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Abstract 

We present here new experimental data on H2O-CO2 solubility in mafic melts with variable 

chemical compositions (alkali basalt, lamproite and kamafugite) that extend the existing 

database. We show that potassium and calcium-rich melts can dissolve ~ 1 wt% CO2 at 3500 

bar (350 MPa) and 1200°C, whereas conventional models predict solubilities of 0.2-0.5 wt%, 

under similar P-T conditions. These new data, together with those in the literature, stress the 

fundamental control of melt chemical composition on CO2 solubility. We present a semi-

empirical H2O-CO2 solubility model for mafic melts, which employs simplified concepts of 

gas-melt thermodynamics coupled with a parameterization of both chemical composition and 

structure of the silicate melt. The model is calibrated on a selected database consisting of 289 

experiments with 44 different mafic compositions. Statistical analyses of the experimental 

data indicate that, in mafic melts, the chemical composition and therefore the structure of the 

melt plays a fundamental role in CO2 solubility. CO2 solubility strongly depends on the 

amount of non-bridging oxygen per oxygen (NBO/O) in the melt, but the nature of the cation 

bonded to NBO is also critical. Alkalis (Na+K) bonded to NBO result in a strong 

enhancement of CO2 solubility, whereas Ca has a more moderate effect. Mg and Fe bonded to 

NBO have the weakest effect on CO2 solubility. Finally, we modelled the effect of water and 
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concluded that H2O dissolution in the melt enhances CO2 solubility most likely by triggering 

NBO formation. In contrast with CO2 but in agreement with earlier findings, H2O solubility in 

mafic melts is negligibly affected by melt composition and structure: it only shows a weak 

correlation with NBO/O.  

 

Keywords: volatiles in magma, H2O, CO2 solubility, silicate melts 

 

1. Introduction 

The dynamics of volcanic systems strongly depend on magmatic volatiles because of the 

ability of the latter to segregate as a low density fluid phase if their amounts exceed the 

relevant solubility limits in the silicate melt (Phillips and Woods, 2002; Menand and Phillips, 

2007). Solubility laws of volatiles generally describe increasing amounts of dissolved 

components in volatile saturated melts as pressure and, therefore, depth increases (Behrens 

and Gaillard, 2006). Accurate volatile solubility laws are inescapably needed to robustly 

model volatile degassing upon magma ascent (Moretti and Papale, 2004; Burgisser et al., 

2008; Gaillard and Scaillet, 2009) and to interpret volatile contents of melt inclusions and 

constrain their entrapment depths (Moore, 2008; Metrich and Wallace, 2008). The most 

abundant volatile component in magmatic systems is H2O generally followed by CO2 

(Metrich and Wallace, 2008), although, some volcanic systems can intermittently degas more 

CO2 than H2O (Edmonds and Gerlach 2007; Liotta et al. 2010). On the basis of general 

solubility trends, elevated CO2/H2O ratios in volcanic plumes are generally interpreted to 

indicate deep degassing (Aiuppa et al., 2006; Edmonds and Gerlach 2007; Shinohara et al., 

2008). However, other mechanisms can be conducive to high CO2 contents in volcanic gases: 

open system degassing (Edmonds and Gerlach, 2007), large gas content in magma chambers 

at depth prior to eruption (Wallace, 2003; Scaillet and Pichavant, 2003), or interactions with 

sedimentary carbonates (Iacono-Marziano et al., 2009). Accurate solubility laws are essential 
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to decipher which of the above mentioned processes controls volcanic degassing. Due to the 

strong influence of melt composition on CO2 solubility (Dixon, 1997; Brooker et al., 2001a 

and b and new data in this study), the high-temperature high-pressure experimental approach 

is critical but solubility models are nevertheless needed to extrapolate or interpolate 

experimental data and predict H2O and CO2 solubility for variable chemical compositions 

under different conditions.  

We present here new experimental data on specific melt compositions that clarify the 

chemical control on CO2 solubility and show the limitation of existing models in predicting 

such chemical effects. We focus on mafic systems ranging from andesitic to picritic 

compositions and we propose an empirical model for H2O-CO2 solubility built on 

thermodynamics and considerations of melt structure calibrated on a comprehensive database. 

Our approach is to develop a pragmatic model for H2O-CO2 solubility in mafic melts, which 

avoids excessively complex thermodynamic formulations, but can nevertheless reproduce 

experimental data. We show that the use of structural parameters in addition to chemical 

components may be used to retrieve the existing database with a relatively simple and flexible 

thermodynamic framework. 

 

1.1. Existing models for H2O-CO2 solubility in silicate melts 

H2O solubility models in silicate melts have been pioneered by Burnham and Davis (1971) 

who propose that, at low water contents, water solubility in silicate melts depends on the 

square root of water pressure or fugacity. By carrying out a systematic infrared absorption 

study of water dissolved in silicate melts, Stolper (1982) proposed a thermodynamic model 

for water dissolution involving both molecular H2O and OH species, which applies at higher 

water contents. Empirical and simpler formulations have been more recently developed 
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(Moore et al., 1998) and reveal a minor control of melt chemical compositions on water 

solubility. 

Most CO2 and H2O-CO2 solubility models are calibrated on databases that do not integrate the 

recent and high quality literature published since 2006. Dixon (1997) proposes a semi-

empirical chemical model for CO2 solubility at 1 kbar based on thermodynamic formulations 

previously described by Spera and Bergman (1980). The introduction of the empirical factor 

Π accounts for the enhancement of CO2 solubility in melts as Ca, K, Na, Mg and Fe (listed in 

the order of the magnitude of their effect) are added to the system. The Π parameter also 

predicts that increasing Si and Al melt contents would decrease CO2 solubility. The main 

limitation of this model is that it is restricted to low pressure conditions (<1000 bar) 

corresponding to low dissolved H2O and CO2 contents. Lesne et al. (2011a) propose a re-

adjustment of the Π factor of Dixon (1997) in order to reproduce more recent experimental 

data and suggested that it could be reasonably extrapolated to 2000 bar, however no rigorous 

tests of its validity have been done so far over a comprehensive database. 

VolatileCalc (Newman and Lowenstern, 2002) is probably the most used H2O-CO2 solubility 

model and has the great advantages of being easy to use and founded on thermodynamic 

basis, previously developed by Stolper (1982) for water. The main drawback of VolatileCalc 

is that it poorly takes into account how changes in melt composition affect H2O and CO2 

solubility, the SiO2 content of the melt being the only chemical parameter considered. In this 

paper, we present experimental data showing that melt SiO2 content is not sufficient to 

accurately predict CO2 solubility. 

Papale et al. (2006) published the most sophisticated solubility model for H2O-CO2 gas 

mixture in multi-component molten silicate, accounting for the chemical control operated by 

8 melt components (oxides, e.g. SiO2, Al2O3) on H2O and CO2 solubility. The model has 

initially been developed for one-component solubility, i.e. H2O–silicate melt and CO2– 
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silicate melt  (Papale, 1997), and it has evolved to a two component model, i.e. H2O-CO2 

mixture – silicate melt (Papale et al. 1999, 2006). In all cases, the effect of a given melt 

component on H2O and CO2 solubilities is calibrated by fitting experimental data within a 

thermodynamic framework. In Papale et al. (2006) 26 regression parameters account for the 

dependence of both H2O and CO2 solubilities on melt composition and additional fitted 

parameters for standard thermodynamic properties (enthalpy, entropy, heat capacity, volume 

terms). The mixing formalism used in Papale et al. (2006) is a regular symmetric one (as in 

Ghiorso and Sack, 1995): the interaction parameters (Margules parameters) are adjusted 

between each pair of components assuming that a binary mixture would show similar 

interactions if diluted in multicomponent systems. In all, these three models (Dixon, 1997; 

Newman and Lowenstern, 2002; Papale et al., 2006) are essentially chemical models, which 

account, with variable degree of complexity, for the effects of melt composition on H2O-CO2 

solubility.  

 

1.2. Melt structure and CO2 solubility 

A different approach has been also deployed to evaluate the control of melt structure and 

chemical composition on CO2 solubility. Structural studies (Brooker et al. 1999, 2001a) and 

recent molecular dynamic simulations (Guillot and Sator, 2011) clearly reveal the melt 

structural controls on CO2 solubility in mafic melts. 

In mafic compositions, CO2 is observed to dissolve in the melt uniquely as CO3
2-

. The amount 

of available oxygens and the type of cation bonded to these oxygens are therefore key factors 

in controlling CO2 solubility (Brooker et al. 2001a, b). In this paragraph, we present a 

synthetic overview of the current knowledge of silicate melt structure that has to be taken into 

account for modelling the effect of the chemical composition on CO2 solubility. 

Spectroscopic methods (FTIR, Raman, NMR and X-ray analyses) describe the silicate melt as 
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a complex assembly of individual tetrahedral unit called Q
n
 species (e.g. Farnan and Stebbins, 

1994; Frantz and Mysen, 1995; Mysen, 2003), with n standing for the number of Bridging 

Oxygen (BO) between 0 and 4 within the tetrahedron, the number of non-bridging oxygens 

being therefore NBO = 4 – BO. The chemical composition of the melt controls the 

abundances of the different Q
n
 species and therefore both the abundance and the nature of the 

NBO. Lee and Sung (2008) show that several types of NBOs are present within the melt 

structure depending on the surrounding cation. Increasing the concentration of the alkalis or 

alkaline-earth elements increases the number of depolymerised Q
n
 units within the melt (e.g. 

