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1Ifremer, GM-LES, BP70, 29280 Plouzané, France
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Abstract. Shaking by moderate to large earthquakes in the
Mediterranean Sea has proved in the past to potentially trig-
ger catastrophic sediment collapse and flow. On 21 May
2003, a magnitude 6.8 earthquake located near Boumerdès
(central Algerian coast) triggered large turbidity currents re-
sponsible for 29 submarine cable breaks at the foot of the
continental slope over∼150 km from west to east. Seafloor
bathymetry and backscatter imagery show the potential im-
prints of the 2003 event and of previous events. Large slope
scarps resulting from active deformation may locally en-
hance sediment instabilities, although faults are not directly
visible at the seafloor. Erosion is evident at the foot of the
margin and along the paths of the numerous canyons and val-
leys. Cable breaks are located at the outlets of submarine val-
leys and in areas of turbiditic levee overspilling and demon-
strate the multi-source and multi-path character of the 2003
turbiditic event. Rough estimates of turbidity flow velocity
are not straightforward because of the multiple breaks along
the same cable, but seem compatible with those measured in
other submarine cable break studies elsewhere.

While the signature of the turbidity currents is mostly ero-
sional on the continental slope, turbidite beds alternating
with hemipelagites accumulate in the distal reaches of sed-
iment dispersal systems. In perspective, more chronological
work on distal turbidite successions offshore Algeria offers
promising perspectives for paleoseismology reconstructions
based on turbidite dating, if synchronous turbidites along

independent sedimentary dispersal systems are found to sup-
port triggering by major earthquakes. Preliminary results on
sediment core PSM-KS23 off Boumerdès typically show a
800-yr interval between turbidites during the Holocene, in
accordance with the estimated mean seismic cycle on land,
even if at this stage it is not yet possible to prove the earth-
quake origin of all the turbidites.

1 Introduction

Moderate to large magnitude earthquakes occurring in the
vicinity of coastal zones are well known to trigger phe-
nomena such as tsunamis and sediment gravity collapses on
land and at sea and to produce important threats linked to
high vulnerability (population density, concentration of in-
dustries). Although subduction zones are among the most
frequently affected by these catastrophic events, as recently
evidenced in Sumatra (e.g. Dean et al., 2010), Chile (Vigny
et al., 2011) and Japan (Koketsu et al., 2011; Furumura et al.,
2011), it is worth to address these threats in coastal areas that
underwent scarce and uneven seismic activity, because they
are even less prepared to face their devastating effects.

In the submarine realm, catastrophic events along silici-
clastic margins include submarine failures, turbidity flows
(generated by river flows, earthquakes and wave resuspen-
sion) and seafloor ruptures by active faults (e.g. Einsele,
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1996; Wright and Friedrichs, 2006). The monitoring of sub-
marine processes in real-time is a difficult task that is in-
creasingly problematic when relatively rare and catastrophic
events are to be illustrated. Furthermore, the search for
seafloor signatures of such catastrophic events remains elu-
sive, owing to the erosional nature of the event and to the
concurrent action of several related processes (sediment fail-
ure, turbidity flow ignition).

In areas where strong earthquakes are relatively rare,
like the western Mediterranean Sea and the Atlantic Ocean,
the first documented evidence for a possible large impact
off coastal zones after a large earthquake is testified by
the Messina 1908 earthquake in the Strait of Sicily, Italy
(Baratta, 1910; Ryan and Heezen, 1965), followed by the
1929 Grand Banks event offshore Newfoundland, Canada
(Piper and Aksu, 1987; Piper et al., 1988, 1999). More re-
cently, the Algerian coastal zone, an area representing the
limit between the African and Eurasian plates, has also un-
dergone several events of sufficient magnitude to trigger
large gravity effects testified by submarine cable breaks in
the deep basin in 1954 (Heezen and Ewing, 1955), 1980 (El-
Robrini et al., 1985), and 2003 (Carter et al., 2009). In par-
ticular, the 2003 Mw 6.8 Boumerdès earthquake was one of
the most devastating historical seismic events in the western
Mediterranean and generated significant gravity flows recog-
nized by numerous submarine cable breaks at the foot of the
margin and in the deep Algerian basin, leading to a nearly
complete stop of all telecommunication exchanges in Alge-
ria for about 48 h. However, most of the studies on the im-
pacts of the 2003 Boumerdès event were carried out on land
(Ayadi et al., 2003; Bounif et al., 2004; Delouis et al., 2004;
Meghraoui et al., 2004; Semmane et al., 2005), whereas little
attention has been paid until now to its effects and signatures
offshore.

The aim of this paper is to provide a full overview of
the offshore impact of the 2003 Boumerdès earthquake, us-
ing detailed swath bathymetry, backscattering imagery, high-
resolution side-scan sonar data gathered in the area dur-
ing the MARADJA 2003 and MARADJA2-SAMRA 2005
cruises (D́everch̀ere et al., 2005; Domzig et al., 2006; Dan-
Unterseh et al., 2011) and the PRISME 2007 cruise (Dan
et al., 2009; Cattaneo et al., 2010; Nouguès et al., 2010).
The fragmented tectonic setting of the Algerian margin is
an impellent reason to study the record of past earthquakes
in great detail in order to evaluate the size of faults and the
related earthquake magnitudes. The 2003 event is a partic-
ularly interesting case owing to the exceptional impact at
the seafloor through cable ruptures (Van Oudheusden, 2003).
This fact, together with the need to assess geological hazards
for coastal populations along the densely populated west-
ern Mediterranean coastline, justifies undergoing a detailed
study in the hope to obtain information about the seafloor
signatures of a catastrophic event, its likelihood of being
preserved, and in general the relationships between seismic-
ity and triggering of turbidity currents, seafloor failures and

tsunamis. For this reason we also present the potential of
distal turbiditic deposition in the area offshore Algiers as a
promising tool to reconstruct the paleosismological history
of the area.

