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A GENERALIZED MIXED HYBRID MORTAR METHOD FOR
SOLVING FLOW IN STOCHASTIC DISCRETE FRACTURE

NETWORKS∗

G. PICHOT† , J. ERHEL‡ , AND J.-R. DE DREUZY§

Abstract. The simulation of flow in fractured media requires handling both a large number of
fractures and a complex interconnecting network of these fractures. Networks considered in this paper
are three-dimensional domains made up of two-dimensional fractures intersecting each other and ran-
domly generated. Due to the stochastic generation of fractures, intersections can be highly intricate.
The numerical method must generate a mesh and define a discrete problem for any discrete fracture
network (DFN). A first approach [Erhel, de Dreuzy, and Poirriez, SIAM J. Sci. Comput., 31 (2009),
pp. 2688–2705] is to generate a conforming mesh and to apply a mixed hybrid finite element method.
However, the resulting linear system becomes very large when the network contains many fractures.
Hence a second approach [Pichot, Erhel, and de Dreuzy, Appl. Anal., 89 (2010), pp. 1629–1643] is
to generate a nonconforming mesh, using an independent mesh generation for each fracture. Then
a Mortar technique applied to the mixed hybrid finite element method deals with the nonmatching
grids. When intersections do not cross or overlap, pairwise Mortar relations for each intersection are
efficient [Pichot, Erhel, and de Dreuzy, 2010]. But for most random networks, discretized intersections
involve more than two fractures. In this paper, we design a new method generalizing the previous
one and that is applicable for stochastic networks. The main idea is to combine pairwise Mortar re-
lations with additional relations for the overlapping part. This method still ensures the continuity of
fluxes and heads and still yields a symmetric positive definite linear system. Numerical experiments
show the efficiency of the method applied to complex stochastic fracture networks. We also study
numerical convergence when reducing the mesh step. This method makes it easy to perform mesh
optimization and appears to be a very promising tool to simulate flow in multiscale fracture networks.
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1. Introduction. Studying flow in fractured media is a challenging task due
to the complex geometrical structures induced by the large variety of fractures and
by their intricate interconnections. While most initial approaches relied on contin-
uum approaches, discrete fracture network approaches (DFN) have been developed
for sparsely fractured media [3], [4] that could not be homogenized. For the DFN
approach, fractures are modeled individually in an otherwise impervious embedding
medium generally called matrix. Flows are modeled by Poiseuille’s law within the
fractures and flow continuity is imposed at fracture intersections. Because of the
lack of observations of fracture networks, fracture characteristics are mostly known
as statistical distributions and modeling becomes stochastic. The fracture locations,
shapes, and sizes follow statistical distributions derived from field data [23]. Note
that a full generation of fracture networks by applying mechanical constraints is so
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far not possible because of the difficulties in accounting for the coupled effects between
fractures and in recovering the geological history of the externally applied constraints
[22]. The DFN approach is now widely used for studying the influence of fractures on
bulk hydraulic properties, both for phenomenological studies [5], [6], [7], [8], [9] and
for natural field simulations [10], [11], [12], [13].

Several methods have been proposed to address the complexity issued by the
fracture network structures. The first generation of methods consisted of simplifying
drastically the model by replacing flows in the two-dimensional (2D) fractures by
flows in well-chosen one-dimensional pipes [12], [7], [14]. Despite their simplicity,
these initial methods are now discarded because it is not possible to quantify properly
their approximation. This approach has been superseded by a second generation in
which flows are solved within the 2D fracture planes. The geometrical configurations
detrimental to the numerical methods are removed either by modifying locally the
fracture network structure [15], [16], [17] or by performing a conformal discretization
of all fracture intersections and borders at the network scale [1].

In this paper, we use a stochastic discrete fracture network generator [1] consis-
tent with field observations similar in some statistical sense to the natural fracture
networks. Because of the stochastic generation, the density of intersections sharply
increases. Networks contain many X-shape intersections (Figures 5.1 and 5.6), that
precludes the use of classical mesh generators. Out of 1640 generated networks, only
222 could be successfully meshed. This problem has been addressed in [1] by design-
ing a new mesh generator. This new meshing procedure is based on staircase-like
discretizations of fracture borders and intersections. It modifies slightly the initial
position of the borders and intersections to produce a good-quality mesh and enable
the simulation of flow within any stochastic network. However it requires building
a conforming mesh at the network scale, constraining the mesh step on a global ba-
sis. On the contrary, it would be highly desirable to develop nonconforming methods
coping with different mesh steps for the different fractures. The mesh step could be
chosen according to the fractures properties or to their importance within the flow
structure in order to increase the simulation accuracy and efficiency.

In a previous study [2], [18], we took a first step by adapting the mesh generator
designed in [1] in order to mesh the fractures independently, which yields nonmatch-
ing grids at the fracture intersection. We have designed a Mortar method based on
slave and master definitions under the assumption that no fracture intersections cross
or overlap. In other words, intersections are common to exactly two fractures. It
constraints the application of the method to simple networks. Simulation of more
complex structures is required to enable stochastic modeling of natural fracture net-
works. But, for most complex networks, staircase-like discretizations introduce dis-
cretized intersection segments common to more than two fractures and the Mortar
method developed in [2] cannot be applied. It motivates the generalization of the
Mortar method to the junction of more than two subdomains.

Thus we present a generalization of the pairwise Mortar method suited for a
nonlimited number of intersecting fractures per intersection segment. For intersection
segments between more than two fractures, we show that the generalized Mortar
method can build up on a combination of pairwise Mortar conditions with well-suited
relations between flow and pressure variables at the intersections. After recalling the
key characteristics of the fracture network geometry and governing flow equations
in section 2 and the pairwise Mortar method in section 3, we define the generalized
Mortar method in section 4 and show its performances on stochastic fracture network
configurations in section 5.
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2. Geometrical and hydraulic flow model.

