Effective electrical conductivity of 3-D heterogeneous porous media
Sophie Hautot, Pascal Tarits

To cite this version:

HAL Id: insu-00786118
https://hal-insu.archives-ouvertes.fr/insu-00786118
Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effective electrical conductivity of 3-D heterogeneous porous media

Sophie Hautot and Pascal Tarits

UMR CNRS “Domaines Océaniques”, IUEM-UBO, Brest, France

Received 13 February 2002; revised 6 May 2002; accepted 9 May 2002; published 18 July 2002.

1. Introduction

The relationship between the physical properties and the effective electrical conductivity of porous structures is studied using three-dimensional (3-D) models of random porosity. Synthetic electric (DC) and electromagnetic (EM) field data are calculated for a 3-D electrical conductivity model with a random porosity $p (p = 2 - 70\%)$ embedded in a homogeneous half-space. The effective conductivity of the random porosity model is obtained from inversion of the synthetic data and agrees with a modified Archie’s law. We applied percolation theory to our random porosity model to explain the variation of effective conductivity with p. We found that EM and DC data do not provide the same effective conductivity at a particular porosity but they do provide the same volume fraction of interconnected conductive elements. This volume fraction depends on the percolation threshold p_c. It follows a law of the form $\sim p$ above p_c and $\sim p^{3-2}$ below p_c. INDEX TERMS: 5109 Physical Properties of Rock: Magnetic and electrical properties; 5114 Physical Properties of Rock: Permeability and porosity; 3914 Mineral Physics: Electrical properties; 0925 Exploration Geophysics: Magnetic and electrical methods; 0644 Electromagnetics: Numerical methods

2. Conductivity Model and Properties of the Porous Medium

The porosity model is a $2 \times 2 \times 2$ meter cube comprised of 8000 cubic 0.1 m side cells. Each cell is either electrically resistive with conductivity σ_s ($\sigma_s = 6.25 \times 10^{-4}$ S/m) or conductive with conductivity σ_f ($\sigma_f = 0.2$ S/m) (Figure 1). The pores are the conductive cells. The porosity p is the number of conductive cells over the total number of cells. The number of conductive cells selected randomly is increased until a given porosity is reached. Five porosity models are randomly generated for each p. p ranges between 2 and 70%. The cube is embedded in a homogeneous half-space with conductivity σ_{hs} ($\sigma_{hs} = 0.01$ S/m).

Percolation theory is applied to the random porosity model to describe the network structure. Percolation theory indicates that at p_c the properties of the network change abruptly [e.g., Stauffer and Aharony, 1992]. As the volume fraction p of conductive elements increases, they form clusters of interconnected elements. The value p_c is the volume fraction of elements at which the largest cluster
spans the medium. In principle percolation theory applies to infinite systems, the results may be applied although \(p \) is no longer a step function at \(p_c \). [Stauffer and Aharony, 1992]. For our random porosity model \(p_c = 0.33 \), in good agreement with the theoretical value (0.31) for a 3-D cubic array in the site percolation case [Stauffer and Aharony, 1992].

The size of individual clusters (excluding the percolating cluster above \(p_c \)) is given by the radius of gyration \(R_g \) as \(R_g^2 = \Sigma |r_i - r_0|^2/s \) [Stauffer and Aharony, 1992], where \(r_i \) is the position of each element of the cluster, \(r_0 \) is the center of mass of the cluster \((r_0 = \Sigma r_i/s) \), and \(s \) is the number of elements in the cluster. All dimensions are normalized and are in the range 0–1. The connectivity (or correlation) length \(\xi \) is the average distance between any two conductive elements in a cluster, averaged over all clusters except the percolating one. In percolation theory the value \(\xi \) corresponds to an average cluster diameter [Stauffer and Aharony, 1992]. For 3-D networks \(\xi \) follows a power law \(\propto |p - p_c|^{-0.875} \) [Berkowitz and Ewing, 1998]. Figure 2 presents \(\xi \) for the random model at 10 porosity values, compared to the theoretical value. Our results fit the law predicted by percolation theory reasonably well. We use \(\xi \) as a connectivity threshold at a given \(p \). Clusters with \(2R_g \geq \xi \) form fully interconnected networks while clusters with \(2R_g < \xi \) are isolated pockets.

3. Effective Conductivity

The simulation of EM and DC surface data was carried out with 3-D DC and EM solvers [Spitzer, 1995; Mackie et al., 1993] at the surface of the host-medium (Figure 1). The DC results were obtained for a Schlumberger electrode array configuration centered above the buried cube. The EM results were obtained for a plane wave inducing field at the VLF (very low frequency) radio transmitter frequency 20 kHz along a profile above the cube (Figure 1). To get the value \(\sigma_{\text{eff}} \) we set the cube homogeneous with a constant conductivity. The conductivity for which the DC or EM response of this new model fits the data obtained for the heterogeneous cube is \(\sigma_{\text{eff}} \). This conductivity was obtained by inverting the surface data modeled from the heterogeneous cube. The rest of the model parameters (the size and depth of the cube and the half-space conductivity) are unchanged. The inversion scheme is described in Hautot et al. [2000; 2002].