2 Background: the Boumerd̀es earthquake

2.1 Tectonic setting and seismicity

The Algerian margin is a Cenozoic passive margin located
close to the diffuse plate boundary between Eurasia and
Africa, presently reactivated in compression (Stich et al.,
2006, and references therein). Both offshore and on land, the
deformation is expressed by distributed ESE-WNW-trending
scarps that are assumed to represent the activity of thrust-
fold systems (e.g. Avouac et al., 1992; Déverch̀ere et al.,
2005; Domzig et al., 2006; Kherroubi et al., 2009; Yelles et
al., 2006, 2009). These structures are associated with crustal
shortening (Calais et al., 2003; Serpelloni et al., 2007) and
moderate to large magnitude earthquakes (Ambraseys and
Vogt, 1988; Yelles et al., 2006).

The morphology of the continental slope off central
Algeria presents abrupt scarps that at least partly corre-
spond to active tectonic structures, often identified at depth
by Plio-Quaternary growth strata developing above ramps
(Déverch̀ere et al., 2005; Domzig et al., 2006; Kherroubi et
al., 2009; Strzerzynski et al., 2010). Numerous submarine
landslides are found along these structures at the surface and
in the subsurface (e.g. Dan et al., 2010; Cattaneo et al., 2010),
possibly indicating a link between seismicity and seafloor in-
stability.

The Algerian continental margin is one of the most seismi-
cally active areas in the western Mediterranean, having ex-
perienced several moderate to strong earthquakes during the
last centuries in the coastal zone (Benouar, 1993; Hamdache
et al., 2010). The catalogue 856–2008 AD reveals that about
22 earthquakes of magnitude 6 and more have shaken the
coastal strip of Algeria (over∼100 km wide). Among these
events, one third occurred certainly offshore, and the same
amount exceeded magnitude 7. In the XIXth century, the two
shocks that destroyed the region of Jijel on 21 and 22 Au-
gust 1856 were among the most significant that have affected
north Africa (Harbi et al., 2011, and references therein);
this sequence triggered a significant tsunami and reached an
earthquake magnitude of at least 6.6, probably about 7 or
more (Harbi et al., 2011; Yelles-Chaouche et al., 2009). The
most violent instrumentally recorded earthquake occurred on
10 October 1980 in El Asnam region (Chlef currently) and
reached a magnitude Ms of 7.3 (Ambraseys, 1981). More re-
cently, on 21 May 2003, an earthquake with a magnitude of
6.8 struck the city of Boumerdès, east of Algiers on the coast.
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Fig. 1. Bathymetric map of the central Algerian margin with the layout of six offshore telecommunication cables and the location of cable
breaks that occurred after the 2003 Boumerdès earthquake (red symbols). The epicenter of the M 6.8 2003 Boumerdès earthquake is repre-
sented by its focal mechanism, while red circles represent the location of the associated aftershocks. The interval of bathymetric contour is
500 m. The location of the shelf edge is derived from navigation maps as reported in Cattaneo et al. (2010). The inset shows a Landsat image
of the sediment plume off Boumerdès that originated after the earthquake.

2.2 The 2003 Boumerd̀es earthquake and linked
phenomena

The 2003 Boumerd̀es earthquake caused more than 2300
deaths and injured around 10 000 people. Besides casualties,
the earthquake produced important damage onshore (col-
lapse of many buildings; see e.g. Harbi et al., 2007) and
offshore (cable breaks, e.g. ICPC, 2009). The identification
of active fault segments and earthquake sources has received
special attention by the scientific community, since this was
the first well-documented event at the coastline in north
Africa, furthermore located close to the highly populated city
of Algiers.

The first important concern is related to the size and po-
sition of the earthquake rupture: although the models dif-
fer slightly (e.g. Bounif et al., 2004; Delouis et al., 2004;
Meghraoui et al., 2004; Yelles et al., 2004; Semmane et al.,
2005), there is general agreement to estimate the length of
the rupture zone at about 60 km in a ca. N65◦ E strike, and
the rupture depth of the fault plane between 5 and 13 km.
Because of the lack of direct evidence, the trajectory of the
rupture towards the surface is more controversial. Ayadi et
al. (2008) propose that the rupture reached the surface at
approximately the shelf edge, i.e. very close to the coast-
line, whereas D́everch̀ere et al. (2005, 2010) and Mahsas
et al. (2008) favour a flat-ramp geometry of the fault sys-
tem, leading them to postulate a cumulative fault scarp at
ca. 5–10 km from the coastline. The available focal mecha-

nisms indicate an almost pure reverse faulting and a NNW-
SSE-directed regional maximum shortening axis (Stich et al.,
2006; Ayadi et al., 2008). The thrusting was responsible for
a mean coastal uplift of about 0.5 m, reaching locally almost
0.8 m (Meghraoui et al., 2004), as well as for significant co-
and post-seismic (over 2.5 yr) displacements (Yelles et al.,
2004; Mahsas et al., 2008).

Whatever the case, we consider for the sake of this study
that severe ground shaking affected the area and was in-
deed able to trigger numerous relatively small-size subma-
rine landslides on the continental slope offshore. Previous
studies in the area (e.g. Dan et al., 2010; Cattaneo et al.,
2010; Dan-Unterseh et al., 2011) have shown that the slope is
prone to various types of instabilities that are mainly located
on canyon flanks or heads, at the foot of the continental slope,
and along scarps of tectonic origin.

A satellite image by NASA shot in the hours following the
earthquake shows the presence of a sediment plume centered
around Boumerd̀es (Fig. 1). A sea retreat was observed along
parts of the Algerian coastline, while a tsunami was recorded
in several harbours across the western Mediterranean Sea, es-
pecially at the Balearic Islands (Alasset et al., 2006) and in
the Nice area (Sahal et al., 2009). A recent study (Roger et
al., 2011) shows that the 1980 El Asnam event, located far in-
side the continent, also triggered a tsunami that is assumed to
have resulted directly from the coseismic displacements, and
not from triggered mass movements of sediments. Several
cable breaks occurred after the 2003 Boumerdès earthquake
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Table 1.Time of rupture of five submarine cables offshore the cen-
tral Algerian margin (France Telecom, personal communication,
2003) after the earthquake (QK) of Boumerdès, 21 May 2003.

