Fault-zone geology: lessons from drilling through the Nojima and Chelungpu faults
Anne-Marie Boullier

To cite this version:

HAL Id: insu-00662907
https://hal-insu.archives-ouvertes.fr/insu-00662907
Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fault zone geology: lessons from drilling through the Nojima and Chelungpu faults

Anne-Marie Boullier

ISTerre - CNRS, Université Joseph Fourier, Maison des Géosciences, BP 53, 38041 GRENOBLE CEDEX 09, France

e-mail: Anne-Marie.Boullier@obs.ujf-grenoble.fr

Abstract

Several drilling projects have been conducted through active faults with the aim of learning about the geology of the fault zones and tentatively correlating the structure and mineralogy of the fault zones with their seismological behaviour during recent earthquakes. Here we present the major results obtained from structural and mineralogical studies of core samples retrieved from the dextral reverse strike-slip Nojima Fault (Japan) within granitic rocks following the Kobe earthquake (1995), and from the Chelungpu thrust Fault (Taiwan) within alternating silts and shales following the Chi-Chi earthquake (1999). We show how these projects, despite not fulfilling all their objectives, have still contributed to a better geological knowledge of the fault zones, to a better characterization of the slip zones related to the recent earthquakes particularly of their thickness, microstructures and deformation mechanisms, and to a better understanding of the nature and role of fluids within the fault zone. They also have led to new questions, and to new approaches for studying fault rock samples. For all these reasons, they have stimulated international scientific research about fault zone geology.
In 1993, a conference was held in California on Mechanical Effects of Fluids in Faulting. This led to a special issue of the Journal of Geophysical Research in the introduction of which Hickman et al. (1995) reported recommendations about three significant topics for future research, one of which was "fault zone drilling combined with surface-based geophysical and geological investigations". Since that time, several fault-zone drilling projects have been conducted around the world, such as the Nojima Fault project following the 1995 Kobe Earthquake, the Corinth Rift (Greece) Laboratory, the San Andreas Fault Observatory at Depth (SAFOD) in Parkfield (California), the Taiwan Chelungpu fault Drilling Project (TCDP) following the 1999 Chi-Chi Earthquake and the Wenchuan earthquake Fault Scientific Drilling (WFSD) through the Longmen Shan active fault zone (following the 2008 Wenchuan earthquake, China). Other projects have drilled plate boundaries along subduction zones, such as the shallow Barbados accretionary prism (Leg ODP 156) or the NanTroSeize experiment which is still in progress through the Nankai Trough.

In a recent review, Zoback et al. (2007) summarize the principal objectives and scientific goals of fault-zone drilling: "The objective of fault-zone drilling projects is to directly study the physical and chemical processes that control deformation and earthquake generation within active fault zones." More recently, the ICDP-SCEC international workshop on "Rapid Response Drilling: Past, Present, and Future", held in Tokyo, Japan (November 2008, see Brodsky et al. 2009), pointed out the need to know how fault strength recovers slowly in the long interval between earthquakes and what combinations of physical and chemical properties of fault rocks lead faults to slip or to creep. In order to fulfill these objectives, the active fault zone and active slip zone related to the last earthquake had to be first recognized so their thickness, mineralogy, chemical composition, and microstructures could be studied. The major geological questions addressed by fault zone drilling projects are the following: can we interpret microstructures in terms of deformation mechanisms, strain-rate, slip-weakening or hardening processes? Can we estimate the fracture and heat contribution in the energy budget of an earthquake? What is the importance of fluids before, during and after an earthquake? What are the mechanisms and kinetics of fault healing? What are the physical properties (seismic velocities, electrical resistivity, density, porosity, permeability) of fault-zone materials compared to country rocks and how do they vary in time and space? As predicted by Hickman et al. (1995), these drilling programs have...
partly answered these questions and contributed to a better knowledge of the active faults, as illustrated by the huge number of scientific papers that have arisen from the studies of core samples; in fact these are too numerous to cite herein. These studies have also led to definition of important new questions and have stimulated a large number of laboratory measurements and experiments.

Of course, boreholes are needle points through faults and surface surveys and detailed studies should not be neglected. However, they provide continuous and unaltered sampling through the faults. In this paper, I will focus on and tentatively summarize the main results that have specifically arisen from the Nojima (Japan) and Chelungpu (Taiwan) drilling projects.

The Nojima Fault (Japan)

General context

The 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake, M7.2) caused 6432 fatalities and disastrous damage in the Kobe city and Awaji Island area. One year after the earthquake, five boreholes were successfully drilled through the Nojima Fault in Awaji Island by the Geological Survey of Japan (GSJ) and the National Research Institute for Earth Science and Disaster Prevention (NIED) at Hirabayashi, and by the Disaster Prevention Research Institute (DPRI, Kyoto University) at Ogura, with the aim of better understanding seismic processes. These boreholes, which were completed within 14 months of the Kobe earthquake, were the first to penetrate through active faults following a recent earthquake. The Nojima Fault is a north-east striking and south-east dipping dextral reverse fault running along the west coast of the Awaji Island, which cuts across the Cretaceous Ryoke granodiorite and its porphyry dykes (Figure 1a). Its Quaternary offset and average slip rate have been established by Murata et al. (2001) to be 490-540m and 0.4-0.45m/10^3 years, respectively, for the last 1.2 my based on the displacement of an unconformity below the sedimentary Kobe Group (Figure 1b). The basal part of this group has been dated to Middle to Late Eocene (Yamamoto et al. 2000), i.e. 40 Ma. These geological data and dates represent important constraints for
interpreting the structure and mineralogy of the fault rocks observed in core samples.

The active fault zone

Drill holes were nearly vertical and at low angle to the orientation that is inferred for the Nojima Fault from its steeply dipping surface rupture (75° to 85° southeast, Awata & Mizuno 1998). Conventional borehole logging during drilling illustrated the evolution of physical properties of rocks with depth. Measured parameters were sonic wave velocity (Vp), borehole diameter, resistivity, porosity, density, gamma ray, temperature (Ito et al. 1996; Ikeda 2001). By combining these data with continuous observation of core samples on-site, the main fault zone was able to be located at 389.5m, 624.5m and 1140m depth in the DPRI 500, Hirabayashi GSJ and NIED drill holes, respectively (Figure 1b and c). Another borehole approached the fault at ca. 1700m depth (DPRI 1800, Figure 1b) but did not go entirely through it (Lin et al. 2007).

The logging tools give a first image of the structure of the fault. In the GSJ borehole for example, the resistivity decreases regularly above and increases abruptly below all faults regardless of their importance (Pezard et al. 2000). Conversely, the natural gamma radioactivity displays a wide maximum above the fault, decreases sharply on the fault and then increases regularly below it, until the base-line (Pezard et al. 2000). Both trends indicate an asymmetry of the fault zone and a tendency towards more extensive fracturing and alteration of the hanging-wall as the fault is approached. This result illustrates that logging tools are powerful methods to locate damage and fault zones in boreholes. The Stoneley wave analysis was used to determine the location of the permeable zone around the Principal Slip Zone (PSZ, Sibson 2003) in the Hirabayashi GSJ drill hole within the 623 to 625m depth interval predicted by observations of the surface rupture (Kiguchi et al. 2001). It is important to note that no temperature anomaly was measured in any borehole.