2.1. Fractured network geometry. Multiscale implies large fractures that
intersect numerous other fractures, yielding in turn complex local intersection config-
urations. Fracture generation follows the procedure described in [1].

Fractures are generated stochastically. They are ellipses or disks. Orientation
and position distributions are taken as uniform. The broad natural fracture length
distribution can be correctly modeled by a power-law distribution such as

(2.1) p(l)dl =
1

a− 1

l−a

l−a+1
min

dl,

where p(l)dl is the probability of observing a fracture with a length in the interval [l, l+
dl], lmin is the smallest fracture length, and a is a characteristic exponent [19], [23].

The cubic domain where the fractures lie is of characteristic size L. Consider we
have Nf intersecting fractures that form a computational domain Ω. The boundary
of Ω is composed of the border intersections between the cube and the fractures. Each
fracture is denoted Ωf , f = 1, . . . , Nf .

We use the following notation within each fracture f :
• Let Γf be the border of the fracture f (which may be truncated by the edges
of the cube).

• Let If be the set of all intersections within the fracture f . (For the sake of
simplicity in the writing of the mathematical part, we assume that Γf ∩ If is
of null measure.)

• We denote by Ωf the fracture domain less the intersections, so that ∂Ωf =
Γf ∪ If .

2.2. Governing equations. DFNs are three-dimensional (3D) domains made
of 2D fractures intersecting each other. We are interested in flow within the fractures,
assuming that the rock matrix is impervious.

Classical laws governing the flux, mass conservation, and Poiseuille’s law are
assumed in each fracture. Continuity conditions are also imposed at the intersections
of fractures. Longitudinal flux is neglected. Thus two conditions apply: continuity of
the hydraulic head and continuity of the transversal flux at each intersection.

Boundary conditions on the cube edges are of Dirichlet or Neumann type. We
denote by ΓN (respectively, ΓD, ΓD �= 0) the boundaries of the cube with Neumann
(respectively, Dirichlet) boundary conditions. Since the rock matrix is supposed im-
pervious, a homogeneous Neumann boundary condition is applied on the border of
the fracture Γf,mat = Γf\{(Γf ∩ ΓD) ∪ (Γf ∩ ΓN )}.

Let Ni be the number of intersections of fractures, Σk be the kth intersection,
k = 1, . . . , Ni, and Fk be the set of fractures with Σk on the boundary.

Consider the coordinates x = (x, y), local to the plane Ωf . For the unknown
hydraulic head scalar function p(x) and the flux per unit length function u = u(x),
we have

∇ · u(x) = f(x) for x ∈ Ωf ,(2.2a)

u(x) = −T (x)∇p(x) for x ∈ Ωf ,(2.2b)

p(x) = pD(x) on ΓD ∩ Γf ,(2.2c)

u(x).ν = qN (x) on ΓN ∩ Γf ,(2.2d)

u(x).µ = 0 on Γf,mat,(2.2e)
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where ν (respectively, µ) denotes the outward normal unit vector of the border
ΓN ∩ Γf (respectively, Γf,mat) with respect to the fracture f . The parameter T (x)
is a given transmissivity field (unit [m2.s−1]). The function f(x) ∈ L2(Ωf ) represents
the sources/sinks.

Continuity conditions in each intersection are written [1], [17]

pk,f = pk on Σk ∀f ∈ Fk,(2.3a)
∑

f∈Fk

uk,f .nk,f = 0 on Σk,(2.3b)

where pk,f is the trace of hydraulic head on Σk in the fracture f , pk is the unknown
hydraulic head on the intersection Σk, and uk,f .nk,f is the normal flux through Σk

coming from the fracture Ωf , with nk,f the outward normal unit vector of the in-
tersection Σk with respect to the fracture Ωf . Equations (2.3a)–(2.3b) express the
continuity of p and the mass balance of u across the intersections between fractures.

2.3. Mesh generation and notation. The flow model is solved using a mixed
hybrid finite element method. Thus, it requires a mesh of the fractured network. For
DFNs, mesh generation generally fails due to small angles between intersections of
fractures. Specific meshing procedure have been proposed to mesh these networks.
In [15], [17], [16], the geometry of the network is changed locally to get a mesh of
good quality. As we are doing stochastic simulations, we rather need an automatic
mesh generation suitable for any DFN. With the method proposed in [1], any DFN
can be meshed but it requires matching grids at the intersection between fractures.
The mesh generation we propose is more flexible in the sense that the grids may not
match at the intersections, which allows us to choose a different mesh step from one
fracture to another. For highly channelled flow, this meshing procedure will be very
relevant, since only the fractures that govern the flow will be meshed finely, the others
being meshed coarsely.

The mesh generation proposed in [1] leads to a conforming mesh at the fracture
intersections.

The total mesh is called Th = ∪
Nf

f=1Th,f and NTh
= card(Th).

The procedure is the following:
1. (a) A first discretization of boundaries and intersections is done in three

dimensions at the network scale by using elementary cubes,
(b) The discretization of the boundaries and intersections within the fracture

f is obtained by a projection of the previous voxel discretization within
the fracture plane.

2. Some local corrections are applied to ensure some topological properties. For
example, each boundary or intersection edge must have only one or two neigh-
bors and each boundary or intersection node must have only two adjacent
edges.

3. Once the borders and intersections are discretized, a 2D mesh of each fracture
is built, using triangular elements.

The new meshing procedure we propose is the following. For each fracture f ,
we define a 2D grid whose center coincides with the ellipse (fracture) center and
its discretization follows the direction of the ellipse’s axes. The grid step is chosen
as input data. The main advantage of the new procedure is that it can be chosen
independently from one fracture to another. The grid size is chosen so that it totally
encompasses the ellipse.
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• For each fracture f ,
1. A first discretization of boundaries and intersections is done in two di-

mensions within each fracture by using elementary squares; it leads to
staircase-like discretized borders.

