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[1] Several studies have highlighted the potential negative impact of climate change on
groundwater reserves, but additional work is required to help water managers plan for future
changes. In particular, existing studies provide projections for a stationary climate
representative of the end of the century, although information is demanded for the near
future. Such time-slice experiments fail to account for the transient nature of climatic
changes over the century. Moreover, uncertainty linked to natural climate variability is not
explicitly considered in previous studies. In this study we substantially improve upon the
state-of-the-art by using a sophisticated transient weather generator in combination with an
integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the
finite element modeling software ‘‘HydroGeoSphere.’’ This version of the weather
generator enables the stochastic generation of large numbers of equiprobable climatic time
series, representing transient climate change, and used to assess impacts in a probabilistic
way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have
been generated for each of six different regional climate models (RCMs). Results show that
although the 95% confidence intervals calculated around projected groundwater levels
remain large, the climate change signal becomes stronger than that of natural climate
variability by 2085. Additionally, the weather generator’s ability to simulate transient
climate change enabled the assessment of the likely time scale and associated uncertainty of
a specific impact, providing managers with additional information when planning further
investment. This methodology constitutes a real improvement in the field of groundwater
projections under climate change conditions.

Citation: Goderniaux, P., S. Brouyère, S. Blenkinsop, A. Burton, H. J. Fowler, P. Orban, and A. Dassargues (2011), Modeling climate

change impacts on groundwater resources using transient stochastic climatic scenarios, Water Resour. Res., 47, W12516, doi:10.1029/

2010WR010082.

1. Introduction
[2] According to the Fourth Assessment Report (AR4) of

the Intergovernmental Panel on Climate Change [IPCC,
2007, p. 30], ‘‘Warming of the climate system is unequivo-
cal.’’ One of the most important indirect issues linked to cli-
mate change relates to water supply, which is essential for
most human activities, including agriculture and associated
food security issues. Groundwater represents a large per-
centage of total water supplies across the world [Morris
et al., 2003], in arid zones, but also in countries which expe-
rience temperate climates, such as Belgium, where approxi-
mately 80% of the water supply comes from aquifers
[DGARNE, 2009]. Groundwater will continue to be a vital

resource in the future as it constitutes an important part of
available freshwater on our planet, but also because ground-
water is relatively less sensitive than surface water to short-
term and seasonal climatic variations.

[3] During the last decade, several studies on ground-
water have shown that climate change will have a negative
impact on groundwater reserves in many parts of the world
[Goderniaux et al., 2009a, 2009b; Van Roosmalen et al.,
2009; Scibek et al., 2007; Serrat-Capdevila et al., 2007;
Woldeamlak et al., 2007; Holman, 2006; Scibek and Allen,
2006b, 2006a; Allen et al., 2004; Brouyère et al., 2004a;
Chen et al., 2004; Loáiciga, 2003; Chen et al., 2002; Yus-
off et al., 2002; Loaiciga et al., 2000]. These studies have
highlighted the problems associated with changes in cli-
mate for water resource management systems which have
historically been designed under the assumption of climate
stationarity [Milly et al., 2008]. However, additional work
is also required to help the managers take actions to plan
for future changes:

[4] (1) The uncertainty associated with projected
groundwater levels can be very large and needs to be better
quantified. The absence of information about the quality of
model projections is often used as an argument for inertia.
Nevertheless, evaluating the possible range of variation of
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projected impacts is useful and frequently demanded by
water managers who undertake risk and cost-benefit analy-
ses as part of the decision-making process. However, in
previous climate change impact studies on groundwater,
the estimation of uncertainty has been relatively limited.

[5] (2) Knowledge of the timing of potential climate
change impacts on groundwater is also crucial for managers,
as it assists the adequate planning of further costly invest-
ment (e.g., new pumping installations, prospection for alter-
native resources, etc.). Existing studies typically estimate
the magnitude of climate change impacts for a stationary
climate representative of the end of the 21st century due to
the easy access to time-slice simulations from climate mod-
els. In reality, climatic conditions will continuously evolve
over the 21st century and catchment management plans
may be needed for the near future rather than for the end of
the century.

[6] These important needs for the optimal management
of groundwater resources have not yet been addressed in
previous studies mainly due to inadequacies in climate
model outputs. Output from atmosphere-ocean general cir-
culation models (GCMs) cannot be used directly in most
hydrological models as the scale is too coarse (�250 km)
and thus does not adequately resolve spatial variability in
important climatic variables [Fowler et al., 2007]. Dynami-
cal downscaling using regional climate models (RCMs)
generates output with a finer spatial resolution (normally
�25–50 km) but biases are still observed between RCM
outputs and observed climatic statistics. These are in part
inherited from the GCM providing the boundary condi-
tions, but also from the RCM model structure, parameter-
ization, and resolution. As a consequence, further statistical
downscaling is generally required to provide outputs at a
relevant scale for hydrological impact studies. Most climate
change impact studies on groundwater resources use the sim-
ple ‘‘perturbation’’ or ‘‘delta change’’ method [Prudhomme
et al., 2002] to statistically downscale climate change scenar-
ios to the scale of the study area [e.g., Brouyère et al., 2004a;
Yusoff et al., 2002]. The method applies ‘‘change factors,’’
calculated as the difference (relative or absolute) between the
control and future climate model simulations, to observed cli-
matic data. This method has the advantage of being very sim-
ple, but it has the limitation that the generated climate change
scenarios are strongly conditioned by observed historical
data. As a consequence, the perturbation method does not
allow altering the frequency of wet and dry days, or changing
of the occurrence, persistence, and intensity of extreme
events, which could have a strong influence on groundwater
recharge processes (Figure 1). These simple methods also
have the limitation that the climate change time series are
representative of a stationary climate over a 30 year period,
rather than a transient climate. Furthermore, such scenarios
do not allow for consideration of the uncertainty linked to
natural climate variability.