Event Cable N. of time t post QK t post QK
name breaks (UTC) (hh:mm) (min)

earthquake – – 18:44:00 00:00 0
cable break SMW 2 7 19:20:00 00:36 36
cable break COLOMBUS 2 6 19:30:00 00:46 46
cable break FLAG 3 20:40:00 01:56 116
cable break SMW 3 11 21:33:00 02:49 169
cable break ALPAL 2 1 22:32:00 03:48 228

(Table 1). However, the pattern of cable breaks is far from
straightforward, because several ruptures occurred along the
same cable, crossing several canyon valleys over remarkable
distances.

3 Data and methods

This study focuses on a set of seafloor features possibly
due to sediment instability, erosion, transport and accumula-
tion that are particularly evident from bathymetry, backscat-
ter imagery and side-scan sonar images complemented by
sediment sampling. The study area encompasses a sector
of the Algerian margin comprised between 2◦40′ and 4◦40′

longitude East, from the continental slope to the abyssal
plain, where several submarine cables broke following the
2003 Boumerd̀es earthquake. The dataset includes results
from three campaigns led from 2003 to 2007 in the offshore
area of Boumerd̀es: MARADJA and MARADJA2/SAMRA
(2003 and 2005, R/VLe Surôıt), and PRISME (2007, R/V
L’Atalante).

Swath bathymetry and backscatter data were collected
with a Simrad EM300 multibeam echosounder and pro-
cessed using the Caraı̈bes software (Ifremer, France). This
allowed to obtain a digital terrain model, a gradient map and
a seafloor reflectivity map with a spatial resolution of 50 m
(Figs. 1 and 2). The general bathymetric map allowed a de-
tailed study of seafloor morphology and the identification of
submarine canyons. Moreover, a deep-towed side-scan sonar
(SAR,Sonar Acoustique Remorqué), towed about 80–100 m
above the seafloor with a signal frequency of 180 kHz and a
1000-m wide swath, allowed a detailed investigation of the
seafloor texture and micro-morphology with a spatial resolu-
tion of 25 cm, with dark tones representing high backscatter
values.

Among the sediment cores collected in the study area, we
present a 11.95-m long Kullenberg piston core collected in
2775 m water depth to provide a distal record of turbidite de-
posits interbedded in hemipelagites. Available data for the
core include a lithologic description, high resolution photo,
X-ray images obtained with SCOPIX (Migeon et al., 1999),
Geotek Multi-Sensor Core Logging data (gamma density, P-
wave velocity and magnetic susceptibility), elemental semi-

quantitative logs obtained with an Avaatech XRF core log-
ger (Richter et al., 2006) and four AMS radiocarbon dates
(Table 2).

4 Results

4.1 Morphology overview

The Algerian continental shelf is relatively narrow, 5 to
10 km wide on average. It is virtually absent (<2 km) in
some areas offshore Dellys, where the mountain ranges are
close to the coastline, while it reaches up to 40 km in width
offshore the main embayments (Domzig et al., 2006; Catta-
neo et al., 2010). The continental shelf break lies between
100 and 200 m water depth and is indented where subma-
rine canyon heads cut into the shelf. The continental slope is
generally steep (often>10◦, locally up to 20◦), cut by nu-
merous canyons of various widths and heights, and includes
some perched slope basins (Déverch̀ere et al., 2005). It ex-
tends from 100–200 to 2300–2500 m, with a very variable
width commonly between 8 and 20 km. The main sediment
transport systems (including submarine canyons, submarine
valleys with channel complexes) are outlined in Fig. 2. The
abyssal plain is characterized by elongated sinuous features
interpreted as salt walls and diapirs (Dan-Unterseh et al.,
2011, their Fig. 2; Figs. 1–2). These structures define mul-
tiple small basins (Fig. 1) typical of salt spreading (Gaullier
and Vendeville, 2005). In order to seek the offshore signature
of the 2003 earthquake and the associated rupture of subma-
rine cables, we consider a set of seafloor features: (1) traces
of seafloor rupture and instability, including submarine land-
slides, and (2) traces of sediment erosion/accumulation re-
sulting from turbidity currents flowing through the main sed-
imentary systems and possibly generated by the 2003 and/or
previous earthquakes.

4.2 Seafloor scarps and submarine landslides

Faults outcropping at the seafloor and earthquake-triggered
landslide scars represent the possible direct signature of an
earthquake in the subaqueous domain. Offshore Algeria, the
presence and position of faults visible at or near the shallow
subsurface are debated in the case of the Boumerdès 2003
earthquake (see, for example, Ayadi et al., 2008; Déverch̀ere
et al., 2010). A remarkable observation is the presence of sev-
eral elongated seafloor scarps of likely tectonic origin, first
described by D́everch̀ere et al. (2005). In the distal, deeper
part of the study area, the scarps S1, S2 and S3 (Fig. 2)
are strikingly visible both in the bathymetry (Fig. 1) and in
backscatter imagery (Fig. 2), especially in the Dellys area,
where they extend W–E for 30–40 km. These scarps define
the limits of perched basins on the slope and have the steepest
flank seawards, likely representing the seafloor expression of
blind thrust faults (Strzerzynski et al., 2010; Dan-Unterseh et
al., 2011).
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Fig. 2.Above: backscatter map of the central Algerian margin with the location of submarine cable breaks and of sediment core PSM-KS23
in the distal reaches of the Algiers turbiditic system close to one of the submarine cable breaks. Dark tones identify high backscatter areas,
in particular along the thalwegs of the main canyon and turbiditic systems. In blue are the possible trajectories of turbidity flows inferred
from the seafloor morphology. Below: interpretation of bathymetry and backscatter in terms of morphology and sedimentary processes in
the area affected by the 2003 event. In dark orange are zones of dominant erosion within the axial areas of the main canyons; in light orange
are zones of significant deposition; in yellow are the main sedimentary systems. The distal seafloor scarp S1 (black dashed lines, described
in Déverch̀ere et al., 2005 together with the other scarps S2 and S3) defines a structural high and limits seaward a perched basin, likely
an expression of buried thrust-folds. Grey arrows represent the possible path of the 2003 turbidity currents interpreted from cable breaks,
bathymetry, and backscatter. Blue arrows identify possible distal sources of submarine landslides and/or turbidites. Note the absence of cable
breaks in the central part of cables COLOMBUS2 and SMW2, possibly due to deflection of turbidity currents by the scarps and confinement
within a perched basin.