Grimmer et al., 1984; Maekawa et al., 1991; Schneider et al., 2003; Halter and Mysen, 2004; 

Neuville et al., 2006; Malfait et al., 2007). Alkalis and alkaline-earths can be either charge 

balancing cations or network modifying cations (Maekawa et al., 1997; Lee and Sung, 2008; 

Lee and Stebbins, 2009). The change in the coordination number of the alkalis and alkaline-

earth elements within the melt is regarded as an effect of the cation field strength (Shimoda et 

al., 2008). Si and Al are generally considered as network formers (Rossano et al., 1999; 

Guillot and Sator, 2007), although very high pressures favour V and VI coordinated network 

forming cations (McMillan and Wilding, 2009). The presence of highly coordinated Al (V 

and VI) is also correlated to the concentration of charge balancing cations. Recent work 

(Toplis et al., 2000; Neuville et al. 2010) suggests that V coordinated Al concentration 

increases in Ca-MgO-Al2O3-SiO2 and Ca- Al2O3 glasses with decreasing Mg or Ca content. 

The major implication of this result is that Al adopts a network modifying rather than a 

network forming character. However, the concentration of V coordinated Al remains 

relatively low (<9% of the total Al) in such glasses. In peraluminous melts, the possible 

presence of 3-coordinated oxygen atoms has also been invoked by Toplis et al. (1997) 

forming Al, Si triclusters. This assumption based on viscosity measurements is corroborated 
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by the fact that low alkali concentrations are not sufficient to balance the charge deficiency in 

AlO4 tetrahedra. 

The structural behaviour of Mg in silicate melt is currently less constrained than Ca or Na. 

Stebbins and co-workers (Fiske and Stebbins, 1994; Georges and Stebbins, 1998; Kroeker and 

Stebbins, 2000; McMillan and Wilding, 2009) suggested that Mg exhibited several 

coordination numbers (changing mainly between 5 and 6) as a function of the chemical 

composition. Mg atoms, like Ca and Na, also give rise to several NBO within the melt 

(Kelsey et al., 2008) and are seen to influence the coordination sphere of network forming 

atoms such as Al (Guignard and Cormier, 2008).  

The configuration of carbonate units has been extensively discussed in previous works (Kohn 

et al., 1991; Brooker et al., 1999; 2001b). Fourier transform infrared (FTIR) studies show that 

CO2 dissolves in mafic melts as carbonate groups with two configurations: 1) network 

carbonates, i.e. T-CO3-T (where T is a tetrahedron, principally Si
4+

, Al
3+

), 2) carbonate groups 

connected to a non-bridging oxygen, i.e. NBO-CO3 M
n+

 (where M
n+

 is a charge balancing or 

network modifying cation such as Na
+
, K

+
 or Ca

2+
). Brooker et al. (2001a) propose that CO2 

solubility is a function of the degree of polymerization of the melt, on the basis of a strong 

increase in CO2 solubility with increasing NBO/T. In basaltic and more mafic compositions, 

such as those studied here, the NBO-CO3 association constitutes the principal mechanism of 

CO2 dissolution in the glass (Morizet et al., 2010). This spectroscopic observation is entirely 

consistent with theoretical simulations conducted using molecular dynamics simulations 

(Guillot and Sator, 2011). 

 

2. New data on H2O-CO2 solubility 

2.1. Experimental and analytical methods 
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Fluid saturated experiments in the system H2O-CO2 were conducted in internally heated 

pressure vessels (ISTO, Orléans), at 1200°C and 485-4185 bar. Au80-Pd20 capsules (internal 

diameter 2.5 mm), were used in order to minimize iron loss from the melt to the capsule 

during the run. All experiments were ended by drop quench. By using pure argon as a 

pressure medium without hydrogen addition, oxidized conditions were achieved, i.e. fO2> 

FMQ+1 (Gaillard et al., 2003); no effort was made to control oxygen fugacity.  Two starting 

glasses, an alkali-basalt from Mt. Etna, Italy (see Lesne et al., 2011a) and a lamproite from 

Torre Alfina, Italy, (see Peccerillo et al. 1998) were used (compositions in Table 1), 

corresponding to two different types of experiments. In the first case, 100 to 150 mg of alkali-

basaltic starting glass were loaded together with variable amounts of water and/or dehydrated 

oxalic acid, or silver carbonate and the experiments were performed at 1200°C and variable 

pressures (between 485 and 4185 bar) (Table 2). Experiments lasted 18-76 hours; the 

difference in the experimental duration does not significantly affect iron loss from the melt 

(the compositions of the experimental samples are within the standard deviation of the Etna 

starting glass composition in Table 1). The aim of these experiments was to characterize H2O-

CO2 solubility in alkali-basaltic melts as a function of pressure at typical magmatic 

conditions. Recovered glasses were checked by both optical and scanning electron 

microscopy to be crystal- and bubble-free.  

In the second type of experiments, 60-100 mg of pre-hydrated (3.2 wt% water) lamproitic 

glass were loaded with variable amounts of dolomite and calcite (Table 3) and equilibrated at 

1200°C and 3150 bar. Dolomite and calcite introduce calcium and magnesium to the system, 

in addition to CO2, and therefore modifies the composition of the melt (Table 3). Experiments 

lasted 3 hours, sufficient to ensure complete carbonate dissolution in the melt (confirmed by 

the homogeneous Ca, Mg and CO2 contents of the melts in Table 3). Sample #2TA3 contains 
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5% of olivine crystals whereas the other samples are crystal free. The aim of these 

experiments was to reveal the strong effect of melt composition on CO2 solubility. 

Major element compositions of the glasses was analysed with a Cameca SX-50 electron 

microprobe (EMP), using the following operating conditions: 15 kV accelerating voltage, 7 

nA beam current, 10 s counting time for all elements on each spot, and 10 µm spot size. 

Sodium was analysed first to limit any loss. 

H2O and CO2 concentrations in the quenched glasses were determined by transmission FTIR 

spectroscopy on doubly polished glass chips, using a Nicolet 760 Magna spectrometer 

equipped with an IR microscope and a MCT detector. Absorption spectra were acquired for 

each sample in the range 1000-6000 cm
-1 

with 128 scans and a resolution of 4 cm
-1

. A Globar 

light source and a KBr beamsplitter was used for the mid-infrared (MIR), while a tungsten 

white light source and a CaF2 beam-splitter for the near-infrared (NIR). For each sample 6 to 

15 spots were analyzed to verify the homogeneity of the H2O and CO2 contents in the glass 

(standard deviations in Table 2 and 3). In samples with water contents higher than 1.2 wt%, 

total water was determined as the sum of structurally bonded hydroxyl groups and molecular 

water concentrations, and therefore calculated using the Lambert-Beer law from the 

absorbances of the 4470 cm
-1

 and 5210 cm
-1

 bands, respectively. In water-poor samples (<1.2 

wt%), total water was calculated from the absorbance of the fundamental OH-stretching 

vibration at about 3530 cm
-1

. For the three peaks (4470, 5210 and 3530 cm
-1

),
 
the heights 

were determined using linear background corrections (as in Lesne et al., 2011a). We used the 

linear extinction coefficient in Fine and Stolper (1986), for the 3530 cm
-1 

band and those in 

Lesne et al. (2011a) for the 4470 cm
-1

 and 5210 cm
-1

 bands, which were calibrated for our 

alkali-basaltic composition. 

CO2 is dissolved in mafic melts as carbonate groups (CO3
2-

), which
 
have two asymmetric 

stretching vibrations with different frequency that give the characteristic “carbonate doublet” 
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(Blank and Brooker, 1994 and references therein). The difference in frequency (Δν3) is 

proportional to the distortion of the carbonate structure (i.e. the difference in environment 

among the carbonate oxygens, Brooker et al. 1999, 2001; Morizet et al., 2010). For our 

compositions, the peaks of the carbonate doublet are at about 1515 and 1430 cm
-1

. The major 

source of error in CO2 calculation is represented by the background correction to constrain 

peak heights of the CO3
2-

 doublet. For high CO2 contents, the carbonate peaks overlap, while 

for high water contents, the water peak at 1630 cm
-1

 (due to the 2 bending of H2O molecules, 

Ihinger et al. 1994) interferes with the higher wave number carbonate peak (Fig.1). Possible 

background corrections consist in the deconvolution of the three peaks (e.g. Jakobsson, 1997; 

Morizet et al., 2010), the use of French lines (e.g. King et al., 2002), or the subtraction of a 

volatile-free spectrum, which is the most employed technique (e.g. Fine and Stolper, 1986; 

Thibault and Holloway, 1994; Dixon and Pan, 1995; Jendrzejewski et al., 1997; Behrens et 

al., 2009). However, for H2O-bearing samples the inaccuracy in the estimation of the 1515 

cm
-1

 peak height is higher if the height of the peak at 1630 cm
-1

 is different between the 

sample and the subtracted spectrum (Fig.1). Extinction coefficients for the carbonate doublet 

were determined by several authors for various mafic compositions, i.e. basalt, Ca-rich 

leucitite, basanite, icelandite, andesite, phono-tephrite, shoshonite, generally in almost 

anhydrous samples (Fine and Stolper, 1986; Thibault and Holloway, 1994; Dixon and Pan, 

1995; Jendrzejewski et al., 1997; Jakobsson, 1997; King et al., 2002; Behrens et al., 2009; 

Vetere et al., 2011). We performed the background correction in the 1000-2000 cm
-1

 region 

by manually subtracting a CO2-free spectrum, with similar concentration of molecular H2O 

scaled to the same thickness of the sample (as in Fig. 1), in order to minimize the error in the 

height estimation of the peak at 1515 cm
-1

. We tested the influence of the extinction 

coefficient in the estimation of CO2 concentration, by using extinction coefficients available 

in the literature for both carbonate bands and different mafic compositions. CO2 contents in 
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lamproitic to kamafugitic samples were calculated using extinction coefficients calibrated in 

basaltic, Ca-rich leucititic, and phonotephritic compositions: 375 cm
-1

 (Fine and Stolper, 

1986), 355 cm
-1

 (Thibault and Holloway, 1994), 302 cm
-1

 (Behrens et al., 2009). The three 

different values are shown and compared in Table 3; the average value was used for data 

treatment. CO2 contents in alkali-basalt samples were calculated using extinction coefficients 

calibrated in basaltic, basanitic and shoshonitic compositions: 375 cm
-1

 (Fine and Stolper, 

1986), 398 cm
-1

 (Jendrzejewski et al., 1997), 281 and 284 cm
-1

  (Dixon and Pan, 1995) and 

355 cm
-1

 (Vetere et al., 2011).  Table 2 shows the average value and the standard deviation. 