Characterization of the fault zone

An identical procedure was followed for core handling for all drill holes (Tanaka et al. 2004).
2001 a; Matsuda et al. 2001; Lin et al. 2007). Core pieces were fixed using epoxy resin and cut in two halves. One of these halves was for archiving, but was polished for naked-eye observations. The other half was made into thin sections, and used for experiments and analyses. This method presented advantages for microstructural studies because it allowed multiscale observations of samples from cores to thin sections. However, it caused complications in the measurement of physical properties of the fault rocks.

Formation Micro-Imaging (FMI™; Schlumberger, Houston, Texas), a downhole logging technique which was performed after the GSJ drilling, provides an image of the electric resistivity of the borehole and thus indicates the number and orientation of the fractures. The fractures tend to strike E-W far from the fault, as expected due to the orientation of the present-day stress field, but they become normal to the fault close to it and parallel to it within the fault core (Ito & Kiguchi 2005). FMI and images of the core were compared to reorient the core samples in a geographic coordinate system (Ohtani et al. 2000 a). However, this was not possible for the whole length of the borehole, particularly in sections with few fractures. Nevertheless, observations of thin sections normal to the core indicate evidence for two nearly orthogonal directions of compression in the form of kinked biotites (Boullier et al. 2004 a), healed (fluid inclusion planes) or sealed (calcite) microfractures (Takeshita & Yagi 2001). These two stress tensors are consistent with the geodynamics of Japan which displays left-lateral transcurrent faults striking 045° during the Late Cretaceous-Palaeocene (Kanaori 1990), which were reactivated as right-lateral faults during Late Pliocene to Quaternary times (Fabbri et al. 2004).

Systematic studies of polished slabs (see for example Figure 2) and thin sections have provided important data on the distribution of deformation microstructures, geochemical composition and mineralogy of the core samples in all boreholes (Ohtani et al. 2000 b, 2001; Fujimoto et al. 2001; Tanaka et al. 2001 a, b, 2007 a; Kobayashi et al. 2001; Matsuda et al. 2001, 2004; Lin et al. 2001, 2007). Most of these studies have used Sibson’s (1977) classification of fault rocks. First, these authors have used distribution of deformation and alteration textures in order to define the fault core where most of the displacement is accomodated, and the damage zone that is made of a network of subsidiary structures between the fault core and the undeformed protolith (Caine et al. 1996). The fault core and damage zone are 0.3m and > 46.5m wide, respectively, in the Hirabayashi GSJ borehole (Ohtani et al. 2000 b, 2001; Fujimoto et al. 2001; Tanaka et al. 2001 a, b, 2007 a; Kobayashi et al. 2001; Matsuda et al. 2001, 2004; Lin et al. 2001, 2007).
The fault zone geology

2001a). The fault damage zone is 70m wide in the Hirabayashi NIED drill hole (Tanaka et al. 2007a) and even larger (130m) if the 1140m and 1312m fault zones are considered as bounding faults of a fault zone (Lockner et al. 2009). The Nojima fault zone becomes wider and more complex with depth, branching into two faults between the Hirabayashi GSJ and NIED drill holes.

Secondly, correlations between deformation intensity and geochemical composition were possible thanks to the homogeneity of the starting material, the Ryoke granodiorite (Figure 2a). Mass balance calculations considering TiO$_2$ and P$_2$O$_5$ as immobile elements indicate important volume loss (compaction) in the fault core but volume gain (dilation) in the damage zone in the Hirabayashi GSJ and NIED boreholes (Tanaka et al. 2001a, 2007a). Volume gain in the damage zone corresponds also to an LOI (Loss On Ignition) increase and to decrease of the P-wave velocity (Fujimoto et al. 2001). These results are consistent with permeability and strength evolution around the fault as measured by Mizoguchi et al. (2008a) on surface samples and by Lockner et al. (2009) on drill core samples. The fault zone is "a thin, low-strength, low-permeability fault zone core flanked by zones of high permeability rock that have undergone relatively limited total shear" (Lockner et al. 2009).

The Principal Slip Zone

Although it was a challenging prospect, the Principal Slip Zone (PSZ, Sibson 2003), where displacement took place during the Kobe earthquake, was located by careful observations of core samples and polished slabs from three drill holes. In the DPRI 500 drill hole (Figure 1b) the PSZ is localized at the contact between foliated gouges from the Ryoke granodiorite and from the Osaka group, and is described as a fault surface (Lin et al. 2001; Tanaka et al. 2001b). This would suggest that PSZ related to the Kobe earthquake has no apparent thickness at this depth. However, thanks to electron spin resonance (ESR) intensity measured across the dark gray fault plane by Fukuchi & Imai (2001), and to comparison of ESR analyses of natural and experimental fault gouge samples produced from high-speed slip tests (Fukuchi et al. 2005), it has been demonstrated that a thermal effect related to the earthquake was recorded in a 6mm wide zone, which could be explained by frictional heating of the pore water in the fault.
The fault zone geology

Gouge above boiling, and its diffusion into the fault gouge (Fukuchi & Imai 2001).

Darkening of the gouge and the presence of an increased ferrimagnetic resonance (FMR) signal in the PSZ are related to the formation of ferri-magnetic iron oxides and indicate that frictional heating may have induced temperatures of at least 350-400°C during seismic slip at 390m depth (Fukuchi et al. 2005).

In the Hirabayashi GSJ drill hole (Figure 1c), after much debate it was concluded that the PSZ was found at 625.27m depth in a millimetre-thick slip zone (Tanaka et al. 2001a).

In the Hirabayashi NIED drill hole (Figure 1c), Tanaka et al. (2007a) located the PSZ at 1140.57 to 1140.66m depth in a 10 mm-thick Ca-rich ultracataclasite layer in which intense grain-size reduction has occurred, but Lockner et al. (2009) suggested that two activated fault strands were crossed by this drill hole at 1140 and 1312m depth. All these observations on drill holes through the Nojima fault demonstrate that thickness of the PSZ increases with depth and that fault healing processes may be very efficient, making it difficult to recognize the PSZ in all drill holes only one year after the Kobe earthquake.