Table 2. Radiocarbon age of four hemipelagic beds of core PSM-KS23 obtained by AMS dating performed at Poznan Radiocarbon Labo-
ratory, Poland (Poz) and at Artemis facility, Saclay, France (SacA). The14C ages were corrected for a reservoir effect of 400 yr, calibrated
with Calib 6.0 (Stuiver et al., 2010) and reported as 2 sigma values.

Sample Dated material wgt Lab code 14C age ± Cal age
depth (cm) (mg) (yr) (yr) (yr BP)

54–55 G. ruber, G. sacculifer+ other planktic foram 17 Poz-34066 3485 35 2755 (2854) 2953
78–79 G. ruber, G. sacculifer 15 SacA 21676 4935 30 4629 (4825) 4825
114–116 G. ruber, G. sacculifer+ other planktic foram 18.6 Poz-34031 7760 60 7685 (7940) 7940
140–142 G. ruber, G. sacculifer+ other planktic foram 18 Poz-34067 8500 50 8419 (8716) 8716

A key location for the presence of slope-failure scars is the
toe of the continental slope along the whole margin (Dan et
al., 2010). Deep-towed side scan sonar images provide mor-

phological details of these features and show numerous small
landslide scars with a relatively fresh appearance, which are
not or are scarcely covered by hemipelagic draping, with
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Fig. 3. Bathymetric gradient map (lower right panel) of the Algiers canyon with navigation track of side-scan sonar (SAR, light grey) and
location of SMW2 (oriented SW-NE) and COLOMBUS2 (oriented W–E, U-shaped) submarine cables, where stars represent points of cable
break (the map corresponds roughly to Zone 1 in Fig. 2). Three SAR images show evidence of seafloor destabilisation and erosion at the
foot of the continental slope. Evidence of channelized erosion with longitudinal furrows, small sediment blocks and comet-like structures is
visible in (A) and in the central part of(C). Erosion and accumulation of debris are testified by the seafloor scars and the rough backscatter
in the associated deposits in(B) and(C) (on the left).

associated decametric to hectometric-sized blocks and de-
bris accumulations (Fig. 3). Also, the slope scarps described
above are affected by numerous landslide scars. For example,
deep-towed side-scan sonar reveals a 1500-m wide and less
than 30-m high landslide scar with an accumulation of frac-
tured sediment at its foot, suggesting a short runout distance
(Fig. 4a).

4.3 Cable breaks

Six offshore telecommunication cables cross the study area.
Four cables run roughly parallel to the coastline connect-
ing Europe to the Middle East: COLOMBUS2, FLAG, SEA-
ME-WE3 (SMW3) and COLOMBUS3 (from the most prox-
imal to the most distal). Two other cables cross the study
area S-N or obliquely from SW to NE and are connected to
Algeria 15 km west of Algiers: Algiers–Palma (ALPAL2),
perpendicular to the shoreline, and Algiers–Marseille, SEA-
ME-WE2 (SMW2; Fig. 1).

Only the most distal cable, COLOMBUS3, located at
more than 80 km of the Algerian coast, remained opera-
tional after the 2003 Boumerdès earthquake (Van Oudheus-
den, 2003; ICPC, 2009). The three other “shore-parallel” ca-
bles (SMW3, FLAG, COLOMBUS2) were broken in 11, 3
and 6 points, respectively (Fig. 1), with a delay for the time
of first break after the earthquake, which increases in the off-
shore direction (Table 1). The SMW2 cable was broken at
seven locations in all physiographic domains, ranging from
the upper slope to the distal abyssal plain, and it was the
first cable to break only 36 min after the earthquake. Finally,
the western-most cable, ALPAL2, was broken at a single lo-
cation in the abyssal plain 3 h and 48 min after the earth-
quake. The ALPAL2 cable break represents the only case
with an unequivocal association of cable break time and lo-
cation; for all the other cable breaks, the time of first rup-
ture cannot be associated with a specific location, but it has
to be chosen among several options (Fig. 5). In two cases
the ships performing submarine cable reparations found the
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A. Cattaneo et al.: Seafloor signature of the 21 May 2003 Boumerdès earthquake 2165

Fig. 4. Bathymetric gradient map (lower right panel) of the Algiers canyon with navigation track of side-scan sonar (SAR, light grey) and
location of SMW2 (oriented SW-NE) and COLOMBUS2 (oriented W–E, U-shaped) submarine cables, where stars represent points of cable
break. Two SAR images show evidence of intense sediment reworking in distal areas of the continental rise:(A) sharp slump scar with
extensional deformation of sediment on the offshore flank of scarp S2 (the map corresponds roughly to Zone 1 in Fig. 2);(B) longitudinal
furrows and patches of alternating light and dark backscatter representing likely bedforms and blocks along the axis of the Algiers turbiditic
channel.(C) SAR image showing smooth seafloor morphology in the vicinity of cable break n. 3 with evidence of seafloor deformation due
to the presence of a salt diapir.

cables displaced offshore compared with the expected loca-
tion: (1) the cable FLAG was found 3.7 km NE of cable break
point n. 14, ca. 1 km north of the inferred location of the ca-
ble at its point; (2) the cable COLOMBUS 2 was found some
5 km north of the cable route, between cable break points 12
and 13.