Both for lamproitic-kamafugitic and alkali-basaltic compositions, observed variations are 

always within 20%. 

An equation linking the density of the glass to its total water content was used in the 

computation of the amount of dissolved water. For the Etna composition the equation was 

experimentally calibrated by Lesne (2008): density (g/cm
3
) = -0.0185 × wt% H2O + 2.708. 

For the lamproitic to kamafugitic compositions we adopted the same equation as it reasonably 

agrees with density measurements on K-rich melts (Behrens et al., 2009). The thickness of the 

doubly polished glass sections was measured with a Mitutoyo digital micrometer (accuracy 

±1 µm) and crosschecked with the microscope gear for every single measurement. 

Partial pressures of H2O and CO2 were calculated from total pressures and dissolved water 

contents: H2O pressure was initially calculated from the amount of H2O dissolved in the melt, 

using the solubility law determined for pure water (Lesne et al., 2011a); then CO2 pressure 

was obtained by subtracting H2O pressure from total pressure. We estimate the error 

associated with this calculation to be less than 15%, the main contribution being the fit of the 

H2O solubility data. The mole fraction of CO2 in the fluid phase (in Table 2) was calculated as 

the ratio of total pressure and partial pressure of CO2. We tested that the use of this method, in 
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place of mass balance calculations or the weight-loss method (Shishkina et al. 2010) strongly 

reduces the scatter in the experimental data.  

 

2.2. Results and comparison with existing data 

Experimental results are listed in Table 2 for alkali-basaltic glasses and in Table 3 for 

lamproitic ones. All experimental glasses present homogeneous H2O and CO2 contents 

(Tables 2 and 3).  

 

2.2.1. Etna composition  

The data obtained using the Etna composition show that CO2 solubility generally increases 

with CO2 partial pressure (Fig.2a) consistent with previous investigations (e.g. Stolper and 

Holloway, 1988; Thibault and Holloway, 1994; Jendrzejewski et al., 1997; Morizet et al., 

2002; Botcharnikov et al. 2006; Lesne et al., 2011b). Figures 2a and 2b also show the recently 

published data (Lesne et al., 2011a, b) for the same alkali-basaltic composition, our data 

extending the experimental conditions to higher pressure. This melt composition, although 

alkali-rich, is not far from those used for the calibration of existing models (Dixon, 1997; 

Newman and Lowenstern, 2002; Papale et al., 2006). When plotted in a PCO2 vs. dissolved 

CO2 plot (Fig. 2a) both our data and those of Lesne et al. (2011b) show a linear trend with a 

nearly 1:1 slope. Solubilities predicted by VolatileCalc (Newman and Lowenstern, 2002) and 

the model of Papale et al. (2006) at 1200°C are also shown (Fig. 2a). In the first case, a 

solubility curve was calculated for 47.95 wt% SiO2 at 1200°C. In the second case, calculations 

have been performed on the website http://ctserver.ofm-research.org using (i) the Etna 

composition with Fe
3+

/Fetot= 0.15 (in order to broadly reproduce the redox conditions during 

the experiments), (ii) experimental pressures and temperature, and (iii) calculated CO2 molar 

fractions in the fluid (Table 2). VolatileCalc underestimates CO2 solubility by ~45%. Values 
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calculated using Papale et al. (2006) are in a good agreement with the experimental data, 

within the analytical error.  

Fig. 2b shows our data for H2O in a PH2O vs. dissolved wt% H2O plot, compared to those of 

Lesne et al. (2011a) and calculations using the models of Papale et al. (2006) and 

VolatileCalc at 1200°C. Although water was not loaded in some samples (those in which CO2 

was introduced as Ag2CO3), it was measured in the resulting glasses (Table 2 and Fig.2b), 

probably due to 1) the presence of H2O as an impurity in the gas pressure medium (Behrens, 

2010), or 2) the presence of H2 in the autoclaves, which reduces the ferric iron of the sample 

to ferrous iron and/or reduces ferrous iron to metal (iron loss in the capsule), thus generating 

H2O (Gaillard et al., 2003). Despite this addition, water distribution in these samples is 

homogeneous, testifying that equilibrium conditions were reached during the experiments. 

Moreover, all our data are well aligned and consistent with CO2-free data of Lesne et al. 

(2011a). Calculated solubility using VolatileCalc computed for 47.9 wt% SiO2 is in good 

agreement with experimental data, while the model of Papale et al. (2006) (for Etna 

composition with Fe2O3= 15% of total FeO) slightly overestimates experimental data at 

pressures higher than 500 bar.   

When transposing in terms of total pressure (i.e. PCO2+PH2O), VolatileCalc significantly 

overestimates total pressures for given amounts of dissolved CO2 and H2O (Fig.2c), e.g. when 

the experimental pressure is ~2000 bar, VolatileCalc calculates ~3000 bar for the same 

amount of H2O and CO2. The model of Papale et al. (2006) also overestimates, but to a lesser 

extent, total pressures up to 4000 bar (Fig. 2c).  

 

2.2.2. Torre Alfina composition  

CO2 solubility data obtained at a single total pressure (3510 bar) with moderate variations of 

CO2 fraction in the gas (75 to 96 %) are shown in Figure 3. Given that changes in the melt 
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composition are essentially due to CaO and MgO addition, due to the use of Ca-Mg 

carbonates as the source of CO2, we represent the data as dissolved CO2 content vs. CaO or 

MgO in the melt (Fig. 3a and b, respectively). Experimental data for shoshonitic to Ca-rich 

shoshonitic compositions (Iacono-Marziano et al., 2008), obtained using a similar protocol 

(CO2 added as Ca-carbonates), are also shown. Both trends suggest a strong control of the 

melt CaO content on CO2 solubility (Fig.3a) in potassic melts (this study), as in more sodic 

ones (Iacono-Marziano et al., 2008). This effect has already been observed in calcic to calc-

alkaline basalt compositions (Moore, 2008), the experimental data being also shown in Figure 

3a. Melt compositions from the present study are substantially richer in alkalis than those 

from Iacono-Marziano et al. (2008), i.e. 7.6-9.1 wt% versus 4.0-4.6 wt% Na2O+K2O, most 

likely justifying the shift in CO2 solubility shown in Figure 3a. Major element compositions 

are not indicated in Moore (2008). Our samples show an increase in CO2 content from 3000 

to 9000 ppm, with CaO contents increasing from 8 to 16 wt% (accompanied by a moderate 

increase in PCO2: 2630 to 3370 bar). Solubilities calculated using the model of Papale et al. 

(2006) are also shown in Figure 3a: while the data of Iacono-Marziano et al. (2008) are 

relatively well predicted (within 20%), our data for potassic compositions are underestimated 

by more than 50%. Therefore, although the model of Papale et al (2006) predicts a strong 

effect of CaO content on CO2 solubility (as also proposed by Dixon, 1997 and Lesne et al., 

2011b), our experimental data reveal that the magnitude of this effect needs to be recalibrated.  

The effect of MgO contents of the melt is less clear (Fig. 3b), CO2 solubility correlating 

positively with MgO in potassic melts (this study) and negatively in more sodic ones (Iacono-

Marziano et al., 2008). The control of the melt alkali content on CO2 solubility is difficult to 

verify by using these data, because variations in Na2O and K2O are very limited when 

compared to the variations in the CaO content.  
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We finally show how CO2 solubility correlates with two structural parameters: 1) the agpaitic 

index, i.e. Al2O3/(CaO+K2O+Na2O), which has a strong effect on melt physical and structural 

properties (Mysen and Toplis, 2007) and 2) the NBO/O (non-bridging oxygen per oxygen), 

calculated on an anhydrous basis (see the Appendix). Both the agpaitic index and the NBO/O 

seem to be strongly correlated to CO2 solubility, the former showing an inverse, while the 

latter a positive correlation with the amounts of CO2 in the glasses (Fig. 3c and d).  

 

3. MODEL 

3.1. Database and global chemical trends 

The database of H2O-CO2 solubility experiments is summarized in Table 4. We selected only 

experiments with mafic compositions, in which H2O and CO2 solubilities were 

simultaneously determined in order to model CO2 solubility (182 experiments). In all 

experiments, except for those of Morizet et al. (2010), the mafic melts were equilibrated with 

H2O-CO2 fluids, in the absence of reduced species (e.g. CO, CH4, H2). In all selected 

experiments CO2 is dissolved in the melt in the form of carbonates (CO3
2-

), as generally 

observed in mafic compositions. For H2O solubility, we considered both pure H2O solubility 

experiments (107 experiments) plus the H2O-CO2 experiments already taken into account in 

the CO2 solubility model. Most of the experiments considered have been performed using 

internally heated pressure vessels (except those in Jakobsson, 1997 and Metrich and 

Rutherford 1998), which reduces database inconsistencies due to the use of different 

experimental setups. We restricted the pressure range to 1-10000 bar (1.0 GPa) for several 

reasons: i) these pressures are the most interesting for volcanological purposes, ii) 

experimental data at higher pressure are less numerous and most of them are not accompanied 

by required information about H2O and CO2 activities (Pan et al. 1991; Brooker et al., 2001a; 
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Thibault and Holloway 1994), iii) we consider that above 10000 bar the fluid phase might not 

be considered as a mixture of perfect gases.  