[7] Despite these limitations, simple downscaling meth-
ods are still widely used in hydrological studies [Fowler
et al., 2007]. In this study we substantially improve upon
the state-of-the-art by applying a sophisticated transient
stochastic downscaling technique in combination with an
integrated surface-subsurface hydrological model to: (1)
better estimate climate change impacts on groundwater
resources; (2) evaluate the uncertainty linked to natural

climate variability; (3) provide an indication of the uncer-
tainties associated with internal climate model structure
and boundary conditions; and (4) consider the transient
aspects of climate change over the whole 21st century.

2. Methodology
[8] We use an advanced and recently developed down-

scaling technique which combines the change factor and sto-
chastic ‘‘weather generator’’ approaches to generate transient
climate change scenarios [Burton et al., 2010; Kilsby et al.,
2007; S. Blenkinsop, H. J. Fowler, C. Harpham, A. Burton,
and P. Goderniaux, Modelling transient climate change with
a stochastic weather generator. Projected temperature changes
for the Geer catchment, Belgium, manuscript in preparation,
2011 (hereinafter, Blenkinsop et al., manuscript in prepara-
tion, 2011)]. In the approach, change factors are calculated
according to GCM/RCM relative change and used for per-
turbing observed climate statistics and therefore assumes
that relative changes in GCM/RCM simulations over time
are more reliable than the absolute value of the simulations,
which are generally biased [Fowler et al., 2007]. For future
climate scenarios the stochastic weather generator compo-
nents are then calibrated separately to the perturbed climate
statistics, and used to simulate future climate time series
that match these statistics.

[9] This technique improves on the delta change method
by calculating change factors for a wide range of climate
statistics (including probability of a dry day, daily mean

Figure 1. Downscaling approach classically used in
hydrological impact studies (perturbation method). Illustra-
tive example with temperature and groundwater levels.
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precipitation, daily and monthly precipitation variance, pre-
cipitation autocorrelation, precipitation skewness, daily
mean temperature, and temperature standard deviation)
rather than the mean alone. Thus RCM control biases are
removed and projected changes in rainfall occurrence and
variability and extremes can be better simulated by this
approach. The weather generator technique is relatively
more efficient at simulating both climatic variability and
extremes in comparison with simpler downscaling techni-
ques [Wilks and Wilby, 1999] as the statistical distribution
of each climatic variable can be adjusted to represent the
changes in variability and the occurrence of extreme events.

[10] Generally downscaling is applied directly to station-
ary climate simulations from GCMs/RCMs over 30 year
time slices (e.g., 2071–2100). In this study the approach has
been adapted to simulate climatic time series that represent
fully transient climate change conditions from 2010 to 2085.
This is achieved using climate projections, downscaled to
the 25 km resolution using an ensemble of RCM experi-
ments, from which change factors for the year 2085 are
calculated using the relative changes between the RCM sim-
ulations representative of a stationary climate for the periods
1961–1990 (control) and 2071–2100 (future). Change factors
for each year between 2010 and 2085 are calculated assum-
ing that changes vary in proportion to the global temperature
evolution of the driving GCM, which provides simulations
representative of the climate between 2010 and 2085, and
by scaling the change factor of the year 2085 accordingly
[Burton et al., 2010]. To generate the complete climate
change time series, the weather generator models are succes-
sively calibrated to the scaled observed statistics of each
year between 2010 and 2085. The weather generator models
then provide a continuous simulation of rainfall and other
weather variables for the period 2010 to 2085.

[11] This methodology enables the stochastic generation
of large numbers of equiprobable climatic time series, to
model natural variability, with little computational resource
and the assessment of possible impacts in a probabilistic
way (see Ng et al. [2010] and Holman et al. [2009] for
examples on groundwater recharge only). The change fac-
tors are calculated from a multimodel ensemble of six
RCMs driven by two different GCMs (PRUDENCE pro-
ject, Christensen and Christensen [2007]), to consider
uncertainty from both driving GCMs and RCMs. As noted
previously, climate models vary in their ability to repro-
duce the observed characteristics of regional climate due to
differences in model structure and parameterizations, and
uncertainty estimates from this source is necessary. In this
study, 30 equiprobable daily climate change time series
from 2010 to 2085 have been generated for each RCM
experiment and for a control simulation assuming no cli-
mate change (Figure 2). These were applied as input varia-
bles to a hydrological model.

[12] Moreover, the advantages of the climatic scenarios
are here combined with those of a catchment-scale fully
integrated surface-subsurface model [Goderniaux et al.,
2009b], where flow equations in all domains are solved
simultaneously. Integrated models enable the simulation of
feedbacks between the surface and subsurface domains and
represent groundwater recharge more realistically, which
depends on the hydraulic conditions in both domains simulta-
neously. A good representation of this groundwater recharge

and the whole dynamic of water exchanges between the sur-
face and subsurface domains is crucial in the context of cli-
mate change, as they constitute the connection between
atmospheric and groundwater flow processes. In this context,
assessing climate change impacts on groundwater by only
considering the subsurface part of the system is very difficult
and potentially unusable [Goderniaux et al., 2009b]. To
simultaneously represent runoff, recharge, and groundwater
fluctuations, daily climatic inputs are required. Compared to
monthly inputs, this enables, for example, the difference
between short intense rainfall and prolonged light rainfall to
be distinguished, and their effect on groundwater recharge be
taken into account.

[13] This approach involving transient stochastic climate
change scenarios and surface-subsurface integrated hydro-
logical models is original in the field of groundwater mod-
eling and climate change impacts. More technical details
about the application of the change factor approach to the
stochastic weather generator and of the integrated hydro-
logical model are provided in Sections 4 and 5.

