Emplacement, structural and P-T evolution of the 346 Ma Miřetín Pluton (eastern Teplá-Barrandian Zone, Bohemian Massif): implications for regional transpressional tectonics - Discussion

Pavel Pitra

To cite this version:

HAL Id: insu-00744621
https://hal-insu.archives-ouvertes.fr/insu-00744621
Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Discussion
Emplacement, structural and P–T evolution of the ~346 Ma Miřetín Pluton (eastern Teplá–Barrandian Zone, Bohemian Massif): implications for regional transpressional tectonics – Discussion

Pavel PITRA

Géosciences Rennes, UMR 6118, Université Rennes 1 and CNRS, Campus de Beaulieu, 35042 Rennes cedex, France; pavel.pitra@univ-rennes1.fr

Received: 14 May 2012; accepted: 14 September 2012; handling editor: J. Žák

Introduction

Vondrovic et al. (2011) describe magmatic to solid-state fabrics in the so-called Miřetín Pluton, which intruded in the central–eastern part of the Bohemian Massif, along the tectonic contact between the Hlinsko Unit in the hanging wall and the Svrata and Polička units in the footwall. The authors infer that the Pluton intruded in a transpressional domain along the eastern margin of the Teplá–Barrandian Zone and experienced an early submagmatic to high-temperature (HT) solid-state deformation in a transpressional regime before a subsequent, low-temperature (LT) deformation associated with normal kinematics. They acknowledge that this interpretation is “at variance with the earlier concepts of Pitra et al. (1994)”, who studied the pluton and the adjacent rocks of the Hlinsko and Svrata units in some detail and concluded that the pluton was emplaced syntectonically into a ductile normal shear zone. Interestingly, most features described in the granodiorite are identical to those reported in Pitra et al. (1994), and the interpretation only is different. The goal of this contribution is to emphasize that the analysis of Vondrovic et al. (2011) does not take into account some important, regional features and that the interpretation proposed by Pitra et al. (1994) remains valid.

1. Teplá–Barrandian?

As a foreword, from a regional point of view, it is regrettable that the authors assume that the Hlinsko Unit belongs to the Teplá–Barrandian Zone, whereas there is evidence that this interpretation is no fact. Indeed, many authors suggested that the sedimentary character of the Hlinsko Unit (in particular the Silurian Mrákotín Series) is quite different from the Barrandian equivalents (Wurm 1927; Kettner 1931; Kodym 1946; Štorch and Kraft 2009). As suggested by Pitra et al. (1994), rather than the Miřetín Pluton, it may be the Nasavrky magmatic complex that intruded along the contact between the Teplá–Barrandian and the various peri-Moldanubian units (whether or not they belong to the Moldanubian) in this region. Accepting this uncertainty and possibility could have avoided Vondrovic et al. (2011) vainly striving to find arguments for the transpressive character of the eastern margin of the Teplá–Barrandian Zone in the Miřetín Pluton.

2. The Miřetín Pluton

With respect to the deformation pattern of the Miřetín intrusion, both Pitra et al. and Vondrovic et al. report a sequence of submagmatic, HT solid-state and LT solid-state structures. Both describe the relics of submagmatic flow preserved by the shape preferred orientation of magmatic feldspar crystals. Both report the presence of myrmekite and “mica-fish” texture of biotite crystals. Both describe the presence of quartz ribbons with quartz grain boundaries testifying to HT grain boundary migration and the preferred orientation of quartz lattice pointing to the dominant activity of prism <a> slip, characteristic of deformation at relatively high temperature. Finally, both report crystal size reduction and partial transformation of biotite to chlorite, suggesting decreasing temperature during formation of the late shear bands. Whereas both papers agree that the late shear bands were related to normal shearing, the interpretation of the kinematics of the HT fabric is different.

