Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations, Fuerteventura, Canary Islands - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Canadian journal of earth sciences Année : 2011

Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations, Fuerteventura, Canary Islands

Résumé

High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520 000 to 800 000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope δ18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

Domaines

Géomorphologie
Fichier non déposé

Dates et versions

insu-00679219 , version 1 (15-03-2012)

Identifiants

Citer

James Allibon, Maria Ovtcharova, François Bussy, Michael Cosca, Urs Schaltegger, et al.. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations, Fuerteventura, Canary Islands. Canadian journal of earth sciences, 2011, 48 (2), pp. 567-592. ⟨10.1139/E10-032⟩. ⟨insu-00679219⟩
146 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More