The cable breaks occurred in four distinct zones of the cen-
tral Algerian margin separated by areas where cable breaks
were not reported (Fig. 2): Zone 1 between 2◦50′ and 3◦30′

longitude E, at the base of the slope and in the “proximal”
abyssal plain in the continuity of the Algiers canyon; Zone 2
between 2◦53′ and 3◦25′ E in the distal abyssal plain offshore
the Algiers sector; Zone 3 between 3◦35′ and 3◦35′ E, only in
the distal abyssal plain at the center of the study area; Zone
4 between 4◦00′ and 4◦35′ E, in the abyssal plain downslope
of the Dellys and Sebaou canyons. The submarine cables are

not visible in SAR images, and in some cases no obvious
feature associated with cable breaks is detectable. For exam-
ple, in Fig. 4c, only the sediment disturbance induced by the
presence of a salt diapir is visible.

4.4 Turbiditic systems and inferred sediment pathways

The analysis of the morphology of the central Algerian
turbiditic systems may help disentangle the sequence of
events and identify the indirect consequences of the 2003
Boumerd̀es event offshore. High backscatter reflectivity sug-
gests the presence of coarse sediments at the seafloor de-
posited along canyon axes (Fig. 2) and possibly recent ac-
tivity of gravity flows. For example, in the western part of
the study area, the axes of some canyons show fresh ero-
sional furrows and plurimetric blocks (Fig. 3a–c), whereas
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Fig. 5. Distance of cable breaks from the shelf edge plotted against
the time of cable breaks after the Boumerdès 2003 earthquake. The
distance is measured along the path of turbidity flows inferred from
morphology and sketched in Fig. 2 above (dashed blue lines). The
estimate of turbidity flow velocity is possible only with the assump-
tion that the time of each cable break corresponds to the shortest
distance from the shelf edge, with the exception of cable break 1.
See text for discussion.

other canyons (or tributary canyons) seem to be draped by
fine sediments without evidence of erosion.

In the area offshore Algiers, the continental slope is in-
cised by several canyons and gullies. Four main canyons
are particularly developed between the bay of Algiers and
Boumerd̀es based on high backscatter reflectivity (Fig. 2).
The largest canyon is the Algiers canyon with two sinuous
tributaries in its upper reach, a maximum relief of 600 m, and
a submarine valley oriented E–W with a well-developed sed-
imentary ridge with a 20 to 50 m relief over the seafloor, pos-
sibly confined by the S2 scarp. Turbidity currents in prove-
nance from the Algiers canyon and the three other canyons to
the west probably overflow on the ridge towards the north in
the direction of a series of cable breaks at the northern edge
of Zone 1. Turbidity currents extend to the distal area, re-
sulting in great sediment dispersion with local confinement
between salt diapirs and walls. At the base of the Algiers
canyon, a side-scan sonar image shows erosional furrows in-
dicating the flow direction and perpendicular structures that
could be interpreted as pebble or gravel waves, evidence of a
high energy regime at this location (Fig. 4b).

Between Boumerd̀es and Dellys (south of Zone 3, Fig. 2),
cable breaks are limited to the distal abyssal plain. Two
canyons and the western branch of the Sebaou canyon are

Fig. 6. Lithologic log of sediment core PSM-KS23 from the distal
area of the Algiers turbiditic system in 2775 m water depth. Note
the contrast between the closely spaced thin turbidites at the base
of the core and the more widely spaced turbidites in the upper part.
On the right: detail of the 2 upper meters of the core. The identifi-
cation of turbidites is based on the comparison of photo and X-ray
images of the sediment core, magnetic susceptibility, gamma den-
sity and XRF elemental ratios Ca/Ti (proxy for carbonate produc-
tion, with high values in hemipelagic intervals), and Fe/Ca (detri-
tal proxy, with high values in the turbidites). The radiocarbon ages
show that during the Holocene the time interval between two adja-
cent turbidites is in the order of about 800 yr.

directed to the north in this sector, but apparently no strong
turbidity current passed northwards in 2003, because cables
COLOMBUS2 and SMW2 are intact here.

Finally, Zone 4 west of Dellys is characterised by the pres-
ence of three canyons with high-backscatter along their axis
(the Sebaou canyon, the Dellys canyon and another immedi-
ately to the east), while the other canyons to the east appear
subdued in morphology and less reflective (Fig. 2). Cable
breaks are aligned with the three reflective canyons. Other
morphological features suggest active sediment transport and
erosion along these canyons and support the interpretation of
an efficient transport of turbidity currents: in the distal part
of the Dellys canyon, three chutes show an abrupt change
in bathymetry of 70, 120 and 200 m respectively from the
canyon floor; along the distal part of the Sebaou canyon, a set
of well-developed ridges and scours with a relief exceeding
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40 m is a strong evidence for significant erosion (bathymetric
profiles in Dan-Unterseh et al., 2011). The source area of the
main turbidity currents appears to have originated from the
Dellys and Sebaou canyons, while the easternmost canyons
likely gave only minor contributions because of the lack of
cable breaks along their trajectories.

4.5 Turbidite deposits

Numerous cores have been collected on the continental slope,
at its base, and along major scarps (Giresse et al., 2009; Dan-
Unterseh et al., 2011). These cores show typical sedimen-
tary facies resulting from gravity processes (submarine land-
slides and turbidites). At the foot of the slope, cores sampled
the proximal accumulation of turbidite currents with amal-
gamated sandy/silty beds, where hemipelagic intervals are
generally not preserved, and it is thus difficult to reconstruct
the chronology of turbidite beds. In more distal locations, the
presence of alternating turbidite beds with hemipelagites rep-
resenting background sediment accumulation allows to es-
tablish a time framework for the turbidites, even if particular
caution must be taken to make a distinction between turbidite
and hemipelagite beds (e.g. Gràcia et al., 2010).