2. Some local corrections are applied to ensure some topological properties.
3. Once the borders and intersections are discretized, a 2D mesh of each

fracture, called Th,f , is built, using triangular elements.
An example is given in section 5.1. Figure 5.1 shows the geometry of the network

and of one fracture (the black one) with its boundary and intersections. Figure 5.2
(left) shows the result of the first step using the meshing procedure proposed in [1]
and Figure 5.3 (left) the corresponding 2D mesh (step 3). Figure 5.2 (right) displays
the result of the first step of the new discretization procedure: a grid step has been
chosen and the mesh centers are used to discretize the boundaries and intersections.
The associated 2D mesh (step 3) is shown in Figure 5.3 (right).

Both methods are based on staircase-like representations of the borders and inter-
sections. On one hand, this stage 1 modifies slightly the position of the borders and
intersections. However, this approximation is motivated by the necessity of having a
good-quality mesh for any generated stochastic network as, in most case, a classical
mesh generator would fail to mesh the initial geometry [1]. Moreover this approxima-
tion can be lowered by a refinement of the 2D/3D grids, since the intersections and
borders discretizations will stand closer to the original geometry. Section 5.4 shows
the numerical convergence of the method with mesh refinement.

On the other hand, the staircase-like discretizations leads more likely to edges
shared by more than two fractures. In such cases, the framework developed in [2] and
recalled in section 3 needs to be generalized as the assumption that each intersection
involves only two fractures is no longer valid. The generalized version is described in
section 4.

The main difference between the two meshing methods comes from the first step.
In [1], all borders and intersections are discretized at the network scale, leading to a
conforming mesh at the intersections between fractures. With our method, fractures
can be meshed independently, with a mesh step that can be different from one fracture
to another. On one hand, the mesh generation is then easier. On the other hand, it
leads to nonmatching grids at the intersections between fractures.

This paper explains how to handle, with the numerical method, such nonmatching
grids.

We define
• Eh,f,in: “inner” edges in Th,f , including boundaries, without intersection
edges, Nf,in = card(Eh,f,in);

• Eh,f,Σ: intersection edges in If , Nf,Σ = card(Eh,f,Σ);
• Eh,f,k: intersection edges that discretize Σk within the fracture f ;

• Eh,Σ = ∪
Nf

f=1Eh,f,Σ: all intersection edges, NΣ = card(Eh,Σ);

• Eh,in : ∪
Nf

f=1Eh,f,in: all inner edges, Nin = card(Eh,in);
• Eh,f = Eh,f,in ∪ Eh,f,Σ: all edges within the fracture f ;

• Eh = ∪
Nf

f=1Eh,f : all edges;
• Eh,D = {E ∈ Eh, E ∈ ΓD} and Eh,N = {E ∈ Eh, E ∈ ΓN ∪ Γf,mat}.

The next section recalls briefly the method for a mesh Th satisfying the following
property: within any fracture f , we assume that there is no common edge between
two discretized intersections, that is,

(2.4) ∀f, ∀(k1, k2), Eh,f,k1
∩ Eh,f,k2

= ∅.
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Section 4 presents the method for any DFN, where some edges may belong to
several discretized intersections. It points out the differences with section 3.

3. Description of the numerical method for specific networks. In [2],
[18], the networks satisfy the following assumption:

(3.1) ∀(k1, k2),Σk1
∩ Σk2

= ∅,

that is, intersections do not cross or overlap. Then each intersection Σk involves only
two fractures.

In this section, we slightly enlarge the scope of the method since we make an
assumption on the mesh rather than on the geometry:

(3.2) ∀f, ∀(k1, k2), Eh,f,k1
∩ Eh,f,k2

= ∅.

The only difference with the method proposed in [2], [18] is that now intersections
may cross, but in a way they do not share any edge. We will point out that the only
change in the method lies in additional contributions within the matrix of the linear
system.

3.1. Basic principle of the method. Flow equations are solved with a Mortar
mixed-hybrid finite element method described in [2], which allows us to deal with a
nonconforming mesh at the intersections between fractures.

It consists of choosing for each intersection Σk = Ω̄f ∩ Ω̄f
′ a master fracture f

and a slave fracture f
′

. Then, we denote by
• Eh,k,m the master discretization of Σk within the master fracture f and

• Eh,k,s the slave discretization of Σk within the slave fracture f
′

.
In the following, we will use the subscript s to refer to the slave side and m to

refer to the master side. We denote by Nk,m (respectively, Nk,s) the number of edges

in Eh,k,m (respectively, Eh,k,s) and Nm =
∑Ni

k=1 Nk,m, Ns =
∑Ni

k=1 Nk,s.

3.2. Algorithm for labeling with the master/slave property. The labeling
algorithm consists of an outer loop on all intersections Σk, (k = 1, Ni). One chooses
arbitrarily the master fracture and the slave fracture. Then all edges in Eh,k,m are
labeled with a master property and all edges in Eh,k,s are labeled with a slave property.

Then for each fracture f , we denote by
• Eh,f,m all edges labeled with a master property within the fracture f and
• Eh,f,s all edges labeled with a slave property within the fracture f .

With hypothesis (3.2), Eh,f,m ∩ Eh,f,s is empty.

3.3. Local unknowns in the fracture f . We denote by
• λE,f the trace of hydraulic head unknown on the edge E ∈ Eh,f in the fracture
f ,

• Λf = (λE,f )E∈Eh,f
the vector of trace of hydraulic head unknowns on edges

in Eh,f ,
• Λf,in = (λE,f )E∈Eh,f,in

the vector of trace of hydraulic head unknowns on
edges in Eh,f,in,

• Λf,m = (λE,f )E∈Eh,f,m
the vector of trace of hydraulic head unknowns on

master edges in the fracture f ,
• Λf,s = (λE,f )E∈Eh,f,s

the vector of trace of hydraulic head unknowns on slave
edges in the fracture f .
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On a fracture f , we distinguish inner edges, slave edges, and master edges so that
the trace of hydraulic head unknowns form a vector

(3.3) Λf =

⎛

⎝

Λf ,in

Λf ,m

Λf ,s

⎞

⎠ .