The scheme used to obtain \(\sigma_{\text{eff}} \) is validated for exact geometrical models [Waff, 1974]. These models have regularly spaced resistive and conductive cells to form homogeneous fully-connected (HFC) or fully-disconnected (HFD) networks. The HFD model is comprised of regularly distributed isolated conductive cells while the HFC model is comprised of regularly distributed isolated resistive cells. We generated seven HFD and HFC models with different isolated cells densities. For these models \(p \) varies from 2.7–97%. Figure 3 compares the \(\sigma_{\text{eff}} \) obtained with the theoretical values. The agreement is good for HFC models (from EM and DC results) and the HFD model (from EM results). The values \(\sigma_{\text{eff}} \) for the HFD model (from DC results) is slightly more conductive than the theoretical model and corresponds to Waff’s HFD formula when \(p = 0.31 \) for a 3-D cubic array in the site percolation model with \(p_c = 0.33 \), in good agreement with the theoretical value (0.31) for a 3-D cubic array in the site percolation model [Stauffer and Aharony, 1992].

Figure 1. Heterogeneous porous medium embedded in a homogeneous half-space (hs) host-medium (\(\sigma_{\text{hs}} = 0.01 \) S/m).

Figure 2. Connectivity length \(\xi \) vs. \(p - p_c \). Mean values and error bars are calculated from five porosity models. Solid line: power law \(|p - p_c|^{-0.875} \).
by the cube is also controlled by the quasi-static charges on the conductivity contrasts. [13] Both DC and EM algorithms are based on finite-difference equations. They differ in the gridding of the conductivity and its gradients over the 8 neighbor cells. In the EM algorithm [Mackie et al., 1993], an equivalent serial circuit is used with averaging the resistivity (the reciprocal of conductivity) between two adjacent cells to insure the continuity of the electric current normal to the cells’ faces. In both cases, contrasts in the conductivity model are smoothed by the averaging process at the scale of the grid point distance. When this distance is much smaller than the size of the smallest heterogeneity in the conductivity model, the approximations are equivalent and the conductivity contrast is accurately modeled. In our conductivity models the minimum grid-point distance was set to 0.05 m for computational reasons. The distance is not small compared to the smallest heterogeneity (0.1 m), so the averaging affects the results. The conductivity model is smoother than the input model (with sharp conductivity contrasts) and is more resistive in EM calculations than in DC. The models run with this grid result in \(\sigma_{\text{em}}^\text{dc} \) slightly larger than \(\sigma_{\text{em}}^\text{em} \) for the HFD models and in different \(\sigma_{\text{eff}}^\text{dc} \) and \(\sigma_{\text{eff}}^\text{em} \) for the random porosity model (Figure 3). The latter is more resistive than the former because of the difference in the numerical approximation (parallel and serial).

4. Effective Conductivity and Percolation Threshold

[14] Neither the \(\sigma_{\text{eff}}^\text{dc} \) nor the \(\sigma_{\text{eff}}^\text{em} \) curve from the random porosity model presents a percolation threshold at \(p_c = 0.33 \) (Figure 3). Both \(\sigma_{\text{eff}} \) approximatively follow Archie’s law for \(p > 0.1–0.2 \). Archie’s law is on the form \(\sigma_{\text{eff}} = \sigma_f p^m \) (\(m \) is an empirical factor with a value \(\sim 1.3–4 \) [e.g., Sen et al., 1981]). Both \(\sigma_{\text{eff}} \) curve at lower \(p \) due to \(\sigma_r \neq 0 \). Hermance [1979] has proposed a modified Archie’s law to account for \(\sigma_r \neq 0 \) of the form \(\sigma_{\text{eff}} = (\sigma_f - \sigma_r) p^m + \sigma_r \). Both \(\sigma_{\text{eff}} \) fit well this model with exponents \(m = 1.9 \) for DC models and \(m = 3.3 \) for EM models, in the range of observed \(m \) values in laboratory studies [Sen et al., 1981]. Models with \(\sigma_r = 6.25 \times 10^{-5} - 6.25 \times 10^{-6} \) (for which the modified Archie’s law is very close to Archie’s law) were run and \(\sigma_{\text{eff}} \) fitted Archie’s law with the same exponents \(m \) as before.