Pitra et al. (1994) use the following observations to argue that the HT fabric was also related to the same north-westward normal shearing: 1) Quartz + K-feldspar-filled microfractures in plagioclase phenocrysts are interpreted as resulting from deformation at the submagmatic stage (op. cit. p. 20). Their obliquity with respect to the foliation defined by the shape preferred orientation of the plagioclase crystals is consistent with top-to-the-NW shear (op. cit. Fig. 6). 2) The shape of the biotite “fishes” (op. cit. Photo 4, Fig. 6) shows normal movement to the NW. 3) Polycrystalline quartz ribbons are parallel to the
foliation. Recrystallised grains are slightly elongated and define an internal shape fabric oblique to the foliation. This obliquity indicates a normal, NW-directed kinematics. 4) Quartz c-axes fabrics define incomplete girdles and folded leucogranite dikes (op. cit. p. 349, Fig. 4b–c) to argue that the HT deformation was associated with thrusting. However, the illustrations fail to convince. The validity of the first argument is impossible to appreciate: in Fig. 4b, two supposed aggregates are suggestively overdrawn with thick white lines. The shape of the smaller one cannot be used as a shear-sense indicator (despite the arrows) and other aggregates are either not clearly visible, or indicate an apparently normal kinematics. Figure 4b was shown to several knowledgeable scientists, and they all wondered whether the authors were familiar with S/C structures. Furthermore, it is worth pointing out that the apparent asymmetry of mineral aggregates may be an ambiguous tool unless the features are well described and the underlying processes correctly interpreted (e.g. Van Den Driessche and Brun 1987; Hammer and Passchier 1991). Similarly, the significance of fold asymmetry is known to be no reliable kinematic indicator as folding is a complex process that installs local conditions that do not reflect regional strain fields. For example, any textbook, for more than a century, documents the inversion of second order fold asymmetry from one limb of a first order fold to the next limb, whatever the regional transport direction. Unless a regionally extensive study is performed and the orientation of fold axes measured systematically, and fold axes demonstrated not to have been rotated towards the shear direction (e.g. Skjernaa 1980; Hammer and Passchier 1991), folds cannot be used to interpret large-scale deformation regimes. A much better argumentation should be expected if any previous interpretation is to be defied.

3. The Hlinsko Unit

In the overlying Hlinsko Unit, the intrusion of the pluton produced low-pressure high-temperature metamorphism, which is well developed in the Mrákon Series (Pitra et al. 1994; Pitra and Guiraud 1996). The metamorphic minerals, in particular staurolite and chloritoid, display shape preferred orientation and define a mineral lineation oriented NW–SE (Pitra et al. 1994, Fig. 5), consistent with the orientation of the stretching lineation in the underlying pluton. The crystallisation of these minerals was syntectonic and asymmetric crystallisation tails and sigmoidal inclusions indicate a NW-ward shearing (op. cit. Photos 2–3), contemporaneous with the emplacement of the pluton.

4. The Svratka Unit

Finally, Vondrovec et al. (2011) claim that the “low-T solid-state fabrics”, associated with “W-side-down kinematics”, “occur only in a narrow zone (up to 0.5 km wide) along the western flank of the Pluton” (p. 349). This is partly correct but evident, since cooling causes localized deformation, hence narrowing of the deformation zones. The LT fabrics are indeed concentrated along the contact of the pluton with the Hlinsko Unit, leading locally to the development of ultramylonites. This is normal; the contact zone with cold country rocks is where magma cools faster. However, NW-ward shearing is documented in a wide band including not only the entire pluton, but also the rocks of the underlying Svratka crystalline unit (Pitra et al. 1994, p. 19, Photo 5) up to several km below the contact of the pluton with the Hlinsko Unit (e.g. outcrops at the southern end of Krouna, or in the surroundings of Herálec and Svratka).

5. Conclusions

In conclusion, the evidence that the Miřetín Pluton intruded syntectonically along the contact between the overlying Hlinsko Unit and the underlying Svratka (and Polička) Unit during a north-westward normal shearing remains strong, even if Vondrovec et al. (2011) would like to prove the contrary. This shearing accompanied the cooling of the pluton and is documented at all stages of the deformation, from the submagmatic, through the HT solid-state to the LT solid-state deformation stage. This shearing is also documented in the syntectonic contact-type metamorphic assemblages in the Hlinsko Unit, as well as in the micaschists and orthogneisses of the underlying Svratka Unit (cf. Paterson et al. 1989, p. 359). Hence, the transpressive character of the contact between the Hlinsko Unit and the Svratka and Polička units stands as a blunder due to the limited amount of information Vondrovec et al. (2011) have gathered from the pluton only. The conclusions of Pitra et al. (1994) are
based on a significantly more detailed and more complete piece of work. The contact between the Hlinsko Unit on the one hand, and the Svratka and Polička units on the other, is a normal shear zone along which the pluton intruded syntectonically.

References