We denote by Pf the vector of cell hydraulic head for all K in Th,f .
We define QE,f the jump of flux through the edge E in the fracture f by

(3.4) QE,f =
∑

K∈Th,f ,∂K⊃E

qK,E .

We consider the vectors Qf ,m = (QE,f )E∈Eh,f,m
and Q

f
′
,s = (QE,f

′ )E∈E
h,f

′
,s
.

3.4. Global unknowns in the fracture network. We introduceΛin = (Λf ,in)f
the vector containing all traces of hydraulic head unknowns on inner edges within the
system and P = (Pf )f the vector containing all mean hydraulic head unknowns in
the network.

We also define two global variables Λs = (Λf ,s)f and Λm = (Λf ,m)f .
We define Qm = (Qf ,m)f (respectively, Qs = (Qf ,s)f ) the vector of size Nm

(respectively, Ns) of jump of flux on master (respectively, slave) edges within the
system.

3.5. Local equations. It is well known that in the context of the mixed hybrid
finite element method, locally on each triangle K in Th,f , Poiseuille’s law (2.2b)
writes [20]

(3.5) BKQK = pK,fe−ΛK

with QK and ΛK 3D vectors containing, respectively, the fluxes qK,Ei
, i = 1, 2, 3, and

the traces of hydraulic head λEi,f , i = 1, 2, 3, on each Ei ⊂ ∂K, e = ( 1 1 1 )T

and the 3× 3 symmetric positive definite matrix BK with elements

(3.6) (BK)Ei,Ej
=

∫

K

wK,Ei
T −1
K wK,Ej

dx

with the symmetric positive definite matrix TK that represents the local transmissivity
and wK,Ei

i = 1, 2, 3, Ei ∈ ∂K, K ∈ Th,f the linearly independent vector basis
functions of the lower order Raviart–Thomas space.

From (2.2a), local mass conservation applied on each triangle and continuity of
the jump of fluxes have to be ensured through inner edges and at intersection edges:

(3.7) QE,f =

{

0 if E ∈ Eh,f,in\ΓN ,

qNE if E ∈ ΓN .

Equation 3.7 says that for border edges E in ΓN , the so-called jump of flux QE,f

is simply equal to the Neumann imposed flux, qNE . Inner edges not belonging to ΓN

are shared by two triangles, E = ∂K ∩ ∂K
′

, and the jump of flux must be zero:
qK,E = −qK′

,E .
For intersection edges, the following Mortar conditions are required.
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3.6. Mortar local conditions. Under assumption (3.2), on an intersection
Σk = Ω̄f ∩ Ω̄f

′ (with f the master fracture and f
′

the slave fracture), we have
[2]

(λE,f
′ )E∈Eh,k,s

= Ck(λE,f )E∈Eh,k,m
,(3.8a)

(QE,f )E∈Eh,k,m
+CT

k
(QE,f

′ )E∈Eh,k,s
= 0(3.8b)

with Ck a matrix of size Nk,sxNk,m that represents the L2-projection from the master
side to the slave side. Its coefficients Cln, l ∈ {1, . . . , Nk,s}, n ∈ {1, . . . , Nk,m}, are
the ratio of the intersection length of a slave edge El and a master edge En over the
length of El:

(3.9) Cln =

(

|En ∩ El|

|El|

)

,

where |E| stands for the length of the edge E.
Equation (3.8b) expresses the continuity of the jump of flux at the intersection

Σk and (3.8a) the continuity of heads at the intersection Σk. The matrix Ck takes
into account the differences in the discretizations between the master and the slave
sides of Σk. In the case of a matching grid discretization of the intersection, Ck is the
identity matrix.

3.7. Mortar global conditions. We define the matrix C as a block matrix of
dimension Ns ×Nm with blocks (Ck).

The previous relations (3.8a) and (3.8b) are easily rewritten in terms of the global
variables as

Λs = CΛm,(3.10a)

Qm = −CTQs.(3.10b)

3.8. Derivation of the linear system. Inverting the matrix BK in (3.5) and
using (3.10a), we assemble the mass conservation equation in each triangle into a
system involving global variables:

(3.11) DP −
(

Rin Rm +RsC
)

(

Λin

Λm

)

= F,

whereD is aNTh
×NTh

diagonal matrix,Rin is a sparse matrix of dimensionNTh
×Nin,

Rm is a sparse matrix of dimension NTh
× Nm, Rs is a sparse matrix of dimension

NTh
× Ns, C is of dimension Ns × Nm, and F is a vector of dimension NTh

, which
corresponds to the source/sink function as well as to the imposed hydraulic head given
by the Dirichlet boundary conditions.

Also, by inverting the matrix BK in (3.5), we eliminate the flux unknowns in
(3.7). Using global variables and the relation (3.10a), we eliminate Λs, yielding

(3.12) RT

in
P −

(

Min Mm +MsC
)

(

Λin

Λm

)

+ Vin = 0,

where Min a sparse matrix of dimension Nin×Nin, Mm of dimension Nin×Nm, and
Ms of dimension Nin ×Ns.