We selected only multi-component compositions, because we believe that mixing effects that 

could affect CO2 solubility in simple systems would not necessarily operate in more complex 

systems with the same magnitude. Furthermore, although changes in composition in the 

selected database are important, they remain small in comparison to chemical changes that 

would be introduced by simplified synthetic systems (e.g. Al-free, alkali-free) and that would 

excessively influence the regression process.  

Figure 4a shows dissolved CO2 contents vs. CO2 pressure for each experimental work in 

Table 4. If not directly specified by the authors, CO2 pressure was calculated from the total 

pressure and mole fraction of CO2 in the fluid phase. In general, every given composition 

shows a nearly linear trend, whose slope strongly varies with the chemical composition of the 

melt. For clarity, Figures 4b presents a selection of data that well illustrates how the trends 

vary for different melt compositions at low pressures (<2500 bar). In general, mid ocean ridge 

basalts (MORB) show the lowest CO2 solubilities, while foiditic and tephritic melts display 

the highest ones. Calculated CO2 solubilities at 1200°C using the VolatileCalc model are also 

shown in Figure 4 (a, b) for melt SiO2 contents of 45, 47 and 49 wt%: they show that 

variations in melt silica content only do not satisfactorily explain the differences shown by 

experimental data (Table 4). For instance, the SiO2 content of a MORB (~50-51 wt%) is only  

slightly higher than that of a foidite (49.89 wt%, Berhens et al., 2009), the highest CO2 

solubility in foiditic melts being most likely accounted for by their elevated K, Na, Ca 

contents.  

The clearest deviations from linear trends in Fig.4a (excluding the melts in Iacono-Marziano 

et al. 2008 that have variable compositions) are represented by experimental data obtained at 

high H2O contents (Fig.4c) and variable CO2 activities (Jakobsson 1997; Botcharnikov et al. 
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2006; Behrens et al. 2009; Shishkina et al. 2010). This could reflect the effect of water on 

CO2 solubility, as already proposed by Mysen et al. (1975) and more recently by Behrens et 

al. (2009). When selecting the datasets with the largest ranges of dissolved water contents 

(Jakobsson, 1997; Behrens et al., 2009; Shishkina et al., 2010), a plot of the ratio of dissolved 

CO2 to CO2 partial pressure as a function of the bulk water content of the melt is consistent 

with an increase in CO2 solubility with increasing water content in the melt (Fig.5). Although 

the H2O-CO2 trends are shifted most likely due to the differences in melt composition (e.g. 

the total alkali content strongly decreases from the foiditic melt to the basaltic one) the three 

datasets show that the dissolution of 7-9 wt% H2O enhances CO2 solubility by a factor of 2-3. 

These trends may be partly explained by an overestimation of CO3
2-

 contents in FTIR 

analyses of water-rich samples, due to the effect of the 1630 cm
-1

 band on the heights of the 

carbonate peaks (the high frequency one in particular, see Fig. 1). However, the importance of 

this effect should be very limited for the three studies (Jakobsson, 1997; Behrens et al., 2009; 

Shishkina et al. 2010), because the authors quantified CO3
2-

 contents using the height of the 

low frequency peak of the doublet and calibrating its extinction coefficient. The trends in 

Figure 5 cannot be explained by non-ideal mixing of H2O and CO2 in the fluid phase, because 

the Modified Redlich and Kwong models (Kerrick and Jacobs, 1981) predict a decreasing 

CO2 fugacity coefficient with increasing H2O fraction in the fluid, which should result in a 

decrease in melt CO2 solubility (i.e. decrease of the ratio of dissolved carbonate in the melt to 

CO2 partial pressure in the fluid) with increasing water content. This is in total disagreement 

with experimental observations.  

In order to appreciate the variation of CO2 solubility with CO2 partial pressure, independently 

of the effect of H2O, data with similar amounts of dissolved water and variable CO2 contents 

have been selected. Figure 6a shows that for a given H2O content, CO2 solubility in three 

substantially different compositions has a clear linear relationship with CO2 partial pressure, 
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up to 5000 bar total pressure. Over a similar pressure range, on the contrary, CO2 fugacity (at 

1200°C) is calculated to exponentially increase with pressure (Fig. 6a). The different trends of 

CO2 solubility are most likely due to increasing total alkali content from the MORB 

composition to the foiditic one and to the different water contents of the three datasets. 

Moreover, Figure 6b illustrates how, for a given melt composition, i.e. MORB (data from 

Shishkina et al., 2010), CO2 solubility increases with increasing H2O dissolved in the melt.  

Figure 4c shows dissolved H2O contents vs. H2O pressure for each experimental work in 

Table 4. As in Figure 4a, H2O solubilities calculated at 1200°C for melt SiO2 contents of 45, 

47, 49 wt% using VolatileCalc are also shown. Experimental data for H2O (Fig.4b) show a 

more limited scatter than those for CO2 (Fig.4a). Calculated H2O solubilities (using 

VolatileCalc)  also show more limited variations with the SiO2 content of the melt than CO2 

ones. Therefore, it seems difficult to assess any chemical control on water solubility in mafic 

melts, as underlined by earlier works (Moore et al., 1998; Lesne et al., 2011a). 

 

3.2. Structural and thermodynamic background and operated simplifications 

3.2.1. CO2 solubility 

In andesitic to ultramafic melt compositions, CO2 is soluble as carbonate groups (Fine and 

Stolper, 1986) after the reaction with oxygen anions: 

CO2
(fluid)

 + O
2- (melt)

 => CO3
2- (melt)

             (1) 

The Mass Action Law allows us to write the thermodynamic constant Kc of eq. (1) as: 
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where a is the component activity, f its fugacity, X its molar fraction and  its activity 

coefficient. The thermodynamic constant Kc can be expressed as a function of pressure (P), 

and temperature (T) as: 
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G°, H°, S° and V° respectively refer to the Gibbs free energy, enthalpy, entropy and 

volume changes of equilibrium (1) calculated considering components in their standard states 

at P and T of interest. R is the gas constant. Combination of (2) and (3) yields: 
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The formalism that we adopt is an empirical equation inspired by eq. (4), to which we apply 

several important simplifications. The fraction of carbonate  2
3CO

X  is rescaled to its 

concentration in ppm  ppm

CO
2

3 , which is a convenient unit to compare with solubility 

measurements (as frequently done for models of volatile solubility, i.e. sulphur solubility see 

O’Neill and Mavrogenes, 2002). Moreover, we assume that the activity coefficient for 

dissolved carbonate groups  2
3CO

  is a linear function of chemical–structural parameters 

and we introduce an empirical expression of the dependence of carbonate group activity 

coefficients to the melt chemical compositions as: 

  2
3CO

Ln   = 
i

ii dx
1

          (5) 

where the di terms express the chemical control of selected oxides or ratio of oxides (xi) on 

CO2 solubility. This sort of simplification has also been used for sulphur solubility in silicate 

melts (Wallace and Carmichael, 1992). We stress that in conventional Margules mixing 

formalisms, the activity coefficient is also expressed as an exponential function of the 

component molar fractions. 

We also assume that: 
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where NBO/O, non-bridging oxygen divided by oxygen, is considered here as a measure of 

the activity of oxygen anions: it expresses the availability of oxygen in the melt to form 

carbonate groups. In choosing this parameter we took into account that CO2 solubility is 

recognised to be a strong function of NBO by spectroscopic and theoretical investigations 

(Brooker et al., 2001a,b; Guillot and Sator, 2011). Assessing the effect of H2O on the 

concentration of NBO in mafic magmas is rather difficult, as no systematic quantitative 

studies have been conducted on complex depolymerised melts. We therefore tested two 

opposite scenarios, by calculating NBO/O on both anhydrous (according to Marrocchi and 

Toplis, 2005) and hydrous basis (see the Appendix for the details of the calculation). In the 

latter case, we made the assumption that the formation of NBO is induced by the dissolution 

of OH groups into the melt (Zotov and Keppler, 1998; Xue and Kanzaki, 2004). Xue and 

Kanzaki (2004) suggest that only 60% of the OH dissolved in CaO-MgO-SiO2 without Al 

contributes to NBO formation. However, in the absence of systematic studies of NBO 

creation due to water dissolution in different melt compositions, we preferred to test the most 

extreme case in which all the OH groups produce NBO.  

Finally, by assuming that the enthalpy, entropy and volume terms of equilibrium (1) are not 

varying significantly with intensive P and T, we propose the following expression: 
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where the terms a, b, A, B and C are adjusted parameters, together with the di terms.  

In the chemical contribution to the activity coefficient of CO3
2-

 (eq.5), we have tested the 

effects of 8 major melt oxides, i.e. SiO2, Al2O3, FeO, MgO, CaO, Na2O, K2O, H2O, and of the 

agpaitic index that expresses CO3
2-

 affinity for different cations and the charge balancing or 

network modifying effect of cations.  
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Adjusting the effect of water on CO2 solubility is difficult because, from a statistical point of 

view, both parameters do not vary independently in the considered database (i.e. in most 

experiments considered, XCO2 is estimated using the relationship PCO2+PH2O=Ptotal) and 

because mixing properties in the H2O-CO2 fluid, which are ignored here, may well affect the 

solubility of H2O-CO2 in melt without requiring any interaction between dissolved water and 

dissolved CO2. But we recall that fluid mixing properties as calculated using available 

equations cannot explain the effect of increasing water content on CO2 solubility (Fig. 5). In 

equation (7), we therefore introduced a parameter (dH2O) that accounts for the effect of water. 