Pseudotachylytes and seismic processes

The most striking rocks observed either in GSJ or NIED drill holes are pseudotachylytes (Figures 2c and 3a) which are associated with ultracataclasites (Ohtani et al. 2000b; Tanaka et al. 2001a; Boullier et al. 2001; Otsuki et al. 2003). These rocks are rarely observed in faults as predicted by Sibson & Toy (2006), but clearly result from seismic slip (Sibson 1975) and therefore provide information on seismic processes and the energy budget of earthquakes (Kanamori & Heaton, 2000). Otsuki et al. (2003) suggested that the ultracataclasites observed in these drill holes behaved as fluidized granular material, in which frictional resistance decreased abruptly to nearly zero during seismic slip. They also proposed that the viscosity of the pseudotachylytic melt evolved during seismic slip, based on the temperature reached and the percentage of unmelted grains. As observed in the Hirabayashi GSJ drill hole and surface outcrops, the pseudotachylytes are laminated with some contorted and folded layers (Figure 3a; Tanaka et al. 2001a; Boullier et al. 2001; Otsuki et al. 2003) that could be indicators of high-velocity seismic slip (Mizoguchi et al. 2009). The glass is not recrystallized and
The fault zone geology

Boullier does not display spherulites or crystallites as often described in pseudotachylytes (see for example di Toro & Pennachioni 2004). However, there are abundant rounded vesicles which appear to be fluid inclusions (Figure 3b). Microthermometry on some of these fluid inclusions indicates that they are filled by a very dense CO$_2$-H$_2$O fluid. The intersection of isochoric lines with the present-day 24°C/km geothermal gradient indicates that the fluid inclusions were trapped at 380°C and 410MPa (Boullier et al. 2001) or at 270°C and 250MPa if a 30°C/km geothermal gradient is considered (Boullier et al. 2004a). The lower estimate is probably more realistic as no mylonites were found in the Nojima fault. Such trapping conditions imply that these pseudotachylytes were formed at >9km depth in the seismogenic zone before exhumation of the Ryoke granodiorite and deposition of the Kobe group at 40Ma. They therefore formed during an early stage of seismic activity on the Nojima Fault (Boullier et al. 2001). This deduction has been confirmed by fission track data of zircon which provided a 56 Ma age for the pseudotachylytes (Murakami & Tagami 2004). The presence of fluid inclusions also indicates that the pseudotachylytic melt was saturated in fluids when cooling which suggests that this frictional melt formed in an already altered initial material containing fluid as a free phase or/and structurally bound in minerals. Famin et al. (2008) measured the CO$_2$ and H$_2$O contents of the pseudotachylytic melts by Fourier transform infrared (FTIR) microanalysis, illustrating that the younger layers have decreasing CO$_2$ contents due to decreasing pressure of formation and that a significant mass of CO$_2$ may be exsolved during each pseudotachylyte-generating seismic event. Consequently, because CO$_2$ saturation in silicate melts is pressure-dependent, CO$_2$ content in pseudotachylytic glass may be used as a proxy for the depth of pseudotachylyte formation.

Energy budget of the earthquake

Boullier et al. (2001) used the calculations proposed by Kanamori & Heaton (2000) to evaluate the thermal budget of earthquakes that resulted in pseudotachylyte formation. Based on the thickness of the pseudotachylyte layers (1mm) and on the temperature increase due to frictional melting (1000°C), they deduced that each pseudotachylyte layer corresponds to M6 to M7 earthquakes assuming a 3-4MPa initial frictional stress.
calculated by Bouchon et al. (1998) from the slip model of Irikura et al. (1996).
Therefore, the pseudotachylytes observed now at 625 m depth in the Hirabayashi GSJ borehole were formed during ca. 56 Ma old earthquakes similar in magnitude (M6 to M7 versus Mw 6.9) to the recent Kobe earthquake.

Grain-size distribution (GSD) has been recently used by many authors to characterize fault rocks and gouges related to seismic events, with the aim of estimating the fracture energy of earthquakes (see a review in Keulen et al. 2007). This technique has also been used to characterize aseismic faulting and cataclasis accompanying hydrothermal alteration in a the Cajon Pass drill hole (Blenkinsop & Sibson 1992). Keulen et al. (2007) measured GSD in cataclasites from the Hirabayashi GSJ drill hole and in experimentally deformed granitoids. In both cases GSD were not fractal and two slopes (D) were observed in all log-log GSDs. In experimental or natural examples, D-values of 0.9-1.1 were measured for grains smaller than ca. 1 µm. Two different D were measured for cracked grains (1.5-1.6) and gouges (2.0 to 2.6) for grains larger than 1 µm, which is the grinding limit of quartz. These results show that grain size reduction in fault zones develops by a two-stage process: rupturing creates cracked grains; further displacement of fragments causes further comminution by wear and attrition. Healing processes may also modify GSD as demonstrated by experiments of hydrostatic or non-hydrostatic healing of fault gouges (Keulen et al. 2008). Thus, we should be cautious when using GSD for calculating the fracture energy of an earthquake because GSD is the sum of several cumulated seismic events and is the product of different mechanisms occurring during the whole evolution of the gouge zone.

Fluids: before, during and after earthquakes

Multi-stage alteration of fault rocks has been recognized by Ohtani et al. (2000 b), Fujimoto et al. (2001), Tanaka et al. (2001a, 2007a) and Boullier et al. (2004a), as summarized in Table 1. Using the relationships between hydrothermal minerals and structures, it is possible to correlate hydrothermal alteration with deformation episodes. The older hydrothermal stage is weak, static and characterized by chlorite. It is attributed to the cooling of the granodiorite between 90 and 74 Ma (Takahashi 1992;
Murakami et al. 2002).

The second stage is widespread and, at least in the Hirabayashi GSJ drill hole, is represented by zeolites. Laumontite, the most common mineral formed in this stage, is observed throughout the damage zone as an alteration product of plagioclase, filling veins and sealing fractures. The hydrothermal alteration in the low-strain damage zone in the Hirabayashi GSJ drill hole is very similar to that observed in the Cajon Pass drill hole (Blenkinsop & Sibson, 1992) in terms of starting material (granitic rock), alteration product (laumontite formed at the expense of plagioclase) and deformation textures (almost no crack-seal textures, extensional fractures with flow structures and dilatant cataclasis). Some dilatant microstructures could thus result from aseismic deformation related to volume change induced by replacement of plagioclase by laumontite (Blenkinsop & Sibson, 1992). Laumontite is present as clasts in ultracataclasites (pale green in Figure 2b); in particular in those associated with pseudotachylytes. This indicates that the first stage of seismic activity and alteration occurred before 40 Ma under decreasing pressure and temperature conditions between the formation of pseudotachylytes at >270°C and >250MPa (see above), and the stability field of laumontite, which is between 280°C and 150°C depending on the pressure (Zen & Thompson 1974). These observations are also consistent with the decreasing CO₂ content of the pseudotachylytic glass measured by Famin et al. (2008).

The third stage of alteration is characterized by thin veinlets of siderite emplaced within the flattening plane in cataclasites and ultracataclasites (reddish brown zones in Figure 2b) within the core of the main fault zone around 625m in the Hirabayashi GSJ drill hole (Boullier et al. 2004 a) and within the 1140m, 1300m and 1800m fault cores of the Hirabayashi NIED drill hole (Boullier, unpublished observations). These veins are not associated with any significant phase of deformation, nor with structures resulting from dilatancy and are deformed in later gouge zones or cross-cut by later carbonate veins (see Table 1 and Boullier et al. 2004 a). For these reasons they have been correlated with a quiescence stage by Boullier et al. (2004 a).