Following the same procedure in condition (3.10b), one has
(3.13)

(RT

m +CTRT

s )P −
(

MT
m +CTMT

s Bm +CTBsC
)

(

Λin

Λm

)

+ Vm = 0
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with Bs a square matrix of dimension Ns ×Ns and Bm a square matrix of dimension
Nm ×Nm that has the form

(3.14) Bm = Bm,m +Bm,sC+CTBT

m,s,

where Bm,m is the matrix of flux contributions from master edges and Bm,s is the
matrix of flux contribution coming from slave edges. The terms Bm,s appear when
triangles contain both master and slave edges. This is the only difference with the
method presented in [2] because we use hypothesis (3.2) (on the mesh) instead of
hypothesis (3.1) (on the network geometry).

Let us define

(3.15)

M =

(

Min Mm +MsC

Mm
T + CT Ms

T Bm +CT BsC

)

,

Λ =

(

Λin

Λm

)

, R =
(

Rin Rm +RsC
)

,

S = M − RT D−1 R.

The matrix M and the Schur complement matrix S are proved to be symmetric
positive definite in presence of Dirichlet boundary conditions [2]. The proof stays the
same when using hypothesis (3.2). The linear system to solve is then

(3.16) SΛ = V+RD−1F.

Once the system (3.16) is solved, (3.10a) allows us to recover the trace of hydraulic
head values on the slave edges. Finally the 3D vectors QK containing the fluxes
qK,Ei

, i = 1, 2, 3, on each triangle K ∈ Th are derived locally for each K ∈ Th using
the relation (3.5).

4. Description of the numerical method for general networks.

4.1. Challenge. This section is the main contribution of this paper. It ex-
plains how to handle nonmatching mesh at the intersections between fractures for
any DFN. The previous section was restricted to network satisfying hypothesis (3.2).
The complexity in the geometry of fracture networks and their meshing cannot guar-
antee that this assumption is strictly satisfied. With the generation procedure we use
(section 2.3), a fracture may contain many X-shaped intersections since fractures are
allowed to intersect each other in a very intricate way. As pointed out in section 2.3,
discretized intersections inside a fracture are likely to share an edge, which is then
common to at least three fractures. If hypothesis (3.2) is not satisfied anymore, the
challenge is that one may find edges shared by several intersections. Those edges will
then be labeled with several properties (slaves and/or masters) at the same time. We
propose general Mortar conditions to ensure continuity of fluxes and heads at the in-
tersections. We assume that edges are not cut but are shared totally; this is satisfied
with the meshing procedure we use (see section 2.3).

4.2. Labeling with the master/slave property. The algorithm remains the
same as for specific networks (see subsection 3.2).

For each fracture f , we still denote by
• Eh,f,m all edges labeled with a master property within the fracture f , Nf,m =
card(Eh,f,m);

• Eh,f,s edges labeled with a slave property within the fracture f , Nf,s =
card(Eh,f,s).
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The main difference is that now some intersection edges may be labeled with
several master and/or slave properties. The consequences are that Eh,f,m∩Eh,f,s may
be not empty and that an edge may be labeled several times with the same property.

4.3. Local unknowns in the fracture f . For each edge E ∈ Eh,f , we define
λE,f its trace of hydraulic head value.

Now for an intersection edge E ∈ Eh,f,Σ, there are nE = sE +mE new associated
unknowns with mE the number of times the edge E is labeled with a master property
(it can be 0 if the edge is only a slave) and sE the number of times it is labeled with
a slave property (it can be 0 if the edge is only a master).

These nE new unknowns are as follows:
• λE,f,m,k its additional trace of hydraulic head value as master edge for the
intersection Σk in the fracture f (if E is labeled with a master property for
this intersection). We use also the notation λE,f,m,k = λE,f,mk

with the index
mk = (m, k), mk = 1, . . . ,mE .

• λE,f,s,k its additional trace of hydraulic head value as slave edge for the
intersection Σk in the fracture f (if E is labeled with a slave property for
this intersection). We use also the notation λE,f,s,k = λE,f,sk with the index
sk = (s, k), sk = 1, . . . , sE .

New relations for each intersection edge E ∈ Eh,f,Σ are thus necessary between
those new unknowns and λE,f .

We denote by Λf ,Σ = (λE,f )E∈Eh,f,Σ
the vector of final trace of hydraulic head

unknowns λE,f on the intersection edges E in the fracture f of size Nf,Σ.
We define the vector Λf ,m = (λE,f,m)E∈Eh,f,m

of size Nf,m and the vector Λf ,s =
(λE,f,s)E∈Eh,f,s

of size Nf,s of additional unknowns.
In a fracture f , we still distinguish inner edges and intersection edges so that the

trace of hydraulic head unknowns form a vector

(4.1) Λf =

(

Λf ,in

Λf ,Σ

)

.

For each edge E ∈ Eh,f in a fracture f , we also consider the jump of flux QE,f

through the edge E.
For an intersection edge E ∈ Eh,f,Σ, there are also new unknowns:
• QE,f,m,k partial jump of flux through the edge E master for the intersection
Σk.

• QE,f,s,k partial jump of flux through the edge E slave for the intersection Σk.
For a given intersection Σk, we denote Qf ,m,k = (QE,f)E∈Eh,f,m,k

and Q
f
′
,s,k =

(QE,f
′ )E∈E

h,f
′
,s,k

.

We consider the vectors Qf ,m = (QE,f )E∈Eh,f,m
and Q

f
′
,s = (QE,f

′ )E∈E
h,f

′
,s
.

We denote by Qf ,Σ = (QE,f )E∈Eh,f,Σ
the vector of jumps of flux through the

intersection edges within the fracture f .

4.4. Global variables in the fracture network. We denote by ΛΣ = (Λf,Σ)f
the global vector of final trace of hydraulic head unknowns in the system.

We denote by Nm =
∑Nf

f=1 Nf,m, Ns =
∑Nf

f=1 Nf,s, and NΣ =
∑Nf

f=1Nf,Σ. We
define the global unknowns: Λm = (Λf ,m)f and Λs = (Λf ,s)f .