We used CO2 partial pressure (PCO2) rather than fugacity (fCO2); this is a convenient 

simplification that i) is justified by experimental data showing linear correlation between CO2 

solubility and CO2 partial pressure (Figs 2a and 6) and ii) does not weaken the model results 

since we tested that the use of CO2 fugacity instead of CO2 partial pressure does not yield a 

better fit than CO2 pressure. Furthermore, the value of the parameter a, which expresses the 

deviation of the CO2 activity or fugacity in the gas with respect to PCO2, is shown later 

(section 3.3) to justify this simplification.  

The term b defines how CO2 solubility depends on NBO/O. A, B, C represent respectively the 

enthalpy, entropy and volume changes of expressed in eq (4): 
R

V

R

S

R

H 
,,  expressed in 

J/ppm CO3
2-

. The signs of these three parameters are set positive, and after the fitting, they 

come out positive or negative depending on how the adjusted parameters correlate with CO2 

solubility. 

 

3.2.2. H2O solubility 

Regarding water solubility in mafic melts, the general solubilisation reactions are written as 

follows (Stolper, 1982): 

H2O
 (fluid) 

 => H2O
 (melt)                                          

                                                                              (8) 
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H2O
 (melt)

 + O
2- (melt)

 => 2 OH
- (melt)

             (9) 

The stochiometry of reaction (8) implies that water solubility is a square root function of 

water fugacity:  
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By using the same empirical formalism as eq.s (5-7), we consider: 
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3.3. Model calibration 

The best fits for CO2 and H2O using eq. (7) and (11), respectively, are obtained using the 

parameters listed in Tables 5 and 6, which were adjusted using classical linear fitting 

procedures, which minimize residuals between measured and calculated solubilities using 

equation (7) and (11). All parameters of eq. (7) and (11) are simultaneously solved. The 

regression parameters were retained or removed, on the basis of the relative uncertainty 

ascribed by the fitting routine and their ability to significantly improve the fit (more than 10% 

on the residue). In our database NBO/O varies between 0.15 (the latite of Di Matteo et al., 

2006) and 0.45 (sample TA3 in this study), on an anhydrous basis, and between 0.18 (the 

andesite of Moore et al., 1995) and 0.64 (the foidite in Behrens et al., 2009), on a hydrous 

basis. In both cases, NBO/O is the chief factor in controlling CO2 solubility, the type of the 

modifier cation bonded to NBO also having a crucial role (see section 3.6). As explained in 

section 3.2, we tested two different versions of our model, the former employing NBO 

calculated on an anhydrous basis and the latter using NBO calculated on a hydrous basis: 

adjusted parameters were calibrated for both scenarios and are reported in Tables 5 and 6.  

Adjusted parameters to calculate CO2 solubility differ only modestly between the two 

formalisms, the most critically affected being the coefficient expressing CO2 solubility 
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dependence on water content (Table 5). With NBO calculated on a dry basis, dH2O is positive 

indicating that water incorporation increases CO2 solubility. When NBO is calculated on a 

hydrous basis, the negative dH2O does not imply that water decreases CO2 solubility. In fact 

for this model, water incorporation increases NBO/O which then translates into an increase in 

CO2 solubility. The impact of water on NBO/O dominates over the negative coefficient dH2O, 

similarly to Fe and Mg (see section 3.6). Later in this section we show how the version of the 

model that employs NBO calculated on a hydrous basis gives more relevant results for CO2-

poor, H2O-rich melts. 

We tested the relevance of di terms for SiO2, Al2O3 and CaO but none of these improve the fit 

and they were therefore removed. Indeed the effect of calcium and aluminium oxides is much 

better fitted when treated as agpaitic index (i.e. Al/(Ca+K+Na)) rather than using Al2O3 and 

CaO as independent parameters. The effects of K2O and Na2O were found to be identical 

within their uncertainties: we therefore merged them into one parameter (dK2O+Na2O). 

Similarly, MgO and FeO have comparable effects on CO2 solubility, which is accounted for 

by a single parameter (dMgO+FeO).  

The parameter a was introduced to account for possible deviation from ideal behaviour of the 

CO2-H2O gas mixture that would impact on CO2 solubility: its fitted value is 1.00±0.03 for 

both versions of the model (Table 5), clearly indicates that using PCO2 instead of fCO2 is a 

useful and justified simplification.  

The parameter A in equation (7) was eliminated because the fitted value was close to zero and 

its associated error was larger than the parameter itself. This is probably due to the relatively 

small temperature range of the experimental database (1100-1400°C), and may also imply a 

limited temperature effect on CO2 solubility in mafic melts as revealed by Pan et al. (1991) 

and discussed by Guillot and Sator (2011) based on theoretical grounds. Our model still 
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predicts a weak inverse temperature dependence of CO2 solubility, due to the term C × P/T in 

equation (7).  

The correlation among model parameters for CO2 solubility is shown in Table 7. Several 

parameters are correlated, mainly because the mole fractions of oxide components used in the 

compositionally dependent activity coefficient terms (eq.5) are also employed to calculate 

NBO/O and the agpaitic index (AI). In particular, NBO/O and AI are highly correlated, we 

however selected both parameters because (i) their structural meaning is different, as specified 

above, and (ii) they both strongly improve fitting results.  

For water solubility, it appears that the di terms that were used for CO2 are unjustified from a 

statistical point of view: H2O solubility seems poorly sensitive to the melt chemical 

compositions as found in earlier studies (Moore et al., 1998; Lesne et al., 2011a). We 

therefore adopted the simplest formulation possible by ignoring any chemical control on 

water solubility. Like for CO2, fugacity does not improve the fitting with respect to pressure: 

a value of a  0.5 (Table 6) reflects the classical observation of a square root relationship 

between water solubility and water activity (see Burnham and Davies, 1971 or more recently 

Shishkina et al., 2010). Similarly to CO2, the parameter A in equation (11) was eliminated 

because the fitted value was close to zero and its associated error was larger than the 

parameter itself. Only NBO/O has been considered in addition to a constant and a P/T term. 

The parameters determined using NBO calculated on both a hydrous and an anhydrous basis 

are in Table 6. The differences between the two versions of the model are small both for CO2 

and H2O, however when NBO/O is calculated on a hydrous basis the fit of experimental data 

is slightly improved: R
2
 of the regression is 0.98 for CO2 and 0.91 for H2O and the average 

error is 13% for CO2 and 17% for H2O (the version employing NBO/O calculated on an 

anhydrous basis has R
2
= 0.98 for CO2 and 0.85 for H2O and average error =14% for CO2 and 

21% for H2O).   
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We tested the two versions (employing NBO calculated on a hydrous and on an anhydrous 

basis) of our model for CO2 (equation 7) on H2O-CO2 solubility in the Etna alkali-basaltic 

melt (Table1). Figure 7a shows the different shapes of H2O-CO2 isobaric curves between 500 

and 4000 bar calculated using the two sets of parameters in Table 5. Larger differences are 

observed for H2O contents higher than 4 wt%, due to the lack of experimental data. However, 

pure H2O data that were not used for the calibration of the CO2 model strongly suggest that 

the use of NBO, when calculated on a hydrous basis, allows to better estimate CO2 solubility 

at high H2O contents. We will therefore use this version of the model for the following 

discussions. 

When compared with VolatileCalc and the model of Papale et al. (2006) for the Etna 

composition at 1200°C (Fig.7b), our model shows several significant differences. Substantial 

divergence exists between our model and VolatileCalc at pressures ≥ 2000 bar, for instance, 

for similar H2O-CO2 contents (between 2 wt% H2O- 3000 ppm CO2 and 7 wt% H2O-0 ppm 

CO2), our model predicts 3000 bar of total pressure while VolatileCalc 4000 bar. The 

divergences with the model of Papale et al. (2006) are also important for water content in the 

range 0-6 wt% and for total pressure equivalent or higher than 3000 bar. These variations 

between models are crucial when interpreting H2O-CO2 contents in melt inclusions in terms 

of entrapment depths. In case of Mt. Etna, for example, Spillaert et al. (2006) reported a group 

of primitive melt inclusions with H2O and CO2 content of 3-3.5 wt% and 2000-3500 ppm, 

respectively. Such volatile contents define a field (grey box in Fig. 7b) where the 

discrepancies among models are the highest. The main source of discrepancy between our 

model and the others is the treatment of the effect of water on CO2 solubility. The positive 

effect of H2O on CO2 solubility that we consider results in the bell-shape relationship shown 

in Figure 7, whose curvature increases with pressure. However, experimental data are rare for 



 26 

high water contents at pressure exceeding 5000 bar and do not allow us to robustly calibrate 

this effect at high pressure. 

 

3.4. Model results 

The final model equations for CO2 and H2O solubility resulting after operated simplifications 

are therefore: 
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where dH2O, dAI (with AI=Al2O3/(CaO+K2O+Na2O)), dFeO+MgO, dNa2O+K2O, aCO2, bCO2, BCO2, 

CCO2 are the adjusted parameters listed in Table 5. aH2O, bH2O, BH2O, CH2O are the parameter 

listed in Table 6. xH2O is the molar fraction of water in the melt, xAI is the agpaitic index 

calculated as the ratio of the molar fraction of Al2O3 and the sum of the molar factions of 

CaO, K2O and Na2O in the melt, xFeO+MgO, xNa2O+K2O are the sum of the molar fractions of FeO 

and MgO and of Na2O and K2O in the melt, respectively. P is the total pressure in bar and T is 

the temperature in K. PCO2 and PH2O are the partial pressures in bar of CO2 and H2O, 

respectively. 