The fourth hydrothermal stage is characterized by hydraulic fractures filled by small grain-size euhedral ankerite and siderite crystals (pale honey-coloured fractures in Figure 2b; Fujimoto et al. 2001; Boullier et al. 2004 b; Moore et al. 2009). Undeformed hydrofractures of this type are mainly localized in the hanging-wall of the main fault
zone in the Hirabayashi GSJ drill hole but they are also observed below the fault where they are deformed by late gouge zones (Figure 3c). Their internal structure strongly suggests that they were induced by coseismic hydraulic fracturing and fast nucleation of carbonates due to a sudden fluid or CO$_2$ partial pressure drop due to fracturing (Boullier et al. 2004 b).

The latest stage of alteration is characterized by clays. Smectite has been found in the GSJ 625m (Fujimoto et al. 2001) and NIED 1140m (Matsuda et al. 2004) fault zones. Illite is also observed in small conjugate low-angle reverse shear zones located below the principal 625m fault core (Figure 3c) in which it displays a C/S microstructure (Figure 3d). These small shear zones lie below the principal 625m fault core and may be observed on the FMI images (Ito & Kiguchi 2005). They also correspond to the 625-635m depth interval where deformation of the borehole has been seen on the BHTV (BoreHole TeleViewer) acoustic scans (Célérier et al. 2000).

The present-day fluids which are circulating in the GSJ 625m fault zone have been analyzed. Their chemical composition is in equilibrium with the carbonates precipitated in the hydraulic fractures described above and with illite and Ca-montmorillonite. This also indicates that the fluids are flowing upwards and originate from a reservoir situated at 4km depth (Fujimoto et al. 2007) based on the 24°C geothermal gradient measured in the Hirabayashi GSJ borehole (Kitajima et al. 1998). Lin et al. (2003) have proposed that, because these fluids are meteoric in origin, they have infiltrated the active Nojima Fault by a fluid suction-pumping process inspired by the so-called seismic pumping model (Sibson et al. 1975).

Processes of healing by dissolution-precipitation

Fluids are also involved in the chemical compaction of gouges, ultracataclasites or fine-grained vein-filling material by dissolution-precipitation processes, although fluid advection is not necessary. Evidence for these processes has been found in the 625m fault zone of the Hirabayashi GSJ borehole in the form of stylolitic surfaces in fine-grained laumontite dilatant veins of the second hydrothermal stage (Boullier et al. 2004 a) and indentation of grains in gouges or in fine-grained carbonate veins of the third hydrothermal stage (Boullier et al. 2004 b). The dissolution-precipitation processes are
The fault zone geology

349 diffusion controlled, and therefore dependent on the diffusion distance between the
350 source and sink of solute, and on the mineral which is dissolved (Gratier et al. 2003).
351 Consequently, although these are very slow processes, they may be very efficient under
352 low stresses in fine-grained material such as those mentioned above and therefore
353 contribute to the post-seismic or interseismic sealing of the fault, to the decrease in
354 permeability of very fine-grained ultracataclasites as measured by Lockner et al. (2009)
355 and to stress build up in the lead-up to the next seismic rupture. Minerals involved in
356 these processes are mostly laumontite during the first and carbonates during the second
357 stages of seismic activity of the Nojima Fault. Decrease in permeability should result in
358 an increase in fluid pressure. However, there are no observational data, such as
359 horizontal extensional veins, that would suggest that an abnormal fluid pressure regime
360 existed in the case of the Noijima Fault as for the fault-valve model (Sibson et al. 1988;
361 Sibson 1990).

362 Lessons from the Nojima Fault drilling projects.

363 The first lesson from the Nojima Fault frilling projects is that geology of this fault is
364 considerably more complex than initially thought. The fault-zone thickness, structure
365 and mineralogy are the result of two distinct periods of seismic activity accompanied by
366 intense hydrothermal alteration separated by a period of quiescence. All these stages
367 are recorded in the fault rock microstructures. The recognition of very peculiar
368 pseudotachylytes in the core of the fault that are attributed to the first period of activity
369 has induced significant interest in this type of rocks. As a result, a number of high
370 velocity rotary shear friction experiments have been performed on « hard » rocks (for
371 example Hirose & Shimamoto 2005; Di Toro et al. 2004). Natural gouges from the
372 Nojima Fault have also been used as initial material for similar high velocity
373 experiments to investigate their behaviour during seismic slip (Mizoguchi et al. 2009).
374 Observations of the internal structure of the Nojima Fault have also illustrated that we
375 need more information on the permeability and thermal properties of faults to
376 understand and predict their seismological behaviour (for example Wibberley &
377 Shimamoto 2003, 2005; Uehara & Shimamoto 2004; Mizoguchi et al. 2008 a; Lockner et
378 al. 2009). Permeability is highly dependent on fracturing and healing processes, and
rates and kinetics of these processes are of considerable importance. Recently, highly
permeable pulverized rocks have been discovered along the San Andreas Fault by Dor et
al. (2006) and along the Arima-Takatsuki tectonic line (Mitchell et al. 2009). Some
textures of dilatant fractures at depth in the Hirabayashi GSJ drill hole are similar to
naturally (Rockwell et al. 2009) and experimentally (Doan & Gary 2009) pulverized
samples. Could they be the expression of pulverization at depth or high strain-rate
brittle deformation in the fault zone? This question illustrates that the determination of
strain-rate on the basis of microstructures in fault rocks remains a major question, and
more comparisons need to be made between experimentally and naturally deformed
samples.

Hirabayashi NIED borehole intercepted three fault zones (Tanaka et al. 2007 a), while
the DPRI 1800 borehole intercepted two (Lin et al. 2007). Some of these fault zones
were activated by the Kobe earthquake, but others were not. As illustrated by the fact it
was difficult to identify the principal slip zone of the Kobe earthquake only one year
after this event, healing processes may be very efficient and rapidly obliterate the
evidence of localised slip. Therefore, we can still ask whether the non-activated faults
are locked or inactive? Detailed comparative, collaborative studies by the principal
investigators of each of these drill holes are needed to provide more information on the
deformation and healing microstructures and mechanisms to address this question.

Nevertheless, the Japanese drill holes through the Nojima Fault have confirmed the
international interest in fault zone geology, and progressed the general knowledge on
faulting and seismic processes in basement rocks.

The Chelungpu Fault (Taiwan)

General context

The Chi-Chi earthquake (21 September 1999, Mw = 7.6, ca. 2400 fatalities) produced a
surface rupture of 80 km, with up to 10 m offset on the northern part of the Chelungpu
thrust fault (Figure 4a, 4b; Kao & Chen 2000). From reconstruction of balanced cross
sections, Yue et al. (2005) determined that the Sanyi-Chelungpu thrust system has
accommodated 14 km total displacement, and that 0.3 km total slip has been accommodated on a newly propagated North Chelungpu Chinshui detachment within the Chinshui Shale, where the Chi-Chi earthquake occurred (Figure 4b). Thus, in contrast with the Nojima Fault, the Chelungpu Fault has a relatively simple tectonic history.