We denote by QΣ = (Qf ,Σ)f the vector of jumps of flux through the intersection
edges within the system.

Similarly, we form a vector containing all the jumps of flux through the master
edges in the system, Qm = (Qf ,m)f , and a vector containing all the jumps of flux
through the slave edges in the system, Qs = (Qf ,s)f .
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4.5. Mortar local conditions. Now we have to define new relations between
the different unknowns at an intersection edge. We choose to allocate a mean value
of hydraulic heads to λE,f ,

(4.2) λE,f =
1

nE

(

mE
∑

mk=1

λE,f,mk
+

sE
∑

sk=1

λE,f,sk

)

,

that is, the final trace of hydraulic head value on the edge E is equal to the mean of
the additional temporary trace of hydraulic head values on the edge E.

This choice seems reasonable since the consideration of additional unknowns on
a same edge is a numerical trick to deal with several labels (master/slave). There is
no physical reason to introduce a different weighting rule.

From relations (4.2), we have

(4.3) λE,f = am,E

⎛

⎝

λE,f,m1

. . .
λE,f,mE

⎞

⎠+ as,E

⎛

⎝

λE,f,s1

. . .
λE,f,sE

⎞

⎠

with am,E the vector of size 1×mE and as,E the vector of size 1× sE such that

(4.4)

am,E =

(

1

nE

. . .
1

nE

)

,

as,E =

(

1

nE

. . .
1

nE

)

.

As previously in (3.8a), we apply Mortar relations between master and slave edges
of the same intersection Σk = Ω̄f ∩ Ω̄f

′ :

(4.5) (λE,f
′
,s,k)E∈E

h,f
′
,s,k

= Ck(λE,f,m,k)E∈Eh,f,m,k
.

Now we define the equations for the jump of flux through intersection edges. We
first define the dual relations of (4.3) for all the flux unknowns associated to one edge:

(4.6)

QE,f,m,k =
1

nE

QE,f ,

QE,f,s,k =
1

nE

QE,f .

As previously in (3.8b), we apply Mortar relations between master and slave edges
of the same intersection Σk = Ω̄f ∩ Ω̄f

′ :

(4.7) (QE,f,m,k)E∈Eh,f,m,k
+CT

k
(QE,f

′
,s,k)E∈E

h,f
′
,s,k

= 0,

4.6. Mortar global relations. Relation (4.3) can be written for each edge E
within the fracture f , so that we have

(4.8) Λf ,Σ = Af ,mΛf ,m +Af ,sΛf ,s

withAm,f the matrix of sizeNf,Σ×Nm,f obtained from the vector am,E by completing
by 0 value where needed and As,f the matrix of size Nf,Σ ×Ns,f obtained from the
vector as,E by completing by 0 value where needed.
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We denote by Am = (Af ,m)f the matrix of size NΣ ×Nm and by As = (Af ,s)f
the matrix of size NΣ ×Ns.

In terms of global variables, we still have relation (3.10a):

(4.9) Λs = CΛm

with C an intersection block matrix of dimension Ns ×Nm.
Combining (4.8) and (4.9), we get

(4.10) ΛΣ = AmΛm +AsΛs = (Am +AsC)Λm.

We now set the global relations for the flux.
From relations (4.7), we have

(4.11) Qm +CTQs = 0.

Conditions (4.6) are written

(4.12)
AT

m
QΣ = Qm,

AT
s QΣ = Qs.

Combining (4.11) and (4.12), we get

(4.13) (AT

m +CTAT

s )QΣ = 0.

4.7. Derivation of the linear system. We use the same procedure as in the
previous section.

Using relations (4.9) and (4.10), we eliminate Λs and ΛΣ to keep only the un-
knowns Λm.

Inverting the matrix BK in (3.5), we assemble the mass conservation equation on
each triangle into a system involving global variables:

(4.14) DP −
(

Rin RΣ(Am +AsC)
)

(

Λin

Λm

)

= F,

whereD is aNTh
×NTh

diagonal matrix,Rin is a sparse matrix of dimensionNTh
×Nin,

RΣ a sparse matrix of dimension NTh
×NΣ, C is of dimension Ns ×Nm, and F is a

vector of dimension NTh
, which corresponds to the source/sink function as well as to

the imposed hydraulic head given by the Dirichlet boundary conditions.
Also, by inverting the matrix BK in (3.5), we eliminate the flux unknowns in

(3.7):

(4.15)
(

Min MΣ(Am +AsC)
)

(

Λin

Λm

)

−RT

inP−Vin = 0,

where Min a sparse matrix of dimension Nin×Nin with MΣ of dimension Nin×NΣ.
Following the same procedure in condition (4.13), one has

(4.16)
(

(AT

m
+CTAT

s
)MT

Σ
(AT

m
+CT AT

s
)BΣ(AsC+Am)

)

(

Λin

Λm

)

−
(

(AT

m
+CTAT

s
)RT

Σ

)

P−Vm = 0

with BΣ a square matrix of size NΣ ×NΣ.
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Remark. When hypothesis (3.2) is satisfied, MΣAs = Ms, MΣAm = Mm,
RΣAs = Rs, RΣAm = Rm, AT

s BΣAs = Bs, A
T
mBΣAm = Bm,m, AT

mBΣAs =
Bm,s with the notation used in section (3.8).

We denote by

(4.17)

M =

(

Min MΣ(Am +AsC)
(AT

m +CTAT
s )M

T

Σ
(AT

m +CT AT
s )BΣ(AsC+Am)

)

,

Λ =

(

Λin

Λm

)

, R =
(

Rin RΣ(Am +AsC)
)

,

S = M − RT D−1 R.

Proposition 4.1. Assuming the transmissivity is locally symmetric positive def-

inite, the matrix

(4.18) J =

(

D −R

−RT M

)

is symmetric and, with the presence of Dirichlet boundary conditions within at least

one fracture, it is positive definite.