Figure 8 (a, b, c) shows CO2 and H2O solubilities calculated using our model employing NBO 

calculated on a hydrous basis vs. measured solubilities from the database in Table 4. For CO2 

(Fig 8a,b), the regression coefficient is 0.98 and we calculate an average error of 13% (see the 

Appendix). The fitting for water solubility is of lower quality than that for CO2 (Fig. 8c), i.e. 

the regression coefficient is 0.91 and we calculated an average error of 17% (see the 

Appendix).  
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A web application of the model is available at the following address: 

https://www.calcul.isto.cnrs-orleans.fr/apps/h2o-co2-systems/. An obvious “mathematical” 

limitation of the model is that it cannot calculate for PCO2=0, PH2O=0, CO2=0 and H2O=0, due 

to the occurrence of the terms Ln[PCO2], Ln[PH2O], Ln[CO3
2-

], and Ln[H2O] in equations (12) 

and (13). The web application therefore considers that CO2 and H2O solubilities are zero for 

PCO2 and PH2O =0, respectively, and that PCO2 and PH2O =0, for [CO3
2-

]
ppm

 and [H2O]
wt%

 =0, 

respectively. 

 

3.5. Model limitations 

In this paragraph, we analyse the 5 weakest points of our modelling, which, in fact, derive 

from the limitations of the existing experimental database. 1) The effect of MgO and FeO on 

CO2 solubility is still poorly experimentally constrained: most of the data present limited 

variations in these two oxides and in particular in MgO (mainly between 6 and 8 wt%); 

moreover, data for ultramafic compositions are missing. 2) The effect of K2O replacement by 

Na2O on CO2 solubility is also poorly constrained: several systematic studies exist at variable 

pressure for K2O-rich melts (Behrens et al. 2009; Lesne et al, 2011b; this study), but not for 

Na-rich melts (only Jackobsson, 1997 at 1GPa). 3) The temperature effect on H2O-CO2 

solubility has not been evaluated, because the variations in experimental temperatures are 

very limited: most of the data have been produced between 1200 and 1300°C, the whole 

temperature range varying between 1100 and 1400°C. 4) The possible contrasting roles of 

molecular H2O and hydroxyl on melt structure (the number of NBO in particular), and the 

associated consequences for CO2 solubility (i.e. how these hydrous species are distributed 

relatively to carbonate groups) needs to be further investigated by dedicated experimental 

studies. 5) We ignored in our treatment the possibility that ferrous and ferric iron may have 

different effects on CO2 solubility; all iron is treated as ferrous iron and we obtained a 
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regressed parameter for FeO that is similar to the one for MgO. In the mixing formalism used 

in Papale et al (2006), FeO and Fe2O3 melt oxides have drastically differing effects on CO2 

solubility. Iron is recognised to exhibit different structural behaviour as a function of its 

oxidation state. Brooker et al. (2001b) showed that CO3
2-

 environments have a changing 

configuration when Fe is switched between 3+ and 2+. Hence, we may expect CO2 solubility 

changes accompanying the structural configuration changes. This interesting possibility 

requires specific experimental studies but we consider that at this stage, experimental and 

theoretical constraints are too weak to allow our model to ascribe different effects to 

differences in the valence state of iron. 

 

3.6. The effect of melt structure on CO2 solubility 

In this last part, we clarify the crucial role of melt structure and chemistry on CO2 solubility. 

Figure 9 discriminates the effect on CO2 solubility, as predicted by our model, of NBO 

species that are bonded to different types of cations: the calculated solubility of CO2 at 2000 

bar is shown for a MOR-basalt, to which different modifier cations (Na+K, Ca, Mg+Fe) are 

added in variable amounts. Adding modifier cations results in an increase in NBO/O (with 

NBO calculated on a hydrous basis) and therefore in an increase in CO2 solubility, but the 

intensity of the effect depends on the type of cation that is added (Fig.9). Addition of Mg+Fe 

has less effect on CO2 solubility. Despite the negative dMgO+FeO in eq. (6) (Table 5), addition 

of these cations to basalt slightly increases CO2 solubility, because their impact on NBO/O 

dominates over their negative coefficient (dMgO+FeO). At the Mg+Fe enrichment level 

comparable to that of Komatiite compositions or primitive Martian basalts, CO2 solubility is 

calculated to be three times higher than that of a MORB. Calcium addition increases more 

CO2 solubility than Mg+Fe. Its effect in our eq. (12) is accounted for by the NBO/O terms 

and the agpaitic index, Al2O3 / (CaO+Na2O+K2O). Alkalis have the strongest effect on CO2 
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solubility: an increase in the alkali content similar to that occurring from a MORB to a foidite 

enhances CO2 solubility by a factor of 7.  

In a recent paper, Guillot and Sator (2011) investigated the structure and energetic properties 

of CO2 incorporation in basalts at high pressure using molecular dynamics simulations. Their 

theoretical approach is broadly consistent with our conclusion based on empirical fitting in a 

melt structure framework. We nevertheless note that the order of preferential cation-NBO-

CO3
2-

 association slightly differs from ours, but Guillot and Sator (2011) did not 

systematically investigate the effect of variable chemical composition as we did here and their 

conclusions are based on simulations performed at high pressure (>>1.0 GPa), which makes 

thorough comparisons difficult. 

 

4. Conclusions 

In this paper, we report new H2O-CO2 solubility in mafic melts data that essentially highlight 

the role of melt composition and structure on CO2 solubility. These new experimental points 

show that K-rich and Ca-rich melts have high CO2 solubility that existing models cannot 

quantitatively reproduce. In contrast, water solubility is reasonably well accounted for by 

existing models, whatever the melt composition. We propose a semi empirical model 

accounting for changes in melt chemical composition on CO2 solubility by employing melt 

structural units. Solubility of CO2 is strongly enhanced by increasing NBO species and this 

effect increases in efficiency when Fe+Mg-NBO, Ca-NBO, alkali-NBO pairs occur (in this 

respective order). Water also appears to enhance CO2 solubility, especially at high water 

contents. 

A web application of the presented model is available at the following address: 

https://www.calcul.isto.cnrs-orleans.fr/apps/h2o-co2-systems/. 
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APPENDIX  

Calculation of NBO  

On an anhydrous basis (following Marrocchi and Toplis, 2005):  

NBO = 2 × (XK2O + XNa2O + XCaO+ XMgO + XFeO –XAl2O3) 

NBO/O = NBO / ( 2× XSiO2 + 2× XTiO2 + 3 × XAl2O3 + XMgO + XFeO + XCaO + XNa2O + XK2O)   

On a hydrous basis: 

NBO = 2 × (XH2O+XK2O + XNa2O + XCaO+ XMgO + XFeO –XAl2O3) 

NBO/O = NBO / ( 2× XSiO2 + 2× XTiO2 + 3 × XAl2O3 + XMgO + XFeO + XCaO + XNa2O + XK2O + 

XH2O)   

Where X is the mol fraction of the different oxides. We considered that all iron is in ferrous 

form in absence of robust information from the literature database on oxygen fugacity and 

ferric-ferrous ratios for gas-melt equilibria of Table 4.  

 

Model error: 

The model error (13% for CO2 and % 17% for H2O) is the average of the error of each data 

point calculated as:  

100*measured solubility-calculated solubility /measured solubility 
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Figure A1 shows the frequency distribution of the normalized error (difference between 

experimental and calculated value, normalized to calculated) for both CO2 and H2O models. 

Figure A2 shows how the values of the calibrated parameters for CO2 vary if a portion of the 

database is considered for the model calibration, instead of the entire one (i.e. 182 

experiments). The model is still stable (i.e. the variations in the calibrated parameters and in 

the total error are <15%) for half of the data (selected randomly).  
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Table 1. Composition of the starting glasses 
Sample 

 

Etna 
c 

 

Torre 

Alfina 

SiO2
a 

47.95 (82) 55.65 (47) 

TiO2
 a

 1.67 (11) 1.34 (9) 

Al2O3
 a

 17.32 (27) 13.03 (25) 

FeO*
 a

 10.24 (125) 5.82 (36) 

MgO
 a

 5.76 (28) 9.41 (29) 

CaO
 a

 10.93 (37) 5.44 (36) 

Na2O
 a

 3.45 (16) 0.96 (10) 

K2O
 a

 1.99 (10) 7.67 (23) 

P2O5
 a

 0.51 (12) 0.51 (7) 

TOTAL
 a

 99.82 (93) 97.15 (88) 

H2O wt%
b
 0.010 (1) 3.21 (23) 

CO2 ppm bdl bdl 
 

a
 analysed by EMP 

b
 analysed by FTIR spectroscopy 

c 
from Lesne et al. 2011b 

bdl: below detection limit 
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Table 2. Experimental conditions and results of experiments with Mt.Etna basalt 
 