3. The Geer Basin
[14] This approach is used to evaluate climate change

impacts on groundwater resources of the Geer basin located
in eastern Belgium, northwest of the city of Liège, in the
intensively cultivated ‘‘Hesbaye’’ region. The hydrological
basin extends over approximately 480 km2, on the left bank
of the Meuse River (Figure 3). The Geer catchment is stra-
tegically important for Liege city and its suburbs and it is
exploited for drinking water, primarily through a network
of pumping galleries of more than 40 km located in the
chalk layers (Figure 3). According to Hallet [1998],
extracted groundwater volumes represent between 6% and
11% of total annual precipitation (�800 mm yr�1).

[15] The geology of the Geer catchment essentially con-
sists of Cretaceous chalky formations which constitute the
main aquifer of the region. These chalk formations dip
northward and overlie 10 m of smectite clays of very low
hydraulic conductivity. The total thickness of the chalk
ranges from a few meters up to 70 m. A flint conglomerate
of dissolved chalk residues overlies this, with a maximum
thickness of 10 m. Tertiary sand lenses of small extension
are found locally above this conglomerate and a thick layer
(up to 20 m) of quaternary loess is observed throughout the
catchment [Orban et al., 2010; Visser et al., 2009; Orban
et al., 2006; Hallet, 1998].

[16] The chalk aquifer is unconfined over most of the ba-
sin. Subsurface flow is from south to north and the aquifer is
mainly drained by the Geer River (Figure 3) [Orban et al.,
2006]. The chalk porous matrix, whose total porosity is esti-
mated between 40% and 50%, enables the storage of large
quantities of groundwater. Fast preferential flow occurs
through fractures, which represent approximately 1% of the
total porosity [Brouyère, 2001; Hallet, 1998]. At a macro-
scopic scale, zones characterized by a higher degree of frac-
turing and higher hydraulic conductivity are associated with
‘‘dry valleys’’ mostly oriented south to north. For the larger
part of the Geer catchment, the saturated zone is exclusively
located in the chalk formations. The thick loess layer located
above the chalk controls the water infiltration rate from the
land surface to the chalky aquifer, resulting in smoothed
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Figure 2. Transient stochastic weather generator downscaling approach and its use to derive transient
impact on groundwater as used in this study. Illustrative example with temperature and groundwater levels.

Figure 3. Location of the Geer basin.
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recharge fluxes at the groundwater table and attenuation of
seasonal fluctuations of hydraulic heads that are better char-
acterized by multiannual variations [Brouyère et al., 2004b].

4. Climate Change Scenarios
[17] The generation of large numbers of equiprobable

climate change scenarios with the weather generator meth-
odology is performed in two main steps. First, the daily pre-
cipitation time series from 2010 to 2085 are generated using
the transient version of the rainfall model RainSim [Burton
et al., 2010; Burton et al., 2008]. Second, the precipitation
time series generated with RainSim are used as input to the
‘‘CRU daily weather generator’’ [Kilsby et al., 2007; Watts
et al., 2004], hereafter referred to as CRU-WG, to produce a
data time series of the other weather variables. Daily precip-
itation time series are generated separately from the other
variables because precipitation is conceptualized as clus-
tered rainfall events, while the other meteorological varia-
bles, considered as continuous phenomena, are more easily
simulated by regression procedures.

4.1. RainSim
[18] RainSim [Burton et al., 2008] is based on the

Neyman-Scott rectangular pulses (NSRP) model [Cowpert-
wait, 1991; Neyman and Scott, 1958] which conceptualizes
each rainfall event as the aggregation of several ‘‘rain
cells’’ each characterized by a rainfall intensity and dura-
tion. The properties of all rainfall events and their associ-
ated rain cells are determined by five random variables
governed by specific statistical distributions and specified
parameters (Table 1). These parameters are calibrated to
match observed climate statistics for the ‘‘control’’ simula-
tions (without any climate change) and to the projected
future statistics of each year between 2010 and 2085, based
on RCM projections, for the climate change simulations.
Precipitation statistics used by RainSim in this study are:

daily mean precipitation,
daily precipitation variance,
monthly precipitation variance,
probability of a dry day (<1 mm),
daily lag-1 autocorrelation,
daily skewness coefficient ¼ Ef½Yd � EðYdÞ�3g

�3
Yd

,

Yd : daily rain accumulation, and
�2

Yd
: variance of the daily rain accumulation.

4.2. CRU Daily Weather Generator
[19] The CRU-WG is based on observed correlation and

autocorrelation relationships between climate variables (pre-
cipitation, maximum and minimum temperature, sunshine

hours, vapor pressure, and wind speed). Here simulations are
generated using the transient implementation demonstrated
for the Geer basin by Blenkinsop et al. (manuscript in prepa-
ration, 2011). Observed data for all variables are first sepa-
rately partitioned by all half months of the calendar (12 �
2), and by four different transition types between days (wet-
wet, dry-dry, wet-dry, and dry-wet) determined depending
on the wet/dry status of the preceding and current day. These
data are then normalized (to have zero mean and unit stand-
ard deviation) and modeled using a cascade of regressive
and autoregressive relationships for each of the 96 distribu-
tions (12 � 2 � 4). An example of one such relationship is
given by equation (1) for the temperature variable:

Ti ¼ aTi�1 þ bPi�1 þ c þ r (1)

[20] Ti : normalized daily temperature on day i,
[21] Pi : normalized daily precipitation on day i,
[22] a,b,c : regression weights determined from observed

data, and
[23] r : normally distributed random variable maintaining

the variance of Ti.
[24] These relationships have the advantage of preserving

the correlation and autocorrelation between all variables.
During a simulation they are used to produce new normal-
ized time series which are subsequently denormalized using
constants (the means and standard deviations) correspond-
ing to the target climate [Kilsby et al., 2007]. For future pro-
jections the denormalization constants are calculated by
applying RCM-derived change factors for mean tempera-
ture and temperature standard deviation and here corre-
spond to the projected transient climate change statistics for
each year between 2010 and 2085.

