Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water

Abstract : This study proposes a simple and innovative synthesis route for a goethite-calcite nanocomposite. This synthesis is summarized by three sequential precipitation reactions: (1) precipitation of nanosized acicular goethite (α-FeOOH) using a high OH/Fe molar ratio (=5); (2) instantaneous precipitation of portlandite (Ca(OH)2) by adding CaCl2 salt to a goethite alkaline suspension (2NaOH + CaCl2=Ca(OH)2 + 2NaCl) and; (3) sub-micrometric calcite precipitation by injection of CO2 into a goethite-portlandite alkaline suspension (Ca(OH)2 + CO2=CaCO3+H2O). The XRD patterns have confirmed the goethite and calcite mineral composition in the composite precipitated at 30 and 70°C. FESEM and TEM observations have revealed the formation of nanosized goethite particles well dispersed with sub-micrometric calcite particles, leading to an orange-brown colour nanocomposite with high specific surface area of around 92 m2/g for a composite synthesized at 30°C and 45 m2/g for a composite synthesized at 70°C. Both values were determined using the conventional BET method on N2 sorption isotherms. Finally, a goethite/calcite weight ratio equal to 0.8 in the composite was determined by thermogravimetric analysis (TGA). Additionally, some adsorption experiments carried out at two different pH values revealed that the goethite-calcite composite has a good sequestration capacity for Cu>Cd>As(III)>Se(IV)>As(V). Conversely, the Se(VI) did not show any chemical affinity with the goethite-calcite composite under the physico-chemical conditions studied. In practice, the goethite-calcite composite can neutralise acidic wastewater by slight calcite dissolution, enhancing the removal of heavy metals (e.g. Cu and Cd) at the calcite-solution interfaces.


https://hal-insu.archives-ouvertes.fr/insu-00749245
Contributor : German Montes Hernandez <>
Submitted on : Wednesday, November 7, 2012 - 9:27:05 AM
Last modification on : Tuesday, December 4, 2012 - 5:25:21 PM

File

CEJ-D-12-02738.pdf
fileSource_public_author

Identifiers

Collections

Citation

German Montes-Hernandez, François Renard, Rodica Chiriac, Nathaniel Findling, Jaafar Ghanbaja, et al.. Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water. Chemical Engineering Journal, Elsevier, 2013, 214, pp.139-148. <10.1016/j.cej.2012.10.050>. <insu-00749245>

Export

Share

Metrics

Consultation de
la notice

606

Téléchargement du document

140