P tot (bar) 485 485 485 485 1015 1015 1015 1017 1017 1530 1530 1530 1530 

Duration (h) 70 70 70 70 50 50 50 26 26 56 56 56 56 

H2O added wt% - 2.32 3.77 3.63 - 2.99 4.85 - 2.87 - 3.22 5.44 5.50 

CO2 added wt% 1.82 2.45 - - 1.04 3.59 - 2.1 2.92 1.75 2.93 - - 

CO2 source Ag2CO3 DOA - - Ag2CO3 DOA - Ag2CO3 DOA Ag2CO3 DOA - - 

X CO2 gas  0.68 0.56 - - 0.84 0.49 - 0.88 0.51 0.81 0.43 - - 

P CO2 330 271 - - 851 501 - 898 516 1244 658 - - 

st dev P CO2 50 41 - - 128 75 - 135 77 187 99 - - 

wt% H2O glass 0.95 1.18 2.22 2.02 0.99 2.12 3.48 0.80 2.08 1.43 3.01 4.46 4.87 

st dev H2O 0.05 0.07 0.09 0.11 0.06 0.17 0.22 0.05 0.08 0.07 0.26 0.37 0.35 

ppm CO2 glass 306 191 - - 843 548 - 808 534 1278 1035 - - 

st dev CO2 43 27 - - 118 82 - 121 75 179 145 - - 

 
P tot (bar) 2047 2047 2055 2055 2135 2135 2754 3080 3080 4185 4185 4185 4185 

Duration (h) 44 44 22 22 66 66 71 76 76 18 18 18 18 

H2O added wt% - 3.73 - 3.59 4.25 7.21 - - 3.86 - - 3.82 2.43 

CO2 added wt% 1.00 3.89 1.03 3.74 3.86 - 3.08 1.86 2.08 0.67 0.92 6.22 1.74 

CO2 source Ag2CO3 DOA Ag2CO3 DOA DOA - Ag2CO3 Ag2CO3 DOA Ag2CO3 Ag2C2O3 DOA DOA 

X CO2 gas  0.90 0.61 0.93 0.48 0.65 - 0.87 0.94 0.64 0.94 0.93 0.76 0.87 

P CO2 1843 1258 1920 984 1393 - 2403 2903 1970 3919 3888 3182 3656 

st dev P CO2 276 189 288 148 209 - 360 435 296 588 583 477 548 

wt% H2O glass 1.04 2.82 0.87 3.45 2.70 5.09 1.64 1.09 3.54 1.36 1.47 3.31 2.16 

st dev H2O 0.14 0.09 0.08 0.07 0.19 0.42 0.08 0.09 0.30 0.07 0.10 0.21 0.18 

ppm CO2 glass 1853 1489 1706 1408 1412 - 2515 2816 2416 3673 3965 4061 4230 

st dev CO2 259 208 239 197 198 - 352 394 338 615 663 686 711 

DOA: dehydrated oxalic acid 

All experiments were performed at 1200°C 
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Table 3. Experimental conditions and results of the experiments with Torre Alfina lamproite 

Sample 2TA1 2TA2 2TA3 

P total (bar) 3510 3510 3510 

P CO2 (bar) 2633 3299 3370 

P H2O (bar) 878 211 140 

Temperature (°C) 1200 1200 1200 

Duration (h) 3 3 3 

Calcite added wt% 2.47 4.91 10.43 

Dolomite added wt% 4.17 8.01 15.65 

CO2 added wt% 3.08 5.98 12.05 

Glass composition
a
 6 analyses 6 analyses 6 analyses 

SiO2 54.48 (43) 51.71 (32) 47.36 (66) 

TiO2 1.38 (9) 1.22 (9) 1.22 (13) 

Al2O3 13.00 (30) 12.38 (26) 11.55 (29) 

FeO 5.31 (13) 5.38 (22) 5.04 (14) 

MgO 8.43 (25) 9.27 (24) 10.90 (35) 

CaO 8.07 (51) 11.41 (29) 15.92 (62) 

Na2O 0.86 (11) 0.82 (7) 0.83 (9) 

K2O 7.87 (11) 7.21 (12) 6.58 (26) 

P2O5 0.60 (6) 0.60 (6) 0.60 (8) 

TOTAL 96.02 (94) 97.06 (87) 97.65 (93) 

H2O wt%
b
 2.83 (15) 2.52 (13) 2.49 (10) 

CO2 wt%
 b

 (Fine & Stolper 1986)
c
 0.30 (1) 0.49 (1) 0.90 (3) 

CO2 wt%
 b

 (Thibault & Holloway 1994)
d
 0.31 (1) 0.52 (2) 0.95 (3) 

CO2 wt%
 b

 (Behrens et al. 2009)
e
 0.34 (1) 0.59 (1) 1.08 (4) 

 

a
 analysed by EMP 

b
 analysed by FTIR spectroscopy 

c
 using  1430 in Fine and Stolper 1986 for basaltic melts  

d
 using  1515 in Thibault and Holloway 1994 for Ca-rich leucititic melts 

e
 using  1430 in Behrens et al. 2009 for phonotephritic melts 
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Table 4. Database used in our calibration  
n° Authors Melt compositions 

(wt% SiO2) 

Pressure 

range  

(bar) 

Range of CO2  

contents (ppm) 

Range of H2O  

contents (wt%) 

1 Hamilton et al. 1964 Basalt (50.71) 3000-6067 - 5.93-9.40 

  Andesite (58.41) 3000-5309 - 7.4-10.1 

2 Stolper and Holloway 1988 Basalt (50.92) 100-1531 27-549 0.06-0.65 

3 Pawley et al 1992 MORB (49.46) 495-1503 103-901 0.01-3.00 

4 Dixon et al 1995 MORB (50.8) 310-980 62-306 0.37-2.49 

5 Moore et al. 1995 Basalt-andesite (55.3) 1113-1930 - 3.67-5.06 

  Andesite (62.6) 703-1865 - 2.62-5.03 

  Augite-minette (53.6) 814-1280 - 3.41-4.55 

6 Jakobsson 1997 Na-Icelandite (54.55) 10000 10300-11900 1.22-8.69 

7 Jendrzejewski et al 1997 MORB (52.0) 250-1950 126-960 0.27-0.62 

8 Moore et al. 1998 Basalt-andesite (55.3) 2896-3110 - 6.37-6.59 

  Andesite (62.6) 2830-2985 - 6.76-6.82 

  Basalt (50.6) 2117-2916 - 4.51-6.40 

9 Metrich and Rutherford 1998 Alkali basalt           

(46.7 - 48.28) 

270-800 - 1.3-3.1 

10 Berndt et al. 2002 MORB (49.64) 505-5009 - 2.14-9.38 

11 Botcharnikov et al 2005 Ferro-basalt (48.34) 2000 782-1061 0.72-2.90 

12 Botcharnikov et al  2006 Andesite (57.44) 2000-5000 1010-4540 0.89-7.97 

13 Di Matteo et al. 2006 Shoshonite (51.8) 250-2000 - 1.01-4.40 

  Latite (53.8) 520-2000 - 2.43-5.20 

14 Iacono-Marziano et al 2008 Shoshonite to Ca-

shosh. (50.26 - 45.04) 

2130-2140 1300-6000 1.5-2.80 

15 Behrens et al 2009 K-Foidite (49.89) 2000-5000 760-9150 0.87-9.27 

16 Morizet et al. 2010 Basalt (54.8) 1970-3300 514-1408 1.24-4.01 

17 Shishkina et al. 2010 Basalt (50.17) 500-5000 36-3334 0.1-6.68 

18 Vetere et al. 2011 Shoshonite (53.47) 500-4000 0-3080 0.64-7.92 

19 Lesne et al. 2011a Alkali basalt (47.95) 172-3948 - 1.36-8.96 

  Ca-rich basalt (49.40) 163-3948 - 0.98-8.47 

  K-tephrite (48.02) 163-3948 - 1.08-8.23 

20 Lesne et al. 2011b Alkali basalt (47.95) 269-2059 383-1429 0.73-1.55 

 Ca-rich basalt (49.40) 269-2059 73-1170 0.71-1.58 

 K-tephrite (48.02) 269-2059 215-2094 0.80-1.02 

21 This study Alkali basalt (47.95) 485-4185 170-3797 0.8-3.54 

 K-lamproite to K-

kama. (54.67 - 47.58) 

3510 2913-8861 1.83-3.08 

Most studies have been performed at 1200°C, the entire T range is however 1100-1400°C. 
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Table 5. Adjusted parameters and their standard errors for CO2 solubility in mafic melts.  
 

dH2O 
dAl2O3/ 

(CaO +K2O+Na2O) 
dFeO+MgO dNa2O+ K2O aCO2 b CO2 CCO2 BCO2 

Hydrous -16.4 4.4 -17.1 22.8 1.00 17.3 0.12 -6.0 

St.error (2) 1.2 0.4 0.9 1.1 0.03 0.9 0.02 0.4 

Anhydrous 2.3 3.8 -16.3 20.1 1.00 15.8 0.14 -5.3 

St.error (2) 0.5 0.4 0.9 1.1 0.03 0.9 0.02 0.4 

 

Adjusted parameters to calculate CO2 solubility from equation (12) in the text. Two sets of parameters 

were calibrated from the experimental database in Table 4, employing NBO calculated on both a 

hydrous and anhydrous basis. Species concentrations (xi) are in mole fraction, P and T are in bar and 

Kelvin respectively. R
2
 of the regression is 0.98, for both models and the average error is 13% for the 

model with NBO calculated on a hydrous basis, and 14% for the model with NBO calculated on an 

anhydrous basis.   

 

 

 

Table 6. Adjusted parameters and their standard errors for H2O solubility in mafic melts.  
 aH2O bH2O BH2O CH2O 

Hydrous 0.53 2.35 -3.37 -0.02 

St.error (2) 0.02 0.28 0.13 0.02 

Anhydrous 0.54 1.24 -2.95 0.02 

St.error (2) 0.02 0.33 0.17 0.02 

 

Adjusted parameters to calculate H2O solubility from equation (13) in the text. Two sets of parameters 

were calibrated from the experimental database in Table 4, employing NBO calculated on both a 

hydrous and anhydrous basis. P and T are in bar and Kelvin respectively. R
2
 of the regression =0.91, 

Average error = 17% for the model with NBO calculated on a hydrous basis, while R
2
 =0.85, Average 

error = 21% for the model with NBO calculated on an anhydrous basis.   