[25] The associated potential evapotranspiration time se-
ries are calculated by the weather generator using the Pen-
man-Monteith equation [Allen et al., 1998]. Further details
of the CRU-WG can be found by Kilsby et al. [2007].

4.3. Pattern Scaling Between 2010 and 2085
[26] The expected climate change statistics used by Rain-

Sim and the CRU-WG are evaluated from data provided by
RCM and GCM experiments. In this method, described in
detail by Burton et al. [2010] and Blenkinsop et al. (manu-
script in preparation, 2011), the stochastic downscaling
applies change factors to observed statistics. These change
factors are derived from the relative or absolute change
between stationary RCM time slices for 1961–1990 and
2070–2100 which are then scaled for each year between 2010
and 2085. This pattern scaling [Mitchell, 2003; Santer et al.,
1990] provides a pragmatic means to produce scenarios for
periods not covered by GCM/RCM simulations. Here, scaling
is performed by assuming that changes vary in proportion to
the global temperature response of the GCM providing the
RCM boundary conditions with the scaling factor of the years
1975 and 2085 being 0 and 1, respectively. Mitchell [2003]
and Tebaldi et al. [2004] have analyzed a range of GCM
experiments and found these assumptions to be generally
accurate for temperature and precipitation change at seasonal
and grid scales. The scaling factor is then calculated for the
years 2025 and 2055, based on the central years of GCM
time-slice experiments (2011–2040 and 2041–2070) with the
scaling factor interpolated linearly between the years 1975,

Table 1. Random Variables Used in the NSRP Model

Random Variable
Statistical Distribution

of the Random Variable

Time interval between rain events (T) Exponential
Number of ‘‘rain cells’’ for each rain event (�) Poisson
Time interval between the origin of each ‘‘rain

cell’’ and the origin of the corresponding
rain event (T)

Exponential

Intensity of each ‘‘rain cell’’ (LT�1) Exponential
Duration of each ‘‘rain cell’’ (T) Exponential
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2025, 2055, and 2085. As an illustration, Figure 4 presents
the scaling factor evolution between 1975 and 2085 for the
GCMs ECHAM4/OPYCA20 and HadAM3 which drive the
boundary conditions of the RCMs used in this study (see Ta-
ble 2). According to this graph, the rate of change is expected
to be greater at the end of the 21st century for both GCMs.

4.4. RCM Ensemble
[27] An ensemble of six RCM experiments provided by

the PRUDENCE ensemble [Christensen et al., 2007] was
selected to demonstrate the application of the downscaling
framework (Table 2). The models are selected to assess the
combined uncertainty in the response of the Geer basin to
both RCM and GCM selection. Details of RCM structures
are provided by Jacob et al. [2007]. PRUDENCE provides
stationary climate model simulations for the periods 1961–
1990 (control) and 2071–2100 (future), the latter assuming
the SRES A2 greenhouse gas emissions scenario (medium-
high) [Nakicenovic et al., 2000] which is consistent with
recent observed increases in atmospheric carbon dioxide con-
centrations [Rahmstorf et al., 2007]. Using different RCM
experiments allows the range of variation or uncertainty asso-
ciated with climate model structure and parameterizations to
be evaluated although, as discussed later, the nature of the
PRUDENCE ensemble does not provide a comprehensive
coverage of climate model uncertainty. Figure 5 presents the
climate change statistics for each RCM (for the 2071–2100
time slice) for mean temperature and precipitation. All
RCMs project a general temperature increase throughout the
year with a higher increase during summer months. Simi-
larly, all RCMs project an annual precipitation decrease, with
precipitation increasing during winter months and decreasing
during summer months.

4.5. Model Validation and Simulations
[28] Comprehensive case studies validating the rainfall

model RainSim, CRU-WG, change factor approach, and
the transient climate change rainfall model may be found
by Burton et al. [2008], Jones et al. [2009], and Burton
et al. [2010]. In this study, RainSim and the CRU-WG
were used to downscale 30 equiprobable daily climate
change time series from 2010 to 2085 for each RCM. In
addition 30 scenarios were produced without any climate
change as stationary control simulations. Observed climate
data (1960–1990), from which future climate statistics are
scaled, are from the Waremme climate station for precipita-
tion and from the Bierset climate station for all other cli-
mate variables (Figure 3). The observed data set is assumed
to be representative of a stationary climate. A validation of
the results is provided by Goderniaux [2010] for rainfall
and Blenkinsop et al. (manuscript in preparation, 2011) for
the other climate variables. As presented in these papers,
the resulting fit between the observed and simulated statis-
tics (1960–1990), as well as between the target and simu-
lated statistics (2010–2085) is very good and satisfactory
for hydrological impact studies. In summary, Figure 6 shows
the rainfall statistics for the control period 1961–1990, as
observed, simulated by the RCM ensemble and simulated by
RainSim. Figure 6 demonstrates three achievements. (1) For
all statistics, RCMs’ simulations contain significant biases
compared to observations. This is particularly notable for the
‘‘probability of a dry day’’ and ‘‘skewness’’ which are signif-
icantly biased by RCMs. (2) It is more appropriate to cali-
brate the weather generator using change factors applied to
observed statistics rather than directly to RCM output statis-
tics. (3) The weather generator simulations match the target
statistics well.

Figure 4. Evolution of the scaling factor between 1975 and 2085 for the GCMs ECHAM4/OPYCA2
and Had3M.