Sediment core PSM-KS23 is the most distal core collected
in the Algiers area at 37◦27.093′ N–002◦59.526′ E in 2775 m
water depth (Fig. 6). Its location, close to one of the distal
cable breaks of the 2003 Boumerdès event, attests that tur-
bidity currents reached this area in 2003 (Fig. 2). The core is
11.95 m long, and it is composed of a succession of turbidite
deposits separated by hemipelagic mud. In the lithologic log
the turbidite beds are characterized by very fine sand and silt
intervals 1–15 cm thick. The distance between turbidites is
variable, but it averages 10–20 cm from the core top down to
about 9 m, then decreases to about 5–10 cm in the lower part
of the core, with closely spaced, thin bedded turbidites. The
precise identification of turbidites is based on the observa-
tion of X-ray images and the comparison with gamma den-
sity curve (the base of turbidites usually correspond to high
density values) and XRF elemental ratios (Fig. 6). Fe/Ca is
a proxy for the terrigenous component of the sediment (e.g.
Arz et al., 1999), while Ca/Ti shows peaks in carbonate con-
tent. As it has been found elsewhere, turbidites that origi-
nated in shallow water tend to be richer in Fe and poorer in
Ca than hemipelagic interbeds (Rothwell et al., 2006); in our
case we interpreted peaks of Fe/Ca as turbidite beds, and high
values of Ca/Ti as hemipelagites. Offshore Algeria some of
the turbidites present enrichments in reworked Foraminifera:
contrary to other cases in the literature, there may be a rele-
vant amount of carbonate also within some of the turbidites,
making the distinction among hemipelagites and turbidites
sometimes difficult.

The uppermost 2 m of sediment in core PSM-KS23 con-
tain 15 silty turbidites (Fig. 6). In some cases (e.g. T6, T8
and T10, Fig. 6), we interpreted as a single turbiditic “event”
several stacked silt layers without intervening hemipelagite.

Hemipelagic muds, characterized by a light colour and the
presence of abundant Foraminifera, allow to obtain the age
of the interfingered turbidite beds through radiocarbon dat-
ing on planktonic Foraminifera (Table 2). Four radiocarbon
dates obtained in hemipelagic intervals of the upper 1.5 m
of the core within the Holocene suggest an average recur-
rence interval of about 800 yr between turbidites in this area
(Fig. 6). At the top of the core, we identify a thin turbidite;
however, it is not possible to interpret unequivocally this de-
posit as the result of the 2003 event, because the top of the
Kullenberg core is often disturbed or not preserved.

5 Discussion

5.1 Submarine impact of the 2003 earthquake on the
central Algerian continental slope: evidence and
uncertainties

5.1.1 Seafloor scarps

Although scarps on land may represent the direct expres-
sion of an earthquake, in the subaqueous domain this evi-
dence is more subdued by the dominance of sedimentation.
Déverch̀ere et al. (2010) show that there is no direct and con-
vincing evidence that the fault responsible for the Boumerdès
earthquake has a direct expression at the seafloor in the pro-
longation of the fault plane, which is at the base of the slope
along the B1 scarp described in Déverch̀ere et al. (2005).
The scarps S1 to S3 presented in Fig. 2 were identified as
anticlines with seismic-reflection data and likely express su-
perficial deformation of blind thrust faults (Déverch̀ere et al.,
2005; Strzerzynski et al., 2010). Rather than being a direct
expression of a single earthquake, these scarps are thought
to represent the cumulative effect of deformation with short-
ening over ramp-flat trajectories of active faults at depth
(Déverch̀ere et al., 2005, 2010; Lofi et al., 2011).

Because of the tectonic over-steepening of their slope gra-
dients, the scarps are preferential sites for submarine land-
slides (Cattaneo et al., 2010; Nouguès et al., 2010). Facil-
itated by the great slope gradient, instability is most likely
triggered by soil acceleration leading to the liquefaction of
thin silty layers interbedded in the dominant hemipelagic
sediments (Dan et al., 2009; Nouguès et al., 2010).

5.1.2 Submarine landslides

Much evidence of submarine landslides is found along the
Algerian margin, especially at the base of the slope. The
slope failures show a large span of size and volume (e.g.
Dan et al., 2010; Cattaneo et al., 2010). The apparent fresh-
ness of many slope failure scars and of the resulting blocks
supports that these instabilities are recent. However, a pre-
cise age of each failure has proven elusive until today to as-
certain with the available data, in particular in absence of
pre- and post-event bathymetric survey (see, for example, the
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2002 Stromboli event case history in Chiocci et al., 2008).
Although no direct evidence of a submarine landslide trig-
gered by the 2003 earthquake is available, the soil accelera-
tion of such an event is compatible with the sediment failure
in areas where submarine landslides are present (Dan et al.,
2009; Nougùes et al., 2010). Furthermore, it is possible that a
submarine landslide, which probably originated along one of
the seafloor scarps described above, is at the origin of cable
breaks either directly or indirectly by transforming into a tur-
bidity current, as proposed in the interpretation of the causal
mechanisms for cable breaks in Fig. 2 (blue arrows).

5.1.3 Turbidity currents

Cable breaks caused by the 2003 turbidity currents show
some differences from other known events. In other cases, for
example the 1908 Messina event (Ryan and Heezen, 1965),
the 1929 Grand Banks earthquake (Heezen and Ewing, 1952;
Piper et al., 1999), the Orléansville 1954 event (Heezen and
Ewing, 1955), and the 2006 event offshore Taiwan (Hsu et
al., 2008), a small number of cables ruptured in sequence
along a relatively straightforward path for turbidity currents,
allowing a reconstruction of the velocity of turbidite current
speed. This was also the case for the 1979 Nice airport event
(Piper and Savoye, 1993), where, however, no earthquake
was involved (Dan et al., 2007 and references therein).

