right)^2 + \frac{1}{2} \right]$$

(A1)

where B_0 is the applied magnetic field, B_{res} the field at the center of the line (maximum of absorption), A_{pp} the peak-to-peak amplitude, and AB_{pp} the peak-to-peak linewidth (Fig. 1a).

In the low-concentration regime (generally considered when $f<0.01$) and with no hyperfine broadening, the lineshape depends on the dimensionality of the spatial distribution of the paramagnetic centers (Fel’daman and Lalcele, 1996). When the distribution is random, the resonant line may be calculated from the relaxation function:

$$G_0(t) = B \cdot \exp \left(-a \cdot t^{1/3} \right)$$

(A2)

This function describes the decay with time t of the spin magnetization, perpendicular to the magnetic field, after an infinitely short microwave pulse. a is a constant that depends linearly on the spin concentration, and parameter d represents the dimensionality of the spin distribution: $d=1$ for a linear distribution, $d=2$ for a distribution in a plane, and $d=3$ for a distribution in a volume. The EPR absorption is the Fourier transform of the relaxation function; thus the EPR spectrum is the field derivative of this Fourier transform given by

$$F_0(B_0 - B_{res}) = \text{Re} \left\{ \int_0^{+\infty} G_0(t) \left(-i \frac{\hbar f}{\hbar t} \right) \exp \left[-i \frac{\hbar f}{\hbar} (B_0 - B_{res}) t \right] dt \right\}$$

(A3)

where Re stands for the real part. In the case of a three-dimensional distribution ($d=3$), the EPR lineshape function can be analytically calculated and corresponds to the field derivative of a Lorentzian function:

$$F_0(B_0 - B_{res}) = - \frac{16}{9} A_{pp} \left(\frac{B_0 - B_{res}}{AB_{pp}} \right) \left[1 + \frac{2}{3} \left(\frac{B_0 - B_{res}}{AB_{pp}} \right)^2 \right]$$

(A4)

For lower-dimensional cases ($d<3$), the Fourier transform can only be calculated numerically. Figure 1a shows the theoretical EPR spectra corresponding to the Gaussian, Lorentzian ($d=3$), and lower-dimensional ($d=1$ and 2) cases. The wings of a Gaussian line fall off faster than those of a Lorentzian line, while the wings of an EPR spectrum corresponding to a lower-dimensional distribution fall off more slowly, giving rise to a stretched Lorentzian lineshape. For a graphical comparison of the different lineshapes, it is more convenient to use a system of coordinates (x, y) such that

$$x = \left(\frac{B_0 - B_{res}}{AB_{pp}} \right)^2$$

and

$$y = f(x) = \frac{A_{pp}}{F(B_0 - B_{res})} \frac{B_0 - B_{res}}{AB_{pp}}$$

(A5)

where $F=F_0$ or F_G. In this representation (Fig. 2), the Lorentzian case is represented by a straight line of equation:

$$f_L(x) = x + \frac{3}{4}$$

(A6)

and the Gaussian shape by an increasing exponential:

$$f_G(x) = \exp \left(x - \frac{1}{4} \right)$$

(A7)

with $f_G(x) \geq f_L(x), \forall x$.

For diluted spin systems with low dimensional distribution, the representative curve $f_G(x)$ lies below the line (Eq. A6) corresponding to a Lorentzian shape. To quantitatively characterize the lineshape for systems intermediate between the above four ideal cases [Gaussian, Lorentzian ($d=3$), one-dimensional ($d=1$), and two-dimensional ($d=2$)], we define a lineshape parameter by measuring the deviation from a Lorentzian line and given by (Skrzypczak-Bonduelle et al., 2008):

$$R_{10} = \frac{1}{10} \int_{x=0}^{x=10} [f(x) - f_L(x)] dx$$

(A8)

This parameter corresponds to the algebraic surface between the curve $f_L(x)$ that represents an experimental EPR spectrum and the curve $f_G(x)$ that represents a Lorentzian line. R_{10} is negative for a low-dimensional distribution ($d<3$) and positive for an EPR line intermediate between Lorentzian and Gaussian lines (Table 2). The integration in Eq. A8 must be restricted to a finite range of x values, for the integral may not converge when $x \rightarrow \infty$. In practice, the range is limited to $x \leq 10$, since in most cases encountered the signal-to-noise ratio of the EPR spectra is poor for $x \geq 10$, inducing strong fluctuations in $f(x)$ and consequently in the lineshape parameter.