The Chi-Chi earthquake was recorded by the very dense Taiwan Strong Motion and GPS Networks allowing models of spatial slip distribution (Ma et al. 2001), as well as determination of rupture velocity (Chen et al. 2001), and of coseismic and postseismic deformation (Pathier et al. 2003; Yu et al. 2003). During the Chi-Chi earthquake, the northern segment of the Chelungpu Fault was characterized by large displacement (8 to 10m), high slip velocity (2-4m/s) and low level of high-frequency radiation. In contrast, smaller displacement (3-4m), lower slip velocities (0.5m/s) and higher accelerations of the ground motion were measured in the southern part (Ma et al. 2003).

Initially, two shallow boreholes penetrated the Chelungpu Fault in March 2001 at 455m (northern site, Fengyuan) and 211m (southern site, Nantou). These provided initial important observations, such as a temperature rise in the northern site on the suspected fault zone activated by the Chi-Chi earthquake (Tanaka et al. 2002) and differences in fault zone architecture: clay-rich injections (Otsuki et al. 2005; Ujiie 2005) and pseudotachylyte fragments (Otsuki et al. 2005) are described in the northern and southern boreholes, respectively. As the lithofacies and geological structure are similar at both northern and southern sites, the difference in fault rock microstructures are interpreted as indicating different frictional properties of the fault in these two segments (Otsuki et al. 2005; Ujiie et al. 2005).

The active fault zone

The Taiwan Chelungpu Fault Drilling Project (TCDP, Figure 4) was started in 2002. The TCDP site was chosen near the town of DaKeng, about 2 km east of the surface rupture (Figure 4b) in order to allow investigation of the slip-weakening mechanisms responsible for the seismological characteristics of the Chi-Chi earthquake in the northern part of the Chelungpu Fault. Two vertical boreholes were drilled 40 m apart (2000.3 m deep Hole A in 2004 and 1352.6 m deep Hole B in 2005), and a side-track was
drilled from a depth of 950m to 1280m from hole B (hole C in 2005). TCDP holes penetrated through Pliocene and Upper Miocene alternating sandstones, siltstones and shales (Figure 4b; Song et al. 2007).

One major feature in the TCDP cores is the colour change of the rocks (from light grey to dark grey, and black) that accompanied deformation. This has been used as a macroscopic on-site criteria for locating fault-zones (Yeh et al. 2007). Three major fault zones were recognized in the Chelungpu Fault system in Hole A at 1111, 1153 and 1221m depth (Song et al. 2007; Hung et al. 2007; Yeh et al. 2007; Sone et al. 2007) which may correlate to fault zones at 1136, 1194 and 1243m depth, respectively, in Hole B (Figure 4c; Hirono et al. 2007). In Hole B the recognition of fault zones was facilitated by the use of systematic non-destructive and continuous measurements performed on the retrieved cores at the Kochi Institute for Core Sample Research (JAMSTEC) such as density, porosity, magnetic susceptibility, natural gamma ray radiation and gamma ray attenuation, magnetic susceptibility and X-ray Computed Tomography (X-ray CT) (Hirono et al. 2007). Some, but not all, fault zones also include cm-thick fault-parallel disks of hard black ultracataclasites: at 1153 and 1221m depth in Hole A (Yeh et al. 2007) and at 1194, 1243 and 1341m depth in Hole B (Hirono et al. 2007).

Among these fault zones, the one located at 1111m in Hole A (FZA1111, Figure 4c) was determined on-site as the fault-zone activated by the Chi-Chi earthquake on the basis of several arguments: high-resolution shallow seismic reflection profiles predicting a depth at 1200m with 10% error; high strain fault kinematics were determined as thrust by fault plane and slickenside orientations consistent with the measured focal mechanism of the Chi-Chi earthquake; high fluid content (Ma et al. 2006; Yeh et al. 2007; Song et al. 2007), fracture density and physical properties measured by logging tools, in particular low resistivity, low density, and distinct Vp and Vs (Hung et al. 2007). The total thickness of the FZA1111 fault zone is 5.5m (Yeh et al. 2007). It corresponds to the fault zone at 1136m in Hole B (FZB1136, Figure 4c) which has a 3.5m total thickness and is characterized by a lower contrast related to higher permeability on X-ray CT images (Hirono et al. 2008).

Energy budget of the earthquake
One major question arising from the TCDP project concerns the thermal budget of the earthquake, and many papers have been devoted to that point. First, temperature measurements were performed in 2005 in Hole A. A 0.06°C anomaly was found around the FZA1111 (Kano et al. 2006), consistent with the 0.1°C anomaly measured earlier in the shallow boreholes (Mori & Tanaka, 2002; Tanaka et al. 2006). As discussed by Kano et al. (2006) and Tanaka et al. (2006, 2007 b), the temperature anomaly may occur as (i) residual heat generated during the Chi-Chi earthquake or (ii) may be the result of fluctuations of geothermal gradient related to changes of physical and thermal properties of fault rocks or (iii) be the result of warm fluid upflow in the fault zone due to its high permeability deduced from hydraulic tests (Doan et al. 2006) and measurements on core samples (Tanikawa et al. 2009). Unfortunately, it is not yet possible to resolve these possibilities in the TCDP boreholes.

Ma et al. (2006) calculated the grain size distribution in the very fine-grained gouge recognized as the Chi-Chi PSZ by Kuo et al. (2005) in order to better constrain the energy budget of earthquakes. By comparison with the seismic surface fracture energy determined from near-field seismic data, they concluded that the contribution of gouge surface energy represents 6% of the earthquake breakdown work, which is slightly higher than the <1% value obtained on mature Californian faults by Chester et al. (2005) and Rockwell et al. (2009).

The Chi-Chi PSZ

The Chi-Chi PSZ was recognized by Kuo et al. (2005, 2009) in the lower part of FZA1111 (Figure 5), just above a hard, but fragile black disk, which broke into pieces during on-site core handling. This interpretation was based on the absence of reworking microstructures such as later fractures in the very fine-grained gouge, veins or schistosity and on the presence of smectite as the dominant clay mineral. The authors also observe the presence of glassy material in small quantities (<25%) and suggest that melting of clay minerals due to strong shear heating occurred in the PSZ and that most of the resulting pseudotachylyte was promptly converted into smectite (Kuo et al. 2009).