Table 2. Selected RCMs With Corresponding GCM and Meteorological Institute

Institute RCM GCM

A2 Scenario

PRUDENCE Acronym AQUATERRA Acronym

Danish Meteorological Institute HIRHAM HadAM3H A2 HS1 HIRHAM_H
Danish Meteorological Institute HIRHAM ECHAM4/OPYCA2 ecscA2 HIRHAM_E
Hadley Centre for Climate Prediction and Research HadRM3P HadAM3P A2 adhfa HAD_P_H
Swedish Meteorological and Hydrological Institute RCAO HadAM3H A2 HCA2 RCAO_H
Swedish Meteorological and Hydrological Institute RCAO ECHAM4/OPYCA2 MPIA2 RCAO_E
Météo-France Arpège HadCM3 A2 DE6 ARPEGE_H
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Figure 5. Monthly climatic changes in the Geer basin for each RCM for the 2071–2100 period relative
to 1961–1990. (a) Temperature. (b) Precipitation [modified from Goderniaux et al., 2009].

Figure 6. Rainfall statistics (control period 1961–1990) for the observed climate, RCM simulations,
and RainSim simulations. The errors bars correspond to the intervals [mean 6 one standard deviation]
calculated across the 30 RainSim control simulations.
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[29] As explained by Burton et al. [2010] and Katz and
Parlange [1998], the stochastic structure of the NSRP
model does not explicitly model low frequency variability,
which could imply underestimation of the observed interan-
nual variability. For the Geer basin, the standard deviation
of the annual total rainfall amount (which is not used to cal-
ibrate the rainfall simulations) is 136 mm for the period
1961–1990. For the 30 control simulations from RainSim,
the standard deviation of annual rainfall totals ranges from
101 to 169 mm with a mean of 120 mm and a 95% confi-
dence interval between 90 and 151 mm. Although this may
represent a slight undersimulation of the observed interan-
nual variability, the interannual standard deviation of the
observed data is within the 95% confidence interval calcu-
lated for the RainSim simulations. Similarly, the standard
deviation for annual precipitation outputs directly from the
RCM simulations range from 106 to 148 mm with a mean
of 124 mm. This means that the interannual variability in
precipitation amounts for the WG is comparable to that of
the RCM outputs and only slightly lower than the observed
value. Figure 7 shows the downscaled temperature and pre-
cipitation time series (2010–2085) for February and August
for the RCM experiment RCAO_E which projects the larg-
est climatic changes in the region. These downscaled sce-
narios preserve the projected changes in the RCM statistics,
for example, temperature time series project larger increases
for August (summer month) than for February (winter
month) while precipitation time series indicate decreases for
August and increases for February.

5. Groundwater Modeling
[30] The Geer basin model has been developed using the

finite element modeling software HydroGeoSphere. It is
one of the few models which fully integrate the surface
flow, subsurface flow, and the calculation of the actual

evapotranspiration and can perform partially saturated fully
integrated flow and transport simulations [Li et al., 2008;
Sudicky et al., 2008; Therrien et al., 2005]. This integration
allows for a better representation of the whole hydrologic
system because the water exchanges and feedbacks between
subdomains are calculated internally as functions of the hy-
draulic conditions in all subdomains simultaneously. From
the perspective of the groundwater resources, the recharge
is calculated internally by HydroGeoSphere as a function of
the surface and subsurface conditions, and the actual evapo-
transpiration, all of them being interconnected. Its more re-
alistic representation in fully integrated models constitutes
an improvement compared to externally calculated recharge
[Goderniaux et al., 2009b].

[31] HydroGeoSphere simultaneously solves the Rich-
ard’s equation and the diffusion wave approximation of the
Saint Venant equations to simulate variably saturated sub-
surface flow and surface flow, respectively. Water exchanges
between nodes of the subsurface and surface domains are
calculated at each time step. Similarly, the actual evapo-
transpiration at each time step is calculated internally by
HydroGeoSphere using the model of Kristensen and Jensen
[1975], where actual evapotranspiration depends on potential
evapotranspiration, water available in the surface domain,
soil moisture at each node belonging to the specified evapo-
rative and root zones, the leaf area index (LAI), and the can-
opy storage. More details about the numerical model can be
found by Therrien et al. [2005].

[32] The Geer hydrographical basin has been meshed
using six-node triangular prismatic elements in the subsur-
face domain and three-node triangular elements in the sur-
face domain (Figure 8). The typical mean horizontal size of
the elements is approximately 500 m. The vertical discreti-
zation of the subsurface domain is finer just below the
ground surface (1 m thick elements) to more accurately

Figure 7. Downscaled stochastic climate change scenarios for the RCM RCAO_E. Thirty scenarios
are shown in terms of monthly mean temperature and precipitation for February and August.
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represent the variation of the evaporative and root depths.
In the subsurface domain, no flow boundary conditions are
specified along the western, southern, eastern, and bottom
boundaries. Along the northern boundary, a head-dependent
flux condition is specified to take into account groundwater
losses northward from the Geer basin. In the surface do-
main, a no-flow boundary condition is prescribed along the
hydrographical limits of the catchment. A critical-depth
boundary condition is prescribed at the outlet of the catch-
ment, at the level of the Kanne gauging station. This kind of
boundary condition forces the water elevation to be equal to
the critical depth, which is the water elevation for which the
energy of the flowing water relative to the stream bottom is at
a minimum [Therrien et al., 2005; Hornberger et al., 1998].