Implementation of a standardized evaluation of R_{10}

The large-scale background signal of EPR spectra was first subtracted with a second-degree polynomial fitted on the smooth parts of the spectrum. The latter is defined as the part of the spectrum that is close to the baseline, which corresponds in practice to the first and last 200 data points in a typical spectrum. The observed fluctuations in those parts are only due to noise. In the following, the spectrum will be understood as the baseline corrected raw spectrum.
To uncover the underlying Lorentzian curve, which is compared to the original spectrum for the \(R_{10} \) computation, we need to find the three parameters that determine the latter, that is, the peak-to-peak amplitude \(A_{pp} \), the linewidth \(\Delta B_{pp} \), and the resonance field \(B_{res} \). We define the peaks (positive and negative) as the extrema of the spectrum, \(A_{pp} \), as the difference between the ordinate of the extrema, and \(\Delta B_{pp} \) as the difference between their abscissas. The resonance field is defined as the value at which the EPR lineshape crosses the zero axis.

We need to compute the error bars on the three parameters in order to propagate them in the global \(R_{10} \) error calculation. For that we use a bootstrap method, in which the noise is considered to originate from a Poisson process (counting), and the standard deviation on each data point is taken to be the square root of its ordinate value. With this method, a large number of cloned data sets is generated, for which \(A_{pp} \), \(\Delta B_{pp} \), and \(B_{res} \) are measured, thus giving the distribution for each parameter. All three distributions are normal, as expected. We thus take the final three parameter values as the average of the three distributions, respectively, and the error as the standard deviation.

\(R_{10} \) calculation, as described above in Eq. A8, is a function of \(A_{pp} \), \(\Delta B_{pp} \), and \(B_{res} \). A Monte Carlo simulation was implemented by using previously obtained standard deviations on those values in order to access a distribution of \(R_{10} \) factor values. Again, the distribution turned out to be normal, as expected. The \(R_{10} \) value was thus taken as the average of the final distribution and the error as the standard deviation.

The \(R_{10} \) measurement procedure is difficult for two reasons: (i) the inherent noise of the measurements and (ii) the short-scale background signals, such as E' radicals in silica, which often make the spectrum slightly asymmetric. To solve (i), the inherent noise is taken to be the noise propagated from the errors on \(A_{pp} \), \(\Delta B_{pp} \), and \(B_{res} \). To solve (ii), the \(R_{10} \) measurement is performed on both sides of the spectrum (side being defined relative to the resonance field \(B_{res} \)) and the two values averaged.

Computing the equation between the \(R_{10} \) factor and the age of the carbonaceous matter

A list of three values was generated for each sample: the sample age (as calculated by geochemical studies in which U-Pb isotopic data were used), the \(R_{10} \) factor, and its standard deviation. The error bar on sample age was considered to be negligible, usually 1% of the value.

Having observed a linear dependence between the \(R_{10} \) factor and the logarithm of the age (Fig. 3 in the text), we empirically modeled the \(R_{10} \) dependence on age as

\[
R_{10} = \alpha \cdot \log \Delta + \beta
\]

(A9)

We then fitted the value of \(\alpha \) and \(\beta \), and the distribution on those parameters was obtained from a Monte Carlo simulation based on the previously computed \(R_{10} \) factor standard deviation. Once again, each distribution turned out to be normal, and the \(\alpha \) and \(\beta \) values and standard deviations were thus taken as the average and standard deviation of the respective distributions.

The robustness of the equation was assessed by testing the sensitivity of the results to outliers; after removing each data point one at a time, the equation was computed on all other data points. We found that the resulting values of \(\alpha \) and \(\beta \) lay within the boundaries of their previously computed distributions, which shows that no data point radically modifies the equation coefficients and thus proves the robustness of the method.

To find the age of a sample given the \(R_{10} \) factor, we need to inverse Eq. A9. Again, to assess the quality of the values for the age thus found, we need to compute the distribution of the age given the errors on \(\alpha \), \(\beta \), and \(R_{10} \). A Monte Carlo simulation is thus performed by using the standard deviation on \(R_{10} \) and the list of \([\alpha, \beta] \) values previously obtained. We stress the fact that the \(\alpha \) and \(\beta \) values are correlated variables that must be considered as a couple and not independently.

Acknowledgments

This work was supported by the Exobiology group of the CNES (Centre National d’Etudes Spatiales), the PNP (Programme National de Planétologie) program of the CNRS (Centre National de la Recherche Scientifique), and the NCN grant NN307468938 (B.K.). The authors wish to thank Frédéric Mentink-Vigier for his constructive discussions on EPR experiments and the TGE-RENARD facility.

Author Disclosure Statement

No competing financial interests exist.

Abbreviations

EPR, electron paramagnetic resonance; NanoSIMS, nanoscale secondary ion mass spectrometry.

References

Address correspondence to:

D. Gourier

Laboratoire de Chimie de la Matière Condensée de Paris
Ecole Nationale Supérieure de Chimie de Paris
UMR CNRS 7574
13 rue Pierre et Marie Curie
75005 Paris
France

E-mail: didier-gourier@chimie-paristech.fr

Submitted 26 March 2012

Accepted 7 November 2012