High strain rate damage of Carrara marble - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Geophysical Research Letters Année : 2011

High strain rate damage of Carrara marble

Mai-Linh Doan
Andrea Billi
  • Fonction : Auteur

Résumé

Several cases of rock pulverization have been observed along major active faults in granite and other crystalline rocks. They have been interpreted as due to coseismic pervasive microfracturing. In contrast, little is known about pulverization in carbonates. With the aim of understanding carbonate pulverization, we investigate the high strain rate (c. 100 s−1) behavior of unconfined Carrara marble through a set of experiments with a Split Hopkinson Pressure Bar. Three final states were observed: (1) at low strain, the sample is kept intact, without apparent macrofractures; (2) failure is localized along a few fractures once stress is larger than 100 MPa, corresponding to a strain of 0.65%; (3) above 1.3% strain, the sample is pulverized. Contrary to granite, the transition to pulverization is controlled by strain rather than strain rate. Yet, at low strain rate, a sample from the same marble displayed only a few fractures. This suggests that the experiments were done above the strain rate transition to pulverization. Marble seems easier to pulverize than granite. This creates a paradox: finely pulverized rocks should be prevalent along any high strain zone near faults through carbonates, but this is not what is observed. A few alternatives are proposed to solve this paradox.

Domaines

Géomorphologie
Fichier principal
Vignette du fichier
2011GL049169.pdf (640.24 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-00679856 , version 1 (11-03-2021)

Identifiants

Citer

Mai-Linh Doan, Andrea Billi. High strain rate damage of Carrara marble. Geophysical Research Letters, 2011, 38, pp.L19302. ⟨10.1029/2011GL049169⟩. ⟨insu-00679856⟩
188 Consultations
48 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More