Boullier et al. (2009) presented a detailed study of the FZA1111 fault zone, focusing on
the Chi-Chi PSZ. The latter is a 2 cm thick, very fine grained, isotropic gouge (Figure 6a) and contains matrix-supported clasts and Clay Clast Aggregates (CCAs, Figure 6b) which are microstructures that have been reproduced by Boutareaud et al. (2008, 2010) during high velocity rotary shear experiments where a liquid to vapour transition occurred in the pore water. As such, CCAs are new symptomatic markers of seismic slip in clay-rich gouges, like pseudotachylytes are in "hard" rocks (Sibson 1975). Clasts of the lower black ultracataclasites are also present in the PSZ and display an inverse grain size segregation according to the Brazil Nut Effect (Boullier et al. 2009). All these microstructural criteria lead Boullier et al. (2009) to propose that the gouge was fluidized as the result of a 300-400°C coseismic temperature rise inducing thermal pressurization (Sibson 1973). This phenomenon may explain the gouge injections observed above the FZA1111 (Figure 5) and in the northern shallow borehole (Otsuki et al. 2005; Ujiie 2005). The Chi-Chi PSZ in FZB1136 is very different from the PSZ in FZA1111; it is a thin (<0.3 cm versus 2 cm) ultracataclasite, locally exhibiting a layering defined by variations in concentrations of clay minerals and clasts (Boullier et al. 2009) similar to foliated gouges experimentally reproduced by Boutareaud et al. (2008) and Mizoguchi et al. (2009).

Continuous in-situ and non-destructive measurement of the magnetic susceptibility in Hole B has shown that fault zones, and FZB1136 in particular, are characterized by an important increase of the magnetic susceptibility which has been interpreted by Hirono et al. (2006) as due to the production of ferrimagnetic iron oxides induced by frictional heat as experimentally reproduced during high-speed frictional testings (Fukuchi et al. 2005). Recently, Chou et al. (2009, 2010) and Aubourg et al. (2010) performed a very detailed and complete analysis of magnetic properties on FZB1136 using a U-channel sample. They measured the magnetic susceptibility, the isothermal remanent magnetization and S-ratio, and the anhysteretic remanent magnetization every cm, together with low-temperature magnetic properties to identify the magnetic minerals. Their measurements have been precisely compared with microstructures described by Boullier et al. (2009). The principal results are as follows: (i) a paleomagnetic component close to the modern dipole is recovered all along the FZB1136, (ii) very small amounts of fine-grained magnetite and pyrrhotite constitute the magnetic assemblage in the PSZ, and (iii) authigenic goethite has been clearly identified by TEM in and above the PSZ and attributed to circulation and post-seismic cooling of hot fluids in
the FZB1136 (Chou et al. 2009, 2010). Therefore, they confirm that frictional heating occurred in the Chi-Chi PSZ.

Through measurement of major and trace element chemistry, as well as isotope ratios of core samples, Ishikawa et al. (2008) illustrated that the three fault zones exhibit sharp compositional peaks of fluid-mobile elements and strontium isotopes. They suggest that coseismic hot (>350°C) fluids circulated and interacted with the fault rocks where they mobilized these elements. Hashimoto et al. (2008) attribute the low iron content of chlorite in the fault zone to result from a temperature rise and rock-fluid interactions in the three fault zones (FZB1136, FZB1194 and FZB1243). All these results are consistent with the magnetic characteristics of FZB1136 quoted above.

Coseismic rise of temperature in the fault zones has been documented in a number of other publications about the TCDP. Because the hard disks of black ultracataclasites are a noticeable feature of the TCDP core samples, they have been investigated using different methods. Hirono et al. (2006) have shown that the anomalies in magnetic susceptibility measured on the black ultracataclasites in FZB1194 and FZB1243 coincide with the evidence for frictional melt and a decrease in inorganic carbon that they attribute to thermal decomposition of carbonate minerals at ca. 850°C. However, the effect of thermal decomposition of carbonates may be very complex if the mass and energy balance, and the kinetics of the endothermic reaction of calcite decomposition, are taken into account (Sulem & Famin, 2009). Otsuki et al. (2009) confirm that the hard black disks correspond to pseudotachylytic layers indicative of a single (FZB1314) or multiple (FZB1194, FZB1243) seismic events, and that co-seismic temperature rise has been heterogeneous in the pseudotachylytic layer and may be estimated in the 750° to 1750°C range.

In conclusion, although different authors agree frictional heating occurred on fault zones in the Chelungpu Fault, they propose different values for the temperature rise. It appears that the coseismic thermal rise was around 300-400°C in the Chi-Chi PSZ in FZA1111 and FZB1136 (Ishikawa et al. 2008; Boullier et al. 2009) and may have reached 750°C or more in the hard disks of black ultracataclasites observed in Hole B on FZB1194 and FZB1243 fault zones which correspond to ancient seismic events (Hirono et al. 2006; Otsuki et al. 2009).

Several gouge layers corresponding to ancient seismic events are visible in the FZA1111
and FZB1136. They differ from the PSZ because they display a sequence of small conjugate shear zones, a fault-parallel schistosity associated with deformed calcite veins, both being folded together in some places, and dissolution seams around hard objects (Boullier et al. 2009). These microstructures are consistent with a fault-normal shortening and are symptomatic of a low-rate deformation by dissolution-precipitation processes which occur during the post-seismic or the interseismic stage (Gratier & Gueydan, 2007).

Fluids: before, during and after earthquakes

Boullier et al. (2009) described thin calcite veins above the Chi-Chi PSZ in FZA1111 within compacted gouges, which form 3D dilational patches and display evidence of increasing strain with increasing distance from the PSZ. They were formed by hydraulic fracturing, and are undeformed just above the PSZ where they are interpreted by Boullier et al. (2009) as induced by fluid escape, fracturing and sealing related to the Chi-Chi earthquake. Farther from the PSZ, veins are planar or shortened and folded, and orientated at high angle to the fault. In the damage zone, the silty and sandy layers are dilated, fractured and sealed by calcite while shaly layers are not. This suggests that clay-rich layers may have acted as impermeable caps allowing compartmentalization of fluids in the sandy sediments and formation of small-size so-called "Hill fault/fracture-meshes" (Sibson 1994).

It has been shown earlier that fluids played an important role during the Chi-Chi earthquake because they have been coseismically thermally pressurized. However, the relative scarcity of calcite veins in the active damage zone compared to the large volume of laumontite and carbonate veins in the Nojima Fault demonstrates that the volumes of fluids involved in deformation on the Chelungpu Fault are much smaller than those involved in the Nojima Fault. Regardless, their role in the Chelungpu faulting process illustrates that fluids may greatly influence the seismological behaviour of faults even if they are present in small quantities.

Lessons from the Taiwan Chelungpu Fault Driling Project.
One major lesson from the TCDP project concerns the thermal budget of an earthquake. In order to measure frictional heat arising from the fault slip, the temperature must be measured in the vicinity of the PSZ as quickly and as deep as possible after an earthquake (Brodsky et al. 2009). However, observations from the TCDP illustrate that part of the frictional heat produced by the earthquake may be transformed into mechanical (thermal pressurization) and chemical (mineral transformations, fluid-rock interactions) work. One major contribution of TCDP to earthquake understanding has been the demonstration that the energy budget of an earthquake cannot be separated into simple fracturing, radiation and thermal terms but should also take into account chemical and mineralogical transformations.