[33] Surface parameters have been distributed based on
land use [EAA, 2007] and soil maps [DGA, 2007]. Subsur-
face variably saturated parameters have been distributed
using hydrogeological and geological maps [DGARNE,
2010b, 2010a], field tests, and laboratory tests [Brouyère
et al., 2004b; Brouyère, 2001; Hallet, 1998; Dassargues
and Monjoie, 1993; Dassargues et al., 1988]. The model is
calibrated to observed hydraulic heads at eight observation
wells and to surface flow rates at the catchment outlet
(Kanne), for the period 1967–2003. The calibration was origi-
nally performed using mean monthly precipitation and poten-
tial evapotranspiration inputs [Goderniaux et al., 2009b].
Simulations with daily inputs further enabled the improve-
ment of the quality of the transient calibration [Goderniaux,
2010]. Such inputs enable to make a difference between a
short intense rainfall and a prolonged period of light rainfall,
and their different effect on groundwater recharge. Monthly
inputs do not allow it because all precipitations are smoothed
over each month. Generally, the model is able to satisfactorily
reproduce the interannual variations of the groundwater lev-
els. The water balance of the basin is well fitted, and the

model overestimates by only 1% (0.3% of the total precipita-
tion amount) the water flow rates at the Kanne gauging sta-
tion over the calibration period (1967–2003). Imperfections
remain for seasonal variations which are too high compared
to observed data. As explained by Goderniaux et al. [2009b],
a calibration of a fully integrated hydrological model, using
both observed hydraulic heads and surface water flow rates, is
original and enables the parameters and water balance terms
to be better constrained.

6. Results
6.1. Climate Change Impacts on the Geer Basin

[34] For each RCM, 30 equiprobable climate change sce-
narios (2010–2085) were applied as input to the Geer basin
hydrological model. Thirty additional scenarios relative to
a stationary ‘‘control scenario’’ (2010–2085) without any
climate change were also used as a reference data set. For
each RCM and at each observation well (Figure 3), mean
groundwater levels and surface flow rates are calculated for
each day between 2010 and 2085, using the 30 scenarios.
These means express the average behavior given the 30
equiprobable outcomes. Figure 9 presents the evolution of
groundwater levels between 2010 and 2085 for all 30
downscaled scenarios of the RCM RCAO_E. Figure 10
shows the mean groundwater levels between 2010 and
2085 for the 6 RCMs and the control scenario. Figure 11
presents a similar analysis for the mean annual surface
water flow rates at the outlet of the catchment. The evolu-
tion of mean flow rates is also shown separately for Febru-
ary and August to more clearly examine the seasonality of
changes in flow.

[35] For all RCMs and observation points, mean ground-
water levels and flow rates present a decreasing trend
between 2010 and 2085. By the year 2085, mean

Figure 8. Spatial discretization of the surface and subsurface domains in the Geer basin.

W12516 GODERNIAUX ET AL.: STOCHASTIC CLIMATE CHANGE AND GROUNDWATER W12516

9 of 17



groundwater levels are projected to decrease by 4 to 7 m at
A7-PL370 and by 9 to 21 m at CEL1670, depending on the
RCM, in comparison to the mean groundwater levels of the
control scenario simulations. Results for the other observa-
tion points are between these two most extreme ranges

(Figure 10). The different curves of mean groundwater lev-
els show clear seasonal variations, which are a combination
of higher or lower seasonal fluctuations visible for each indi-
vidual scenario. Similarly, annual water flow rates at Kanne
are expected to decrease between 44% and 70% by 2085,

Figure 9. Evolution of daily hydraulic heads at the selected eight observation wells for 30 equiprob-
able climate scenarios of RCAO_E (2010–2085).
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depending on the RCM. Decreases are more significant dur-
ing February than during August but occur throughout the
year, despite climate models projecting a precipitation
increase during winter months. Runoff is limited in the Geer

basin, due to flat topography and silty soils. The flow rate in
rivers is therefore strongly dependent on the groundwater
discharge and groundwater level, which are insensitive to
seasonal fluctuations of the weather. Generally, scenarios

Figure 10. Mean daily hydraulic heads at the eight selected observation wells for each of the six down-
scaled RCM (30 scenarios).
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corresponding to RCMs driven by ECHAM4/OPYCA2
(HIRHAM_E and RCAO_E) project the largest decreases.
These RCMs are also those which project the greatest
monthly climate changes but not necessarily the largest
decreases in annual precipitation (see Figure 5). Conversely,
ARPEGE_H projects the lowest decreases in groundwater
levels and flow rate.

6.2. Uncertainty of Projected Impacts
[36] Using a large number of stochastic climate change

scenarios enables the uncertainty linked to the natural vari-
ability of the weather to be evaluated. Figure 12 presents
the intervals containing 95% of the climate change simula-
tions for the control scenarios and the two RCMs showing
the most contrasting projections—ARPEGE_H and
RCAO_E. The mean and 95% intervals are calculated con-
sidering that the distributions of groundwater levels and

surface flow rates at each specific time are normal and
lognormal, respectively. Results for the other RCMs are in-
termediate between these two RCMs and are not presented
in Figure 12 to avoid overloading of the graphs. The results
presented in Figure 12 show that the intervals related to the
different climate models and the control simulations over-
lap. This is observed not just from 2010, but also at the end
of the century when climate changes are greater. The
uncertainty associated with the natural variability of the
weather on future groundwater levels and flow rates is thus
high (around 10 m when translated to groundwater levels at
OTH0020). Nevertheless, by year 2085, the 95% intervals
of ARPEGE_H and RCAO_E, which are expected to give
the lowest and highest decreases (Figure 10), are entirely
located below the mean curve related to the 30 control sim-
ulations. This indicates that, even if the uncertainty of pro-
jections remains high when considering a specific time

Figure 11. Mean water flow rate at the outlet of the basin for each of the six RCMs (30 scenarios).