[15] Discrepancies between percolation theory applied to conductivity models and experimental data have been previously reported [e.g., Madden, 1976; Wong et al., 1984; Pham, 2000]. On one hand, the theory for random electric networks predicts that, slightly above \(p_c \), \(\sigma_{\text{eff}} \) varies according to \(|p - p_c|^\mu \) (\(\mu \) is a critical exponent \(\sim 2 \) in 3-D [Stauffer and Aharony, 1992]), in disagreement with our results since \(\sigma_{\text{eff}} \) follows the modified Archie’s law. On the other hand, in percolation theory Archie’s law (for the limiting case \(\sigma_r = 0 \)) implies \(p_c \neq 0 \) which is not a characteristic of our models. As suggested by Shankland and Waff [1974] and Madden [1976], Archie’s law here seems to be a description of the electric signature of the statistical properties of the porous medium rather than an intrinsic characteristic of the models.

5. Effective Interconnected Volume

[16] The examination of the structure of the clusters in the random porosity model shows that below \(p_c \), there are fully connected (FC) and fully disconnected (FD) clusters at all porosities except the smallest, while above \(p_c \), the structure is dominated by the percolating FC cluster. At a given \(p_c \), an effective interconnected volume fraction (EIVF) \(p_e \) is defined as follows. At \(p < p_c \), \(p_e \) is the sum over the volumes of the clusters of conductive elements with a diameter of gyration \(2R_s \geq \xi \). At \(p > p_c \), \(p_e \) is the difference between \(p \) and the sum of all isolated pockets that forms a

Figure 3. \(\sigma_{\text{eff}} / \sigma_f \) vs. porosity \(p \). Symbols are for numerical \(\sigma_{\text{eff}} \) and lines for analytical expressions. Mean values and error bars are calculated from five porosity models. Green line: Waff’s [1974] HFC bound. Blues lines: HFD bound (solid: \(\sigma_s = 6.25 \times 10^{-5} \) S/m, dashed: \(\sigma_s = 8.4 \times 10^{-4} \) S/m). Orange lines: modified Archie’s law.

Figure 4. Effective interconnected volume fraction (EIVF) vs. \(p \). Symbols: \(p_c \) diamond; \(p_a \) circle; \(p_{\text{em}} \) square. Above \(p_c \), the slope of the thin line is 1, beneath \(p_c \), the slope is 2.2.
fully disconnected volume fraction P_{FD}. $P_s = P - P_{FD}$. The values of P_s versus p are presented in Figure 4. Above P_s, $P_s \approx p$ and indicates that almost all the conductors are fully interconnected while at $p < P_s$, $P_s \approx p^{-2}$ which accounts for the balance between FC and FD volume fractions.

The FC and FD volume fractions in a random porosity model at p are electrically connected through a circuit characterized by σ_{eff} equal to either σ_{eff}^a or σ_{eff}^c, depending on the nature of the approximation used in the numerical solutions (serial for EM and parallel for DC). The two end-members of σ_{eff} are HFC (σ^a) and HFD (σ^c) values. The relationship between either σ_{eff}^a or σ_{eff}^c and σ^a and σ^c is different for serial or parallel circuits:

$$\sigma_{eff}^a = f_a \sigma^a + (1 - f_a) \sigma^c$$
$$\sigma_{eff}^c = f_c \sigma^c + (1 - f_c) \sigma^a$$

The terms f_a and f_c are the volume fractions of interconnected conducting elements at p for DC and EM, respectively. The volume fractions p_a and p_c are obtained from $p_a = p \times f_a$ and $p_c = p \times f_c$ and should be equal to p_s. These volume fractions are calculated for each σ_{eff} at all p and are also presented in Figure 4. For $p > 5\%$, p_a and p_c are nearly identical and are a very good fit to p_s above as well as below p_c except at the smallest p values. This result demonstrates that despite the fact that p_s was not evident in σ_{eff} (Figure 3), it controls the variation of σ_{eff} with p for our random porosity model.

6. Conclusion

[18] Percolation theory seems a useful tool to explain some characteristics of the distortion of observed EM fields [e.g., Bahr, 2000]. However, it is difficult to relate directly transport properties in highly heterogeneous media to field observations because 3-D DC and EM algorithms cannot describe the finest scale structures. While our random conductivity models are the simplest because of this limitation, they reproduce reasonably well the scale independent properties predicted by percolation theory. As a result, it was possible to interpret synthetic EM and DC data in terms of percolation models. We defined a new parameter, the EIVF which is closely related to transport properties. We found that p_s may be derived from the EIVF. In practice, the EIVF could be obtained from observed σ_{eff} as a function of porosity, either at laboratory or field scales. The EIVF would provide a better description of the transport properties than the classical effective medium parameters such as Archie’s law. For real rocks the heterogeneous conductivity models should account for fracture porosity and surface conductivity.

Acknowledgments

Sophie Hautot was at the Department of Geology and Geophysics, University of Edinburgh (UK), while part of this work was undertaken. S.H. was supported by the Region Bretagne and Pays de la Loire. We are grateful to Cara Wilson for careful reading of the manuscript, and to Karsten Bahr and one anonymous referee for constructive criticism.