Offshore Algeria, five cables were broken at so many dif-
ferent locations that the identification of a single turbidity
flow path is impossible. The ruptures clearly occurred off
at least two distinct turbiditic systems: the Algiers canyon
(and three adjacent canyons) to the west, and the Sebaou and
Dellys canyon to the east. A multi-source assumption is thus
the easiest way to explain the wide geographic span of cable
breaks, arguing for a multi-source ramp-type model of chan-
nelized system development (Reading and Richards, 1994).
In any case, even when considering each system indepen-
dently, the turbidity current path does not appear straightfor-
ward. There are two oddities in this pattern of cable breaks
(Fig. 2): (1) cable FLAG remained surprisingly intact be-
tween Zones 1 and 2; (2) in the center of the study area
only the distal cables SMW3 and FLAG broke, while the
more proximal cables SMW2 and COLOMBUS2 remained
untouched in this sector. Furthermore, the location of ca-
ble breaks does not correspond with the location where the
damaged cables were recovered, which in two cases shifted
some kilometers offshore. Also based on this last piece of
evidence, cable breaks are attributed to the erosion action
of turbidity currents. Several turbidity currents, all triggered
by the 2003 earthquake, have apparently followed paths off-
shore along distinct turbiditic systems.

The path of turbidity currents following the 2003
Boumerd̀es event seems controlled by the complex morphol-
ogy at the toe of the continental slope, where seafloor scarps
S1–S3 could have played a major role (Fig. 2). For example,
the Algiers canyon veers westward at the toe of the conti-

nental slope following the seafloor scarp S2. In the Dellys
area, between the base of the canyons and the scarp S1, a
perched basin (Strzerzynski et al., 2010) has probably acted
as a trap for turbidity currents, and the most likely path to-
wards the ruptures of Zone 3 comes from the NE corner of
Zone 1, in the distal reaches of the Algiers canyon. It re-
mains in any case difficult to explain how turbidity currents
may have impacted the cable SMW3 beyond the undamaged
cable FLAG between Zone 1 and Zone 2, without invoking
a difference in the strength of the two cables. The reduced
number of breaks along cable FLAG, if compared with ca-
ble SMW3, might support this explanation (Fig. 2, Table 1).
Unfortunately, SAR data at the location of cable breaks can-
not help understand if FLAG had been buried at deeper depth
than SMW3 cable to confirm this hypothesis.

A rough estimate of turbidity flow velocity is proposed in
Fig. 5 by assuming the following: (1) the path of turbidity
currents follows the main morphologic features identified at
the seafloor and outlined in Fig. 2; (2) the time of each ca-
ble break corresponds to the shortest distance from the shelf
edge (highlighted in the grey area), with the exception of ca-
ble break n. 1, which probably represents a local anomaly.
Although the resulting turbidity flow velocities are overall
comparable with other available case studies (see a review in
Hsu et al., 2008), several problems remain. For example, it is
necessary to assume a long trajectory following the Algiers
canyon and submarine valley to obtain a reasonable flow ve-
locity at cable break n. 29, but it is not possible to explain
with the same turbidity flow the cable breaks n. 2 and 29.
Also, cable breaks 11–12 and 15–16, all relatively close and
along similar trajectories, cannot be explained by the same
turbidity flow, because they broke 46′ and 01:56′ after the
earthquake, respectively.

Finally, the comparison of the locations of potential sedi-
ment sources (the canyon heads) and the locations of cable
ruptures supports the interpretation that turbidity flows were
deflected eastwards (Fig. 2). This deflection could be the re-
sult of the Coriolis effect, which is well known to modify the
deposition pattern of active deep-sea fans (Silva Jacinto et
al., 2010).

5.2 Potential reconstructions of paleoseismology with
distal turbidites offshore the central Algerian
margin

As large earthquakes can generate regional turbidity currents,
turbidite chronostratigraphy was demonstrated to be a pow-
erful paleoseismological tool in both fast subduction zones
(Adams, 1990; Goldfinger et al., 2003; Griggs, 2011) and
slowly convergent margins (Gràcia et al., 2010). In order
to discriminate earthquake-triggered from storm- or flood-
triggered turbidites, such studies are based on synchronous
deposits with independent sources over large areas. For a
paleoseismological approach, it is necessary to sample large
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and regional turbidity events (triggered by large earthquakes)
and to obtain age and stratigraphy of these accumulations.

The best record of large events along the Algerian margin
is represented by distal turbidite deposits interbedded with
hemipelagic intervals. In the area offshore Algiers, the pre-
liminary chronostratigraphic results from core PSM-KS23
reveal that at least 11 turbidites were accumulated during the
Holocene, with a mean recurrence interval of 792 yr (Fig. 6).
Although a paleoseismological approach based on a single
core is not possible, the position of this core less than 5 km
away from the cable breaks suggests that the sampled tur-
bidites may be seismically triggered. It is also worth to note
the following: (1) the mean recurrence interval of turbidites
in core PSM-KS23 is of the same order as the mean 720-yr
interval proposed by Meghraoui et al. (1988) from their pa-
leoseismic investigation led on the El Asnam fault onshore,
∼250 km W-SW from the Boumerdès earthquake area, and
(2) large events in the eastern Algiers area are very rare over
the last 1200 yr according to historical records (Hamdache
et al., 2010), supporting a possible causative link between a
given earthquake shaking threshold and multi-source turbid-
ity currents triggered at this place.