Proof. The proof is similar to the one given in [2]. We use relation (4.10) to
introduce ΛΣ and to identify Λf in the expression.

For any nonzero vector
(P

Λin

Λm

)

of size card(Th)× card(Eh,in)×Nm, we have

(4.19)

(

PT ΛT

in
ΛT

m

)

J

⎛

⎝

P
Λin

Λm

⎞

⎠

= PTDP− 2PTRinΛin − 2PTRΣ(Am +AsC)Λm

+ΛT

in
MinΛin + ΛT

in
MΣ(Am +AsC)Λm

+((Am +AsC)Λm)TMΣ
TΛin

+((Am +AsC)Λm)TBΣ(Am +AsC)Λm

= PTDP− 2PTRinΛin − 2PTRΣΛΣ + ΛT

inMinΛin +ΛT

inMΣΛΣ

+ΛT

ΣMΣ
TΛin +ΛT

ΣBΣΛΣ

=

Nf
∑

f=1

(

ΛT

f MfΛf +PT

f DfPf − 2PT

f RfΛf

)

with Mf , Df , and Rf the matrices containing the contribution associated to the
triangles K within the fracture f and

(4.20) Jf =

(

Df −Rf

−RT
f Mf

)

.

We get a system within each fracture involving the matrix Jf which is proved to
be positive definite in the presence of Dirichlet boundary conditions and provided the
transmissivity is locally symmetric positive definite [20].
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The Schur complement matrix S is then symmetric positive definite in the pres-
ence of Dirichlet boundary conditions. Once the system

(4.21) SΛ = V +RTD−1F

is solved in Λ, (4.10) allows us to recover the trace of hydraulic head values on the
intersection edges ΛΣ. Finally, the 3D vectors QK containing the fluxes qK,Ei

, i =
1, 2, 3, on each triangle K ∈ Th are derived locally for each K ∈ Th using the rela-
tion (3.5).

5. Numerical simulations. This section presents the benefits of using a non-
matching grid approach. We also describe two examples of simulations in DFNs
with permeameter boundary conditions and analyze the convergence of the numerical
method (when the mesh is refined).

Many DFNs have been generated randomly. Several criteria have been checked
for each DFN to test the consistency of the results:

• Null sum of the fluxes over all the system;
• Null sum of the fluxes over all intersections between fractures;
• Boundary conditions satisfied (notice, however, that edges that are both in-
tersection and on a border are uppermost treated as intersection);

• Continuity of the flux on inner edges.

5.1. Nonmatching versus matching grids. In this section we compare the
mesh obtained with our meshing procedure (presented in section (2.3)), referred to as
the 2D grid, with the mesh generated according to [1], referred to as the 3D grid. Let
us take the example of a fracture, say, fracture 1 (in black) embedded in the network.
Its intersections and boundaries are shown in Figure 5.1.

The discretization procedure of the boundaries and intersections by the means of
a 3D grid (and projection) and a 2D grid is given in Figure 5.2.

The corresponding meshes are presented in Figure 5.3.
The mesh generated by using our 2D grid method is of better quality since there

is no projection step on the fracture plane as is the case with a 3D grid. Moreover,
the benefit is nonconforming discrete intersections between fractures. It is thus easy
to refine or coarse the mesh.

5.2. Example 1: Nonrealistic test case. We first describe a nonrealistic
network where all fractures intersect at the same place. It is a typical configuration
to get multiply defined edges. This is an extreme case but it is useful to validate
the method. Figure 5.4 shows the geometry of 10 fractures in intersection and the

Fig. 5.1. Left: the 3D network; right: the black fracture with its boundaries and intersections.
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Fig. 5.2. Discretization of the boundaries and intersections. Left: via 3D grid (and projection);
right: via a 2D grid.

Fig. 5.3. Associated 2D mesh. Left: 3D grid (and projection); right: 2D grid.

Fig. 5.4. Nonrealistic example. Left, its geometry; right: mean hydraulic head.

associated mean hydraulic head for classic permeameter boundary conditions (head
value of 0m on the right side of the cube, 10m on the left side, and null flux on the
other sides). The cube side L is 2 m and the mesh step is the same in each fracture and

equal to 0.08 m. The transmissivity tensor is homogeneous and equal to T =
(1 0
0 1

)

m2.s−1. In this example, we have Nin = 81,589 inner edges, NΣ = 370 intersection
edges, Nm = 1665 master hydraulic head unknowns, and Ns = 1665 slave hydraulic
head unknowns. As the mesh step is the same within all fractures, the discretization
is matching at the common intersection and is made of 37 edges. We have 45 pairs of
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Fig. 5.5. Example of DFN, test case 1: left, its geometry; right: mean hydraulic head.

Table 5.1

Random distributions of parameters for the generated DFN, Example 2.

Parameter Random distribution
length power law
shape disks
position uniform
orientation uniform

Table 5.2

Values of the input parameters in Example 2.

Parameter Value
a 3.5
L/lmin 5
Mesh step test case 1 : 0.08,

test case 2: 0.08 and 0.16
Number generated:100
of fractures connected cluster: 91

two fractures. Then the numbers of master and slave hydraulic head unknowns are
as expected since Nm = 45 ∗ 37 and Nm = Ns.

Figure 5.4 shows that the mean head is as expected. Moreover, the method does
not create any artificial flux: the sum of fluxes over the whole system is equal to 2.11×
10−12 m3.s−1 and the sum of all the fluxes on intersections gives 7.42× 10−13 m3.s−1.