Figure 12. (a) Mean groundwater levels (30 scenarios) and 95% interval at observation point
OTH002, (b) mean annual water flow rates (30 scenarios) and 95% interval at Kanne, for the control sim-
ulations and the climate models ARPEGE_H and RCAO_E.
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scale, it is very likely that groundwater levels and annual
surface water flow rates will decrease and the climate
change signal becomes stronger than that of natural vari-
ability by 2085. Across the year, the 95% confidence inter-
vals for flow rates are larger during winter months than
summer months, due to higher runoff and variability (results
not shown). The difference is less significant for ground-
water levels which are more characterized by multiannual
variations. Finally, it should also be mentioned that the
width of the 95% intervals tends to decrease with ground-
water levels. This is due to the increasing importance of the
unsaturated zone which smoothes groundwater recharge
fluxes and attenuates more of the climatic fluctuations.

6.3. Uncertainty in Transient Simulation
[37] With existing downscaling techniques it is possible

to answer questions about the increase or decrease of
groundwater levels for a stationary climate representative of
a specific time slice, typically 2071–2100. Using the ‘‘tran-
sient weather generator’’ downscaling technique allows the
simulation of the change of mean climate statistics in a
fully transient way. It is then possible to evaluate the
impact of climate change on groundwater as well as the
uncertainty associated with the natural variability of the
weather for time periods between 2010 and 2085. Addition-
ally, it is also possible to make the inverse analysis and an-
swer questions on a temporal axis, i.e., when the magnitude
of change is expected to reach a specified decrease in ground-
water levels, and to evaluate the associated uncertainty on
the same temporal scale. This approach is demonstrated by
Blenkinsop et al. (manuscript in preparation) for a simple
temperature index, but here a more meaningful illustration is
provided associated with a specific application.

[38] We pose the hypothetical question: ‘‘By when
might we expect abnormally severe and prolonged periods
of low groundwater levels to occur?’’ Such events are im-
portant for water management as smaller quantities of
water are available for pumping during these periods. In
this study we define such periods in terms of ‘‘periods of 10
consecutive years during which the mean annual ground-
water level at OTH002 is 10 m lower than the mean
groundwater level of the control simulations.’’ In the Geer
basin, where groundwater level variability is naturally
high, such an event is considered highly unusual under cur-
rent climatic conditions, and has not been observed during
the last 60 years. For each of the 180 climate change sce-
narios tested in this study, the first occurrence of this spe-
cific event is identified. A total of eight decadal time
intervals are defined between 2010 and 2085 and for each
simulation the first year of occurrence of the first event is
allocated to the relevant interval. Across the 30 simulations
for each RCM, the total number of instances in which the
first event is identified for each time interval is calculated
and plotted in Figure 13a. The climate models RCAO_E
and HIRHAM_E project the fastest decreases. Conversely,
ARPEGE_H shows a wider distribution with the highest
numbers of outcomes occurring later in the century. Using
these distributions, it is then possible to evaluate the uncer-
tainty in the time of occurrence and to calculate some con-
fidence intervals. The mean and standard deviation of the
distribution of all instances for all RCMs are equal to 2035
and 14 years, respectively. In Figure 13b the corresponding
normal probability density function (pdf) has been plotted.
According to this normal pdf, the 50% interval for the year
of occurrence would be between 2025 and 2044. This inter-
val is wide and is probably influenced by the behavior of

Figure 13. (a) Number of outcomes (10 m decrease in OTH002 groundwater level) for each time inter-
val and each climate model of first instance of abnormally severe low groundwater levels. (b) Probability
density function and 95% interval for all RCMs (OTH002).
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groundwater levels in the Geer basin, which are prone to
natural prolonged multiannual variations.

[39] This kind of analysis can be easily reproduced for
each climate model, for each location in the basin and for
any particular impact, given the identification of an adequate
theoretical statistical distribution to associate with the exper-
imental distribution. In Figure 13a all distributions can
indeed not be associated with normal probability density
functions, as illustrated by the RCM RCAO_E which rather
presents a lognormal shape.

7. Discussion of the Results
7.1. Uncertainties

[40] The uncertainty linked to RCMs must be distin-
guished from that associated with natural climatic variabili-
ty. Uncertainty linked to RCMs is related to climate
modeling and to the fact that any given model is actually
an imperfect simplification of reality. In this study, this
kind of uncertainty has been evaluated by using a multimo-
del ensemble of RCMs. On the other hand, the uncertainty
linked to natural climatic variability has been assessed by
using 30 stochastic generations of climate time series for
each RCM. If the interest is the impact of climate change
on groundwater levels at a specific time only, the 95% con-
fidence intervals calculated in Figure 12 express uncertainty
and must be combined with other types of uncertainties. On
the contrary, if the interest is the mean behavior over a pe-
riod of several years, the 95% confidence intervals may be
considered as an indicator of the range of variation of
groundwater levels around the mean impact. In other words,
the 95% confidence intervals express how groundwater lev-
els will naturally vary around an average position and give
information about groundwater level extremes. In this case,
the calculated intervals can more difficulty be added to
other types of uncertainties related to model errors that can
be systematic across time.

[41] It is acknowledged that all aspects of uncertainty
have not been considered in this study. Future projections
have only considered the A2 emissions scenario. The PRU-
DENCE ensemble does not fully explore the GCM-RCM
matrix and so the ensemble employed here may be termed
an ‘‘ensemble of opportunity’’ [Tebaldi and Knutti, 2007].
However, the methodology described here may readily
employ other RCM outputs, for example those subsequently
made available by the ENSEMBLES project [Hewitt and
Griggs, 2004]. Alternative statistical approaches to down-
scaling such as weather typing and multiple regression have
been widely employed, and some of these can also account
for changes in weather variability [see, for example, Bar-
dossy and Pegram, 2011; Johnson and Sharma, 2011;
Fowler et al., 2007]. However, all methods have their own
merits and disadvantages. The skill of different downscaling
methods has thus been demonstrated to vary spatially, tempo-
rally, and with climatic variable [e.g., Haylock et al., 2006]
and ideally different types of downscaling models should be
incorporated into local-scale climate change projections. In
comparison with other advanced methods, the benefits of this
weather generator approach lie in the capability to produce
large number of equiprobable time series which are represen-
tative of transient climate change conditions. In addition to
consideration of uncertainty related to climate projections, a

complete treatment of uncertainty should also address that
associated with the hydrological model. Kay et al. [2009]
indicated that for flood frequency analysis associated with
two catchments in the UK, uncertainty from this source is
less than that associated with climate modeling. Further simi-
lar analyses of this nature for different hydrological systems
for specific models and under different climates are required,
with the difficulty that hydrological model uncertainty is
very often underestimated [Rojas et al., 2010].