As the Chelungpu Fault occurs in sedimentary rocks made of alternating silts and shales, clays are important minerals within the fault zone. The TCDP results show that the behaviour of clays during co-seismic slip is fundamental in order to understand slip-weakening mechanisms. Therefore, for the same reasons that the Japanese drilling projects have stimulated experiments on "hard" rocks, the TCDP project has stimulated high velocity rotary shear friction experiments on "soft" rocks from the Chelungpu Fault (Mizoguchi et al. 2008 b; Tanikawa & Shimamoto 2009; Sone & Shimamoto 2009) and numerical modelling of the thermal pressurization related to dehydration of clays (Sulem et al. 2007). The high-velocity experiments on clayey gouges have produced microstructures that have been recognized in the Chi-Chi PSZ and are keys for interpreting natural fault gouges. For example, Clay Clast Aggregates (CCAs); new indicators for seismic slip, thermal pressurization and slip weakening have been described (Boutareaud et al. 2008, 2010).

The studies undertaken on the TCDP samples have demonstrated that the mineralogy of the PSZ is of considerable importance and that chemical and mineralogical transformations may occur in the PSZ due to the frictional heat produced there. However, the proposed values for the frictional heat differ significantly between different publications. The effect of thermal decomposition of minerals may be very complex and to model its mechanical effects such as slip weakening due to thermal pressurization it is necessary to take into account the mass and energy balance and the kinetics of the chemical decomposition (Sulem & Famin 2009).

Again, the distribution of physical properties, and tranport properties in particular,
within the core and the damage zones of the fault is of primary importance to
understand the coseismic slip behaviour of the PSZ and thermal pressurization in
particular. The permeability structure of the Chelungpu Fault has been investigated in
several studies using the TCDP samples (Tanikawa et al. 2009; Wang et al. 2009; Chen et
al. 2009; Louis et al. 2008) which have demonstrated that drilling projects through
active faults should include such measurements. To do so, core handling is of primary
importance. The core-handling workflows were different for Hole A and Hole B samples.
The results of continuous non-destructive analyses performed on Hole B samples only,
were made available a short time after drilling. However, it has been shown that these
rock analyses are not sufficient and that detailed studies are necessary to provide
precise information on microstructures and mineralogy. For example, whole-rock
analyses pointed to the fact that there is an important magnetic susceptibility record in
the black ultracataclasites, that may be significant in terms of mineral transformations
and thermal pressurization (Hirono et al. 2006). However, only detailed subsequent
investigations have deciphered the exact nature of this magnetic signal and shown that
the Chi-Chi PSZ records the present-day Earth’s magnetic field (Chou et al. 2010). TCDP
has led to numerous analyses of magnetic properties of fault rocks which contributed to
the development of new techniques and approaches of the fault zone geology.
The work done on the TCDP so far represents significant progress in understanding fault
zone processes, but we still need more information on clay mineralogy, composition and
volume of pore fluids before and after the earthquake, in order to fully understand the
mechanical and slip-weakening effects of mineral transformations in the PSZ.
Regardless, the numerous studies on TCDP samples have contributed to a better
knowledge of thrust faults in clay-rich rocks and, consequently, have provided good
preparation for the international community for other drilling projects such as
NanTroSeize in the Nankai Trough.

Conclusions

This paper has focussed on the contributions of the Japanese and Taiwanese drilling
projects to a better knowledge of the geology of fault zones. Some results have probably
been missed as it is impossible to cite all the papers published on the subject. Each
project has provided its own unique set of results because the faults crosscut different parent rocks and occur in different geodynamic and tectonic contexts. Consequently, different processes and deformation mechanisms have been activated during earthquakes on the Nojima and Chelungpu faults. In addition, large volumes of fluids were involved in the alteration of the Nojima wallrocks while only small volumes of fluids were present in the Chelungpu Fault system. This illustrates that there is no unique process applicable to all faults around the world. Fortunately, other projects are in progress that will investigate other fault types: the San Andreas Fault Observatory at Depth (SAFOD) in Parkfield (California), the Wenchuan earthquake Fault Scientific Drilling (WFSD) through the Longmen Shan active fault zone (China), the NanTroSeize project through the Nankai accretionary prism and subduction zone and the Deep Fault Drilling Project (DFDP) through the Alpine Fault (New Zealand). With the help of these projects combined with surface studies, we can expect to obtain some answers to remaining questions.

Drilling projects, although not the only way to do so, have been performed to understand earthquakes as large-scale phenomena recorded by seismologists and have triggered many micro-scale studies that have led to a better knowledge of the Principal Slip Zone which controls the seismological behaviour of faults during earthquakes (Sibson 2003). Thus, questions at a macroscale have stimulated research at a microscale. Reciprocally, answers provided from micro-scale studies have explained some macroscopic behaviours of active faults. We may cite as an example the recognition of thermal pressurization in the Chi-Chi PSZ which explains the peculiar seismic behaviour of the northern segment of the Chelungpu Fault during the Chi-Chi earthquake.

Let us reconsider the objectives of drilling projects through active faults (Zoback et al. 2007) designed "to directly study the physical and chemical processes that control deformation and earthquake generation within active fault zones". It is apparent that we still need information on the thermal signature and heat production of earthquakes, the pressure and composition of pore fluid, the healing processes and their kinetics, and the mechanisms of aseismic creep on faults. On-going and future drilling projects through active faults will certainly improve our knowledge, and provide supplementary information to address these questions by stimulating intense and fruitful collaborations between geologists and seismologists.
Acknowledgements

The author thanks her Japanese (K. Fujimoto, H. Ito, T. Ohtani) and Taiwanese (Y.-M. Chou, L.-W. Kuo, T.-K. Lee, S.-R. Song, E.-C. Yeh) colleagues for allowing her to collaborate with them on the fantastic and precious samples from the Hirabayashi and TCDP boreholes. These studies of the geology of fault zones are part of more comprehensive projects with French colleagues and have been financially supported by the CNRS and/or Ministère des Affaires Etrangères (PICS 1050 France-Japan, PAI ORCHID 2006, International Laboratory CNRS-NSC France-Taiwan ADEPT) and by ANR (ACTS Taiwan, ANR-06-CATT-001-01). AMB thanks also Michel Bouchon for critically reading a first draft of this manuscript, Toshi Shimamoto for his constructive review and Virginia Toy for her help in making the message clearer. Last but not least, she is grateful to Rick Sibson for advising and encouraging her every time she met him in Europe, North America or New Zealand for discussions on mylonites, pseudotachylytes, gold mines, earthquakes, birds, history, poetry and many other subjects.

References

The fault zone geology

The fault zone geology

Hirono, T., Yeh, E. C., Lin, W., Sone, H., Mishima, T., Soh, W., Hashimoto, Y., Matsubayashi, O., Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S. R., Ma, K. F., Hung, J. H., Wang, C. Y.,
Boullier 26 The fault zone geology

Kanaori, Y. 1990. Late Mesozoic-Cenozoic strike-slip and block rotation in the inner belt of Southwest Japan. Tectonophysics 177, 381-399.