5.3. Example 2: Random DFN. The second example is a general random
network. It does not satisfy hypothesis (3.2).

Figure 5.5 shows the geometry. Tables 5.1 and 5.2 give the random distributions
and parameters used for the simulations. We perform two test cases, one with the same
mesh step within all fractures and the second with some fractures being coarsened.
Among 100 generated fractures, the connected cluster, defined as the ensemble of
fractures connected to the limits of the system, has 91 fractures in intersection. We
impose classical permeameter boundary conditions: head value of 10 m on the top
side of the cube, 0 m on the bottom side, and null flux on the other sides. The

transmissivity tensor is equal to T =
(1 0
0 1

)

m2.s−1. The parameter a of the power

law (2.1) is equal to 3.5 and the ratio L/lmin is equal to 5 with lmin the smallest
fracture length and L the cube side.
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Fig. 5.6. Left: one fracture and its intersections; right: its border and intersections discretiza-
tions: common intersection edges are in red.

Due to the mesh generation, one may find some edges that belong to two or more
discretized intersections within a fracture. One fracture of the network is shown in
Figure 5.6: common edges are in red.

The first test case deals with a mesh step of the 2D grid used for the discretization
of border and intersections within each fracture of 0.08 m. In this example, Nin =
212,721 inner edges, NΣ = 8380 intersection edges, Nm = 4484 master hydraulic head
unknowns, and Ns = 4418 slave hydraulic head unknowns. Here Nm �= Ns and NΣ <
Nm+Ns since there are some edges common to more than one intersection (like edges
in red in Figure 5.6). Moreover, due to the use of a 2D grid (see section 2.3), even using
the same mesh step within all fractures does not guarantee that a given intersection
between two fractures is discretized with the same number of edges in both fractures.
This is not a problem since the method is built to handle such nonconforming meshes
at intersections.

The sum of all the fluxes on intersections gives 7.2 × 10−13 m3.s−1. The sum
of fluxes over the whole system is equal to −8.51 × 10−12 m3.s−1. The equivalent
permeability defined as the ratio between the input flux over the product of the
domain length by ∆h = 10 is equal to 0.789 m.s−1.

In the second test case, we use the same network but with 40 fractures having
their border and intersections discretized with a 2D grid having a mesh step of 0.08
like in the previous simulation and others with a 2D grid having a mesh step of 0.16
m. Now Nin = 171,937 inner edges, NΣ = 7421 intersection edges, Nm = 3801 master
hydraulic head unknowns, and Ns = 3837 slave hydraulic head unknowns. The sum of
all the fluxes on intersections gives −7.43× 10−13 m3.s−1. The sum of fluxes over the
system is equal to −2.88×10−12 m3.s−1. The mean hydraulic head looks similar in the
two Figures 5.5 and 5.7 and the equivalent permeability is equal to 0.771 m.s−1. Notice
that the refinement procedure here is not optimized as it would have been with a pos-
teriori estimators, where the refined fractures would govern the flow. Combining with
a posteriori estimators, this method is very promising to get an accurate solution of
good quality while reducing the number of unknowns and thus the computational cost.

5.4. Analysis of convergence. The numerical convergence is estimated via a
discrete relative L2 error [21]. A computation is performed on a fine mesh Tη that
gives a reference mean pressure Pη in the sense that it is assumed to approximate well
the solution. Simulations are performed in coarsened grids Th of mesh step h > η. The
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Fig. 5.7. Example of DFN, test case 2: left: mean hydraulic head; right: zoom on the meshing.

Table 5.3

Random distributions of parameters for the DFNs generated for the analysis of convergence.

Parameter Random distribution
length power law
shape disks
position uniform
orientation uniform

Table 5.4

Values of the input parameters for the DFNs generated for the analysis of convergence.

Parameter Value
a 3.5
L/lmin 2
NMC 25
Mesh step from 0.05 to 0.09
Density 100

mean pressure obtained on that mesh, Ph, is then compared with Pη in the following
way:

(5.1) ||Ph − Pη||
2
L2(Ω) =

∑

K∈Tη
(ΠηPh − Pη)

2|K|
∑

K∈Tη
(Pη)2|K|

,

where |K| denotes the area of the triangle K ∈ Tη and ΠηPh denotes the projection
of Ph onto the fine mesh Tη.

We perform Monte Carlo simulations over 25 different randomly generated net-
works. Random distributions and parameters used for the simulations are given in
Tables 5.3 and 5.4. For each Monte Carlo simulation, the mesh step is the same
in each fracture. (Density of fractures is set by a percentage above the percolation
threshold.)

Five mesh steps have been compared: 0.09, 0.08, 0.07, 0.06, and 0.05. The
simulation at mesh step 0.05 is taken as a reference. Figure 5.8 shows that the
method converges with mesh refinement. In this figure, each dot is the mean of the
criterium value over the 25 networks.
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Fig. 5.8. Log10 of the convergence criterium vs. mesh scale.

6. Conclusion. Our paper presents a Mortar method within a mixed hybrid
finite element method dedicated to solve flow in random DFNs. Intricate intersection
configurations of fractures make the meshing procedure a complex and nonflexible
task. Here we propose a flexible mesh generation while handling the difficulties by
adapting the finite element method. More precisely, fractures are first meshed in-
dependently, ensuring a mesh of good quality by a three-step procedure. Second, a
Mortar method is used to ensure the continuity of fluxes and heads at the fracture
intersections. This method is designed in order to deal with discretized intersections
involving more than two fractures. Numerical experiments show the efficiency of the
method. It can handle most if not all randomly generated DFNs with complex 3D
geometrical configurations. Thus our method leads to a promising tool for reducing
the number of edges without loosing accuracy.

A forthcoming step is to define a posteriori error estimators in order to mesh
finely only the fractures accounting for most of the flow. These estimators will then
be used for generating an adaptative mesh with refining and coarsening. Another
investigation line is to optimize the solving process by designing a specific linear
solver using the structure of the matrix. Also, it will be interesting to work with a
variable aperture within the fracture plane, yielding a heterogeneous transmissivity
tensor. The objective is to run simulations and to study the channelling effects.
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