7.2. Downscaling Method
[42] One of the main advantages of this downscaling

methodology relates to the use of many equiprobable cli-
mate change scenarios representative of transient climate
change. Nevertheless, the underlying drawback when using
these scenarios with catchment-scale hydrological models
is the very large computing time required to perform the
climate change simulations. In this case, a unique simula-
tion between 2010 and 2085 with daily input precipitation
and potential evapotranspiration takes more than 20 days
on a 3.0 GHz Pentium4 desktop machine equipped with 4
Gb RAM. Considering the number of scenarios (30 by
RCM) and RCM experiments (six), it represents a huge
volume of calculations to be performed. Given these con-
siderations, the choice of the downscaling methodology in
terms of climate change scenarios to be applied as inputs to
hydrological models should be strongly dependent on the
objectives of the study [Fowler et al., 2007]. If the objec-
tive is, for example, to evaluate the mean groundwater level
for the end of the century, using stochastic scenarios may
not be appropriate and a more simple downscaling method
should be selected [e.g., Goderniaux et al., 2009b]. On the
contrary, if the extremes are of interest, the uncertainty at a
specific time, or the likelihood of a specific impact, using
the weather generator and applying equiprobable scenarios
as input to the hydrological model represents significant
added value.

[43] In this last case, a question arises about the number
of climatic scenarios that is adequate to represent the uncer-
tainty in natural variability for each climate model. Here 30
equiprobable climate change scenarios for each climate
model have been used, but the weather generator downscal-
ing technique allows the generation of many scenarios in
a short period of time. To answer this question, 100 scenar-
ios of ARPEGE_H were generated and used as input to
the hydrological model. The results (not shown here) have
been compared with those achieved using 30 scenarios
only. The difference was shown to be very small and
mostly related to smoothing of the mean curves and confi-
dence interval limits. Results and underlying interpretations
remain however basically identical. Conclusions are also
similar concerning the time period of occurrence of a spe-
cific impact.

8. Summary and Conclusions
[44] In this study, a physically based, surface-subsurface

integrated model is combined with transient climate change
scenarios generated with a stochastic weather generator
and using change factors projected by an ensemble of six
RCM experiments. The methodology enables (1) the simu-
lation of flow conditions under the full transient climate
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change between 2010 and 2085; and (2) an evaluation of
the uncertainty in projected groundwater levels and surface
flow rates, due to both natural climatic variability and cli-
mate model structures and parameterizations. For each of
six different RCM experiments, 30 equiprobable climate
change scenarios are generated and applied as input to the
Geer basin hydrological model. Climate scenarios project a
mean temperature increase for all calendar months, an
increase of precipitation during winter, and a decrease of
precipitation during summer. Mean groundwater levels and
surface flow rates are projected to decrease. Confidence
intervals remain large relative to the expected decrease but
the climate change signal becomes stronger than the natural
variability by the end of the century.

[45] The methodology presented in this paper combines
the advantages of stochastic climate change scenarios with
those of a fully integrated surface-subsurface hydrological
model. The integration of surface and subsurface flow in
the same model provides more realism in the simulation of
water exchange terms between all subdomains and allows a
better representation of groundwater recharge, which is
highly important in the context of impacts on groundwater
resources. However, nonlinear responses of the integrated
hydrological model mean that daily, rather than monthly,
climatic inputs are required. Change factors, which are
used for generating local and regional climate change sce-
narios and have been widely applied in climate change
impact studies, are here calculated for a wide range of
weather statistics (including probability of a dry day, daily
and monthly precipitation variance, precipitation autocorre-
lation, precipitation skewness, daily mean precipitation and
temperature, and temperature standard deviation). The
methodology is therefore able to reflect changes in the tem-
poral sequencing and persistence of the projections pro-
vided by the RCMs but without the biases identified in the
RCM control simulations and assumed to remain in future
projections. The downscaled precipitation simulations have
also been shown to better match observed statistics than
those of the RCMs. Although there is a slight underestima-
tion of interannual variability in the stochastic precipitation
simulations this is comparable with that simulated by the
RCM control experiments.

[46] In conclusion, the change factor approach has been
combined with a stochastic model in a state-of-the-art sta-
tistical downscaling technique which allows analysis of
transient climate change impacts in a probabilistic way. To
our knowledge, this is the first time that such transient sto-
chastic scenarios have been used in combination with an
integrated surface-subsurface hydrological model, and this
advanced methodology has provided an improvement in
the reliability and robustness of groundwater projections.
The results presented in this paper are interesting tools in
the context of groundwater management. The fact that pro-
jections are calculated along with probabilities and uncer-
tainty gives credibility to the results. For water managers,
knowing the possible range of variation of groundwater lev-
els is often more useful than the evaluation of the impact
without additional information. Moreover, the ability to cal-
culate confidence intervals around the time of occurrence of
a specific impact provides managers with additional valuable
information when planning further investment (e.g., new
wells or galleries, alternative resources, etc.).
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