At least two main reasons prevent a more precise compar-
ison between individual fault recurrences on land and tur-
bidite bed occurrences offshore at this stage. First, active
fault segments at different locations along the Algerian mar-
gin probably overlap in space (Domzig et al., 2006; Yelles-
Chaouche et al., 2006) and may significantly vary in maxi-
mum magnitude and strain rate. Second, in simplified seis-
mologic models, the magnitude of earthquakes is propor-
tional to the fault size and the strain accumulated since the
previous earthquake (i.e. the time), resulting in a power law
magnitude frequency distribution (Gutenberg and Richter,
1944). Even with these assumptions, however, these mod-
els fail to explain the great variations in recurrence intervals,
thus leading to the emergence of a theory of stress transfer
and stress interactions, where stress release on a fault can
increase or decrease stress on a nearby fault, potentially trig-
gering or retarding an earthquake, respectively (Chéry et al.,
2001; Freed, 2005).

Additional radiocarbon dating on core PSM-KS23 and
other distal cores offshore Algiers should allow us to refine
the turbidite chronology and test their synchronicity in order
to validate the hypothesis of a seismic trigger. The result-
ing earthquake calendar could allow to constrain the seismo-
genic behaviour of the main faults. A similar investigation is
in progress on the adjacent margin segment of Kramis, off-
shore the El Asnam fault (western Algerian margin) and will
allow a precise correlation with the onshore paleoseismology
and a comparison with the Algiers area in order to discuss the
stress transfers and interactions between the two margin seg-
ments.

6 Conclusions

On 21 May 2003, a magnitude 6.8 earthquake struck the cen-
tral Algerian margin with an epicenter at the coastline and
a pure reverse-type fault plane mechanisms. This event also
triggered a tsunami wave that hit the Balearic Islands and was
detected in tide gauges of the western Mediterranean. Off-
shore, the event caused the rupture of 5 out of the 6 telecom-
munication cables running across and along the central Al-
gerian margin. Twenty-nine cable breaks occurred in phys-
iographic domains ranging from the inner continental slope
down to the abyssal plain. The cable breaks occurred be-
tween 36 min and 3 h and 48 min after the earthquake, over a
distance of 150 km and as far as 70 km away from the coast-
line. The same cable was often affected by multiple breaks,
preventing in most cases the exclusive identification of the
time and site of each cable break. The cables were proba-
bly damaged by the passage of turbidity currents triggered
by the earthquake. The location of submarine cable breaks
supports evidence of a series of turbidity currents triggered
synchronously along distinct turbiditic systems. The analysis
of the morphology of the seafloor helps unravel the sediment
gravity events and suggests a likely scenario of the offshore
impact of the 2003 earthquake.

Two main cable break zones correspond clearly to the pro-
longation of canyons cutting the central Algerian margin:
the Algiers canyon to the west, and the Sebaou and Dellys
canyons to the east. The likely path of turbidity currents,
reconstructed according to the morphology, side-scan sonar
images and the location of submarine cable breaks, appears
to be strongly dependent on the roughness and irregularities
of the seafloor. Several W–E oriented tectonic scarps shape
the morphology of the central Algerian slope, outlining some
perched slope basins. The scarps constitute areas more prone
to sediment failure, a potential additional source for cable
breaks. Seafloor scarps have deflected turbidity flow paths,
while perched basins may have acted as a trap for turbidites,
preventing a further expansion of turbidity flows offshore, at
least in the central part of the study area. A systematic de-
flection towards the east (right) of inferred turbidity flows is
probably the expression of the Coriolis effect.

The signature of the 2003 event along the canyons, sub-
marine valleys and scarps is rather erosional, and it is thus
difficult to identify and distinguish the traces of the 2003
earthquake from other previous events. In the submarine
realm, direct traces of earthquakes and subsequent sediment
gravity flows are difficult to document in proximal areas
(continental slope), especially because of the erosive nature
of the earthquake-triggered processes. In the distal area of
the Algiers canyon, thin turbidite beds interfingered with
hemipelagic deposits rich in Foraminifera represent a sedi-
mentary record potentially linked to earthquakes. As such,
turbidite beds constitute the best potential target for pale-
oseismic reconstructions in the submarine domain. Prelim-
inary results on a sediment core in 2775 m water depth
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indicate a mean recurrence time of about 800 yr between tur-
bidites during the Holocene, in rough agreement with paleo-
seismological data available on one individual fault on land,
and with the scarce occurrence of strong historical earth-
quakes at the scale of the segments of the Algerian margin.
These results support the view that large coastal earthquakes
in Algeria may represent the main triggering mechanism at
the origin of large turbidity flows in the deep Algerian basin,
at least during sea-level high stands, even if further work on
synchronous turbiditic series along distinct sediment disper-
sal systems is necessary to achieve a sound reconstruction of
paleoseismology from the offshore domain of Algeria.
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Schindeĺe, F., and Lavigne, F.: The tsunami triggered by
the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake:
field investigations on the French Mediterranean coast and
tsunami modelling, Nat. Hazards Earth Syst. Sci., 9, 1823–1834,
doi:10.5194/nhess-9-1823-2009, 2009.

Semmane, F., Campillo, M., and Cotton, F.: Fault location and
source process of the Boumerdes, Algeria, earthquake inferred
from geodetic and strong motion data, Geophys. Res. Lett., 32,
L01305, doi:10.1029/2004GL021268, 2005.

Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G.,
Anzidei, M., Baldi, P., and Gasperini, P.: Kinematics of the West-
ern Africa-Eurasia plate boundary from focal mechanisms and
GPS data, Geophys. J. Int., 169, 1180–1200, 2007.

Silva Jacinto, R., Jamet, G., Babonneau, N., and Cattaneo, A.:
Modelling deposition patterns of turbidity events in the Al-
ger Canyon and adjacent Algerian margin: tracking the 2003
Boumerd̀es event, 18th International Sedimentological Congress,
26 September–1 October 2010, Mendoza, Argentina, 2010.

Stich, D., Serpelloni, E., Mancilla, F., and Morales, J.: Kinematics
of the Iberia-Maghreb plate contact from seismic moment tensors
and GPS observations, Tectonophysics, 426, 295–317, 2006.

Strzerzynski, P., D́everch̀ere, J., Cattaneo, A., Domzig, A., Yelles,
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