Boullier

The fault zone geology

Ohtani, T., Fujimoto, K., Ito, H., Tanaka, H., Tomida, N. & Higuchi, T. 2000 b. Fault rocks and past to recent fluid characteristics from the borehole survey of the Nojima Fault ruptured in the

Boullier

Boullier 31 The fault zone geology

Table 1

Table 1 - Principal occurrences and features of the hydrothermal minerals in the GSJ drill hole (modified from Boullier et al. 2004a).

Figure captions

Fig. 1 - (a) Geological map of the northern part of the Awaji Island and location of the DPRI, Hirabayashi GSJ and NIED drill sites [after Ohtani et al. 2000a]. (b) Cross-section showing the vertical offset of the Nojima Fault and the orientation of the DRPI 500 and DPRI 1800 boreholes at Ogura (after Lin et al. 2007). (c) Cross-section showing the orientation of the GSJ and NIED boreholes at Hirabayashi (after Tanaka et al. 2007a).

Fig. 2 - Photographs of polished drill core slabs from the Hirabayashi GSJ borehole. The depths of the upper and lower limits of the samples are specified at the top of each image (top of the core always to the left). The sample number (bottom) indicates the number of the drill core box and the number of the sample within that box. The scale marker is 2.5 cm long. (a) Undeformed and almost unaltered Ryouke granodiorite. (b) Very fine-grained compacted ultracataclasite in the core of the fault. Note the reddish colour related to siderite veinlets and the pale honey-coloured veins filled by siderite+ankerite. (c) Very fine-grained compacted ultracataclasite (bottom left) associated with layered pseudotachylytes in the core of the fault.

Fig. 3 - Microphotographs of thin sections from the Hirabayashi GSJ borehole. (a) Pseudotachylyte from the sample 99-05 (Fig. 2c, upper right corner). Note the flow structures in the dark brown layer. Plane polarized light. (b) Transparent pseudotachylyte fragment in the ultracataclasite from sample 99-05 (Fig. 2c, lower left corner) which contains numerous CO₂-rich fluid inclusions (FI). Plane polarized light. (c) Scan of a thin section in sample 100-35 at 633.07m depth showing a clay-rich, low-angle reverse shear zone deforming the fine-grained carbonate veins (short thick arrows). (d) Detail of the shear zone in Fig. 3c showing the C/S arrangement of clays (presumably illite). Crossed polars.

Fig. 4 - (a) Sketch of the western Taiwanese foothills showing the principal thrust faults,
the Chi-Chi earthquake epicenter and the location of TCDP drill site. (b) Schematic cross-section passing through the TCDP drill site indicating the principal sedimentary formations and the principal faults (after Hung et al. 2007). (c) Correlation between the principal fault zones of the Chelungpu Fault system in Hole A and B (after Hirono et al. 2007).

Fig. 5 - Sketch (a) and unrolled scanning image (b) of the fault zone of FZA1111 showing the principal structural characteristics of the fault zone activated during the Chi-Chi earthquake. PSZ: Principal Sip Zone (Sibson, 2003) where slip occurred during the Chi-Chi earthquake (after Boullier et al. 2009).

Fig. 6 - Microstructures in the isotropic gouge within the PSZ shown in Fig. 5 (after Boullier et al. 2009). All microphotographs are oriented as in Fig. 5. (a) General view of the isotropic gouge showing the matrix-supported clasts which are either monomineralic, such as fractured quartz fragment (Q), or fine-grained polymineralic gouge fragments (G). Plane polarized light. (b) Clay-clast aggregate (CCA) with a round quartz core and a brownish cortex made of clays. Plane polarized light.
Table 1 - *Hydrothermal episodes in the Nojima Fault*

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chlorite</th>
<th>Zeolite: laumontite</th>
<th>Siderite</th>
<th>Ankerite and siderite</th>
<th>Clays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>ca. 300°C</td>
<td>ca. 150-280°C</td>
<td>In thin veinlets parallel to the flattening plane within the core of the fault zone</td>
<td>In hydraulic fractures including fragments of cataclasites and minerals, located above the slip zone</td>
<td>Alteration and replacement of minerals, in fractures,</td>
</tr>
<tr>
<td>Texture</td>
<td>As rosettes in small cavities (ripidolite)</td>
<td>In blocky coarse-grained veins</td>
<td>In hydraulic fractures, with small fragments of cataclasites or minerals</td>
<td>Alteration and replacement of minerals, in fractures,</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>In cracks together with albite</td>
<td>In thin veinlets parallel to the flattening plane within the core of the fault zone</td>
<td>In hydraulic fractures including fragments of cataclasites and minerals, located above the slip zone</td>
<td>Very fine grained crystals</td>
<td></td>
</tr>
<tr>
<td>Replaced mineral</td>
<td>Biotite and amphibole</td>
<td>Plagioclase</td>
<td>Plagioclase, biotite and amphibole</td>
<td>Plagioclase, micas, laumontite</td>
<td></td>
</tr>
<tr>
<td>Mechanisms of formation</td>
<td>Hydrothermal processes during cooling of the granodiorite</td>
<td>In-situ replacement</td>
<td>Taber growth</td>
<td>In-situ replacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vein filling</td>
<td>Hydraulic fracture-fill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic fracture-fill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsequent deformation</td>
<td>Cataclasis</td>
<td>Cataclasis</td>
<td>Dissolution-precipitation processes: stylolites and schistosity</td>
<td>Cataclasis in thin fine-grained gouge and shear zones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissolution-precipitation processes: stylolites and veins</td>
<td></td>
<td>Cataclasis in thin fine-grained gouge zones</td>
<td>Orientated parallel to schistosity</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Prior to the Kobe Group deposition</td>
<td>Contemporaneous with pseudotachylytes</td>
<td>Quiescence stage: between 56 and 1.2 Ma</td>
<td>Younger than ca.1.2 Ma</td>
<td>Contemporaneous with or younger than carbonates</td>
</tr>
<tr>
<td></td>
<td>Between 90 and 74 Ma (*</td>
<td>Prior to the Kobe Group deposition ca. 56 Ma</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface rupture at the 1995 Kobe earthquake

Fault
Alluvial
Pliocene-Pleistocene
Eocene-Miocene
Cretaceous granitoids

GSJ and NIED drill sites
Hirabayashi

DPRI drill site
Ogura

Awaji Island

Epicenter of the 1995 Kobe earthquake

GSJ Borehole
Nojima Fault

-1500
-1000
-2000
2000 m

DPRI
500
DPRI
1800

N40°W

F

Osaka
Gr.
Kobe
Gr.

Nojima fault
Asano fault
Ryoke
granitic rock

Depth (m)

N47°W
Surface rupture

GSJ Borehole
NIED Borehole

-500
-1000
-1500
-2000

DPRI
500
DPRI
1800

N40°W

N47°W

0

500

0 m
200
-2000

200

0 m