 

 

 

Table 7. Correlation coefficients among model parameters used for CO2 solubility. 
 P/T Ln (PCO2) NBO/O  

anhydr. 

NBO/O  

hydr. 

Na2O+  

K2O 

FeO+ 

MgO 

AI H2O 

P/T 1 0.76 -0.26 0.25 0.27 -0.55 0.12 0.66 
Ln (PCO2) 0.76 1 -0.05 0.11 0.22 -0.38 -0.06 0.22 
NBO/O anh   1 - 0.04 0.54 -0.91 -0.33 
NBO/O hydr 0.25 0.11 - 1 0.20 0.04 -0.71 0.46 
Na2O+ K2O 0.27 0.22 0.04 0.20 1 -0.32 -0.30 0.23 
FeO+MgO -0.55 -0.38 0.54 0.04 -0.32 1 -0.24 -0.62 
AI 0.12 -0.06 -0.91 -0.71 -0.30 -0.24 1 0.19 
H2O 0.66 0.22 -0.33 0.46 0.23 -0.62 0.19 1 
 

AI: Al2O3/(CaO +K2O+Na2O) 



 47 

FIGURE CAPTIONS: 

 

Figure 1: 

Representative infrared absorption spectra (scaled to the same thickness) of alkali-basaltic 

glasses (Mt. Etna composition) in the 1900-1300 cm
-1

 region. Black line shows a H2O-CO2-

rich glass; grey line a H2O-rich, CO2-free glass; pointed line a H2O-CO2-free glass (starting 

glass). The positions of the H2O and carbonate bands are shown. In this study, we calculated 

peak heights for the carbonate doublet, by manually subtracting the spectrum of a CO2-free 

glass containing a similar amount of water to the sample spectrum (e.g. black spectrum-grey 

one). Note how background correction using a volatile-free glass could induce an 

overestimation of the height of the peak at 1515 cm
-1

 (black arrow), for high water contents.  

 

Figure 2: 

Experimentally determined solubility of CO2 and H2O in the Etna basalt (data in Table 2), 

compared to theoretical solubilities calculated using Newman and Lowenstern, 2002 (for 

T=1200°C and SiO2= 47.95 wt%) and Papale et al., 2006 (for T=1200°C and Etna 

composition in Table 1 with Fe2O3= 15% of total FeO). a) Dissolved CO2 in ppm vs. partial 

pressure of CO2 for our data and the data of Lesne et al (2011b). X error bars are 20% of the 

mean value, in agreement with the maximum variation obtained using different extinction 

coefficients in CO2 calculation (see section 2.1). Y error bars show the maximum uncertainty 

that we estimate for PCO2 calculation (15%). b) Dissolved H2O in wt% vs. partial pressure of 

H2O for our data and the data of Lesne et al (2011a). X error bars are 10% of the mean value, 

in agreement with the maximum standard deviation observed in FTIR measurements. Y error 

bars show the maximum uncertainty that we estimate for PH2O calculation (15%). c) 

Dissolved H2O in wt% vs. CO2 in ppm for our data and the data of Lesne et al (2011b). The 
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number next to each experimental point indicates the experimental pressure. Experimental 

solubilities are compared with the isobaric solubilities calculated for total pressures of 500, 

1000, 2000, 3000, 4000 bar, as indicated on the graph. Error bars indicate the maximum 

analytical uncertainty of FTIR measurements: 10% for H2O and 20% for CO2.   

 

Figure 3: 

Experimentally determined solubility of CO2 in the lamproite-kamafugite melts. Data are in 

Table 3. a) Dissolved CO2 vs. CaOwt% content in the melt for our data and those of Iacono-

Marziano et al., 2008. Data in calcic to calc-alkaline basalt composition containing 3-5 wt% 

H2O (major element composition not available) obtained at 4000 bar and 1200°C are also 

shown (Moore, 2008). For each experimental point of this study and Iacono-Marziano et al., 

2008, solubilities calculated using Papale et al., (2006) are also shown (for T=1200°C and 

2TA1, 2TA2 and 2TA3 compositions in Table 1 with Fe2O3= 15% of total FeO). b), c), and d) 

Same experimental data points plotted against MgO, the agpatic index, and NBO/O, 

respectively. Y error bars indicate the analytical uncertainty of CO2 measurements. X error 

bars show the standard deviation (2) of CaO and MgO EMP analysis (a, b) and the 

mathematically propagated measurement uncertainties for the agpaitic index and the NBO/O 

(c, d). 

 

Figure 4: 

H2O-CO2 solubility data for the experimental studies of Table 4 (numbers refer to the 

different studies listed in the table). Error bars indicate maximum uncertainties on CO2 and 

H2O measurements (20% and 10%, respectively). a) Dissolved CO2 (in ppm) vs. partial 

pressure of CO2 for the 182 literature data. The solubility curves are calculated using 

VolatileCalc for basalts with SiO2 contents of 45, 47 and 49 wt%. b) Same plot as in a) but on 
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a restricted database. c) Dissolved H2O (in wt%) vs. partial pressure of H2O for the 182 H2O-

CO2 plus the 107 H2O literature data. The solubility curves are calculated using VolatileCalc 

for basalts with SiO2 contents of 45, 47 and 49 wt%.  

 

Figure 5: 

Dissolved CO2 content in ppm normalized to the CO2 partial pressure vs. dissolved water 

content for three sets of data indicated in the legend. Error bars show the standard deviation 

(2) associated to every H2O measurement. The experimental data show increasing CO2 

solubility with increasing water content in the three mafic melts with different compositions 

indicated in the legend. 

 

Figure 6: 

Dissolved CO2 content in ppm as a function of CO2 partial pressure for different sets of data 

with a relatively constant water content indicated in the legend. Error bars indicate the 

standard deviation (2) reported by the authors for every CO2 measurement. a) Three 

substantially different melt compositions and water contents: foidite with 2.5-3.5 wt% H2O 

(Behrens et al., 2009), MORB with 3-4 wt% H2O (Shishskina et al., 2010), and alkali-basalt 

with 0.8-1.5 wt% H2O (this study). The increase in CO2 fugacity (calculated with a Modified 

Redlich Kwong equation) with increasing CO2 partial pressure is also shown. b) Three 

different ranges of H2O contents for the same MORB composition (Shishskina et al., 2010).  

 

Figure7: 

H2O-CO2 solubilities calculated for the Etna composition (in Table 1). a) Isobaric curves for 

total pressure between 500 and 4000 bar, calculated using the two versions of our model: 

thick lines show calculations employing NBO computed on a hydrous basis (and using the 
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parameters in the first line of Table 5); thin lines show calculations employing NBO 

computed on an anhydrous basis (and using the parameters in the third line of Table 5). The 

points show experimental data: closed symbols represent data from this study, while open 

symbols indicate data from Lesne et al. (2011 a, b). Error bars indicate the analytical 

uncertainty of FTIR measurements. b) Comparison between isobaric curves (for 1000, 2000, 

3000 and 4000 bar) computed using our model (employing NBO calculated on a hydrous 

basis),  the model of Newman and Lowenstern, 2002 (for T=1200°C and SiO2= 47.95 wt%) 

and the model of Papale et al., 2006 (for T=1200°C and Etna composition in Table 1 with 

Fe2O3= 15% of total FeO). The grey box represents H2O-CO2 contents of primitive melt 

inclusions from Etna (Spilliaert et al., 2006) 

 

Figure 8: 

Test of our model (eq. 7 and eq. 11, with parameters in Tables 5 and 6) on the entire database 

(numbers refer to the different studies listed in Table 4). a) Calculated vs. experimentally 

determined CO2 solubility. Error bars show an error of 20% for measured CO2 contents, 

which represent the maximum uncertainty for CO2 determination by FTIR spectroscopy. The 

model error for calculated CO2 contents (13%) is indicated by the discontinuous lines. b) 

Calculated vs. experimentally determined H2O solubility. Error bars show an error of 10% for 

measured H2O contents, which represent the maximum uncertainty for H2O determination by 

FTIR spectroscopy. The model error for calculated CO2 contents (17%) is indicated by the 

discontinuous lines. The scatter in calculated vs. measured water content reflects the scatter of 

experimental data (Fig. 4c) and remains unexplained. 

 

Figure 9: 

http://apps.isiknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=P1hJd798phJ3ief6N@C&name=Newman%20S&ut=000176013800002&pos=1
http://apps.isiknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=P1hJd798phJ3ief6N@C&name=Lowenstern%20JB&ut=000176013800002&pos=2
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Calculated effect of NBO/O (with NBO computed on a hydrous basis) on CO2 solubility at 

2000 bar and 1200°C in equilibrium with a fluid phase containing 80% CO2. The initial 

composition (with the lowest NBO/O) is a MORB, with 2 wt% H2O and a calculated CO2 

solubility of 1100 ppm. The effect of increasing NBO/O is computed considering the addition 

of different types of modifier cations, which we interpret as the type of cations bonded to the 

NBO. Cations added are Mg+Fe, Ca, and Na+K. Mg+Fe are added with incremental steps of 

2 wt% FeO+MgO (marked by the points on the grey curve), Ca is incremented with step of 

1.5 wt% and Na+K are incremented with steps of 1 wt% (0.5wt% Na2O, 0.5 wt% K2O). 
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